
INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSIT̈AT MÜNCHEN

Diplomarbeit

Concept and Implementation of
an Emulation Environment for
Distributed Service Discovery

Bearbeiter: Andriy Golovko

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering, Prof. Dr. Claudia Linnhoff-Popien

Betreuer: Mike Heidrich (Fraunhofer ESK)
Michael Krause
Michael Schiffers

INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSIT̈AT MÜNCHEN

Diplomarbeit

Concept and Implementation of
an Emulation Environment for
Distributed Service Discovery

Bearbeiter: Andriy Golovko

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering, Prof. Dr. Claudia Linnhoff-Popien

Betreuer: Mike Heidrich (Fraunhofer ESK)
Michael Krause
Michael Schiffers

Abgabetermin: 15. August 2005

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 15. August 2005

. .
(Unterschrift des Kandidaten)

Abstract

The number of services offered by different devices to the end users has significantly increased. There are
different approaches and ways in which the services can be brought to the end user. Services used with as
minimal overhead as possible are usually preferred. There are several aspects that must be considered in
order to achieve this. The way in which services are discovered by the users is one of these aspects.

Services operate in various environments: home environment, office environment etc. These usually put
some specific requirements to the service discovery. For example, an environment with many mobile
devices may emphasise power saving characteristics of the service discovery approach as a tradeoff to
the service discovery speed. The question which therefore arises is whether it is possible to meet the
requirement of an environment in advance.

There are two extremes among the approches used for investigating such kind of questions. A modeling
of the service discovery protocol characteristics followed by a simulation is used most often. Another
extreme is the practical evaluation of the service discovery protocol in usually large scale environments
with hundreds services and terminal devices. This requires high implementation and integration effort. It
also worth mentioning that they are often intractable.

The objective of the current work is to design and implement an emulation framework which fills the
gap between theoretical simulations and physical implementations. It reuses existing service discovery
prtocol implementations and imitates services’ and users’ behaviour. The framework proposed in this
thesis extends a real network environment through virtual emulated services. Thereby the performance of
service discovery protocols can be explored with real terminal devices. It may be user-defined by the size
of the enhanced service environment. Furthermore, the framework delivers statistical information about
the service discovery protocol under consideration.

The framework is also deployed to evaluate the design and implementation of the service environments
before their complete practical realization of the environment.

2

Contents

Contents i

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of the Current Work . 3

2 Emulation Framework Requirements 4
2.1 Use Cases . 4
2.2 Office Environment . 6
2.3 Requirements to the Emulation Framework . 6

3 Service Discovery 10
3.1 Technical Background . 10
3.2 Service Discovery definition . 12
3.3 SD protocols popularity . 13
3.4 Service Discovery Protocol Examples . 14
3.5 Service Discovery Comparison . 23
3.6 Summary . 27

4 Related Work 30
4.1 Overview . 30
4.2 Network Layers Simulation . 31
4.3 Measurement . 48
4.4 Visualization . 51
4.5 Summary . 53

5 Design of theESKEm framework 54
5.1 Design Overview . 54
5.2 Workload Components . 55
5.3 Network Simulation Component . 58
5.4 Measurement Component . 64
5.5 Visualization . 65

6 Implementation 67
6.1 Installation and Execution . 67
6.2 Implementation Overview . 69
6.3 Emulation Scenario . 70
6.4 EskUnit . 73
6.5 Communication over the Simulated Network . 74
6.6 Simulated Network andJiST/SWANS . 78
6.7 Validation . 81
6.8 Summary . 87

i

7 Summary and Future Work 89
7.1 Summary . 89
7.2 Future Work . 91

A Emulation scenario example. 93

B ESKEm performance measurements. 97

C The OSI reference model. 103

D The Floyd-Warshall algorithm. 105

Bibliography 109

Chapter 1

Introduction

1.1 Motivation

In a service-oriented computing environment functions and applications are also referred to as services.
Services are usually provided by devices and used by people. Computing environment can often consist
of many different services. A typical example is a lecture room of the Technical University of Munich. A
lecturer usually turns on/off the light in the room, regulates the volume of the microphone, and opens/closes
the drapes. Some rooms are equipped with a touch screen based panel which proposes intuitive interface
to control most of the available devices. Devices like the beamer and the movable blackboards must be
controlled separately. Most of the services offered by different devices are used during a lecture. The
associated overhead very often increases with the number of devices.

The situation in an office environment can even be worse. Even today it is quite common that users
do not have permanent work places. They must accomplish various tasks like giving presentations or
printing documents at different locations. There is also a strong tendency to increase the number of services
available per user. For example, the number of different devices in companies has increased significantly
in the last few years. Therefore, finding the right services in an office environment is more crucial than in
other environments.

There are different ways in which services can be discovered and used by the end users. Some of them
require significant configuration efforts. For example, to prepare the proper work place for an external
freelancer you would have to go through the secretary. However, would not it be nice to have the work
place available right away? Would not it be convenient, if yourPersonal Digital Assistant(PDA) could
find the necessary services in a new room without you having to undertake additional configurations?

The following example illustrates a ”better” way of finding the right services (based on an example from
[SLP]):

Traditional scenario:
Newbie: ”Hey Stan, the setup program is asking me for the name of our printer. What should
I type in?”
Stan: ”Which printer do you want?”
Newbie: ”The big one by the copier.”
Stan: ”I’ve heard it does not work well with postscript applications. You’ll have to use the
one down the hall.”
Newbie: ”Ok. What should I type in.”
Stan: ”Actually, I do not know; I use the one by the copier. You’ll probably have to call the IS
help desk.”

1

2 CHAPTER 1. INTRODUCTION

Newbie:<groan> ...

Desired scenario:
A setup program displays the description (including location) of the printers that work with
postscript. The user selects one that is close to his office. The service returns all necessary
addressing information directly to his device setup application.

Both scenarios above (the University and ”printer”-scenario) imply that thediscoveryof services plays a
crucial role in bringing them service to the end user. Therefore, we need an adequate service discovery
protocol. A number of such protocols have already been designed and developed. The most famous ones
are part of technologies like Java Intelligent Network Infrastructure (Jini), Universal Plug-and-Play (UPnP)
technology, Universal Description, Discovery and Integration (UDDI) technology, Service Location Proto-
col and some others. However, there are still open questions.

Assume, that we have an environment where the services are located on devices with limited energy re-
sources. As a result, the environment put specific requirements on the power saving characterisics of the
service discovery protocol. Furhter, we assume that a specific service discovery protocol implementation
exists. Even if the protocol implementation works correctly, it is not clear whether it meets the require-
ments of theenvironment. A practical evaluation of the service discovery protocol implies running it in
an arbitrarily large environment with arbitrarily many services and terminal devices. The environment is
also supposed to have specific characteristics like a network topology, characteristics of network links etc.
This is usually associated with many implementation and integration efforts. On the other hand, modeling
followed by an eventual simulation which determines the protocol’s suitability can be quite complex too.

Figure 1.1: The real environment can be extended by
an emulated one, which devices and services are dis-
covered in the same way as the real ones.

In this thesis an emulation framework (reffered to
asESKEm1) is conceptualized and implemented.
This must support the researchers in their inves-
tigation of the questions mentioned above. The
framework fills the gap between theoretical sim-
ulations and the physical implementations. It is
not our primary goal to develop a new protocol,
but rather to explore, whether a specific protocol
meets the requirements of a specific environment.
Nevertheless, the protocol exploration can still re-
sult in an improvement of some concrete service
discovery protocols (at least for the specific envi-
ronment).

Our framework imitates an environment, where ex-
isting service discovery protocols are being ex-
plored. There are several ideas behind our ap-
proach. First, we use existing service discovery
protocol implementations in theESKEm. Second,
theESKEm can also be seen as anextentionto an

existing environment. As a result, the emulated services are discoverable by the real clients (Figure 1.1). In
Chapter 2.3 use cases provide more detailed overview of theESKEm functionality (see Section 2.1). The
use cases are used to derive the requirements for the emulation framework (Section 2.3).

1”ESK” stands for Fraunhofer Einrichtung für Systeme der Kommunikationstechnik, www.esk.fraunhofer.de; ”Em” stands for
emulation

1.2. STRUCTURE OF THE CURRENT WORK 3

1.2 Structure of the Current Work

The thesis is organized as follow. Chapter 2.3 describes the Use Cases which explain theESKEm func-
tionality. They are used to derive the requirements for theESKEm in Section 2.3.

We consider different approaches to the service discovery in Chapter 3. This includes an explanation of
the technical background, required for understanding the service discovery operation. We cover in detail
some selected service discovery approaches. These are compared among each other. On one hand, the
similarities among the service discovery protocols result in the Generic Model for the service discovery
(Section 3.5.1). On the other hand, Section 3.5.2 deals with the differences among the service discovery
approaches.

Supported by our understanding of the service discovery mechanisms, we first make suggestions about
designESKEm in Chapter 4. We analyze related work, namely approaches for reproduction of network
environments, for measurement of service discovery performance and for visualization.

We continue with theESKEm design in Chapter 5 and consider different alternatives for the design of
particularESKEm modules. We provide detailed description of functionality of modules and the interfaces
between them.

In Chapter 6 we introduce the results of theESKEm implementation and validation. We integrate selected
service disocvery into theESKEm for validation purposes.

Chapter 7 provides a summury of the thesis and suggestions for future work.

Chapter 2

Emulation Framework Requirements

In Section 1.1 we formulated the task of the current thesis as the creation of the emulation frameworkES-
KEm, which could be used for exploration of existing service discovery protocols in a specific user defined
environment. We would like to fill the gap between theoretical simulations and physical implementations
with theESKEm emulation framework.

We introduce two scenarios that describe our vision of theESK1 and the way our framework could possibly
be used. The specified scenarios are used to derive the requirements to theESKEm in Section 2.3.

A specific service discovery technology is usually designed to operate in some specific environment. In this
chapter we also characterize theoffice environmentwhich is of primary concern as a result of the explicit
ESK interest in the exploration of such types of environment. Thus, an office environment is one of the
environments that could be reproduced by theESKEm.

2.1 Use Cases

Providing two goal-oriented Use Cases for theESKEm gives us two points of view regarding our emulation
framework. The first Use Case, called ”Exploration”, describes how the emulation framework can be used
for research purposes, e.g., how the Researcher can take a look at the service discovery protocol operation
in a given environment. The second Use Case, called ”Demonstration”, proposes the way the emulation
framework can be used to demonstrate the service discovery operation in an environment with specific
characteristics.

2.1.1 Use cases 1: Exploration

TheResearcheris the main actor in this use case (see Figure 2.1). He selects the service discovery protocol
and integrates it into theESKEm for further exploration2.

The Researcher specifies the emulation scenario in the script files. This includes different commands that
control the life cycle of the services and clients. An office environment usually consists of different types
of services.

The Researcher also defines the characteristics of the environment where the service discovery (SD) pro-
tocol operates. The service discovery in LAN/WLAN is of primary interest for the ESK. The Researcher
specifies different characteristics of the network over which the SD protocols operate. Examples are net-
work topology, network links characteristics, packets drop rate etc.

1Fraunhofer Einrichtung für Systeme der Kommunikationstechnik, www.esk.fraunhofer.de
2The way of the integration will be considered during the Design phase in Chapter 5

4

2.1. USE CASES 5

Figure 2.1: Use Cases 1: The ESKEm can be used by the Researcher to explore the service discovery
protocol in the specific environment

The Researcher starts the emulation. He explores different metrics measured by theESKEm measurement
infrastructure after the emulation is finished. It should be possible to introduce new metrics into the emula-
tion framework. The researcher is supposed to have appropriate programming skills in order to extend our
framework for his own needs.

Some service discovery specifications, like UPnP and their implementations provide the means for the
service invocation. We are not interested in the service invocation and it is hence enough when the emulated
services are only discovered and not invoked.

2.1.2 Use cases 2: Demonstration

This scenario is intended to describe the case in which a usual user can profit from our emulation frame-
work. A usual user is someone with a general understanding of the service discovery operation and without
any programming skills. Such a user is going to be called simply the ”User”. The User can execute the
emulation and observe the service discovery operation by using theGraphical User Interface (GUI) pro-
vided by theESKEm (see Figure 2.2).

The GUI provided for the User should be intuitive. According to the ESK preferences, the User is con-
fronted with a graph-based view of theESKEm environment, where the services and the clients are rep-
resented as nodes. The links between them and the network infrastructure elements like routers are rep-
resented as edges. The operation of the service discovery protocol should be clearly visible on the given
graph. For example, the message from A to B could be represented as an arrow over along the edges
participating in the message transfer.

Additionally, the User can start an external device (e.g. PDA) with a client located on it. With the help
of an appropriate configuration of the emulation framework the User should see the list of services that
are emulated and were found as a result of the service discovery operation (see Figure 1.1). Both real and
emulated clients and services must ”speak” the same service discovery protocol. The external clients are
visualized on the GUI too.

6 CHAPTER 2. EMULATION FRAMEWORK REQUIREMENTS

Figure 2.2: Use Cases 2: The ESKEm can also be used by the User to observe the service discovery
protocol operation in the specific environment

2.2 Office Environment

The service discovery alone does not make much sense. It always exists in some kind of environment. The
environment characteristics play a crucial role in choosing appropriate service discovery middleware in
general and a service discovery protocol in particular. For instance, the service discovery latency3 should
be as short as possible in an environment characterized through high level of users or services mobility. As
a result, we may be interested in the characteristics of the environment which is to be recreated with the
ESKEm.

The office environment is of main interest for the ESK. That is why we would like to concentrate on the
characteristics of this type of environment. Human environments are usually goal-oriented. This means
that the difference in tasks which are to be accomplished in the specific environments, is one of the reasons
why environment characteristics differ. For example, the typical home environment offer about 10 services
which are not used intensively. On the other hand, the office environment of a company makes available
about 100 services that are used very often. But the task of the specific environment characterization is
still a vague goal. It is hard to define a typical office environment. That is why we decided to take just the
ESK by itself as a prototype and as a live example of the environment that we would like to recreate in the
ESKEm (see Table 2.1 and related figure).

The number of services shown in Table 2.1 was calculated approximately based on the number of rooms
and devices in theESK. Very often a device contains several services and the users have several clients.
Therefore, the number of the real services and clients can be a multiple of the presented numbers. Never-
theless our example should give a feeling about our vision of a ”typical” office environment and its size.

We also assume that the computational environment on the figure next to Table 2.1 is built mainly over the
LAN or WLAN. The availability of the Internet connection is not essential for the service discovery in our
case. We are mainly interested in the discovery of services in a single company in a single building. The
available services are mainly static. The mobility of users may vary. We are not interested in the exact
simulation of users’ behavior.

2.3 Requirements to the Emulation Framework

We use the previously described Use Cases to formulate the requirements to theESKEm. The requirements
are divided into Functional, Non-Functional and Pseudo-Requirements. The Pseudo-Requirements can be

3The time between a client sends a service discovery request to the network and the time of response from a discovered service.

2.3. REQUIREMENTS TO THE EMULATION FRAMEWORK 7

working rooms 26
meeting rooms 3
library 1

users per room 2
total clients 52

printers 10
beamers 3
light switchers 36
telephones 56
total services 105

Table 2.1: The ground plan of the ESK with a sample of the available devices. The number of services and
users is an approximate calculation based on the number of different rooms available.

viewed as a ”wish”, expressed by the ESK. We provide the background for these ”wishes” in the subsequent
chapters. The pseudo-requirements either relax the functional requirements (like the Requirement C.4)
or constrain them (like the Requirement B.7). Before we start, we would like to give a more abstract
characterization of the environments which are of our interest and which should be reproducible by the
ESKEm for the service discovery operation exploration:

A.1 We are interested in the service discovery in heterogeneous environments

A.2 The considered environments usually consist of a large number of services/clients. There is a ten-
dency for this numbers to increase. This observation results in the Requirement B.8

Following Functional and Non-Functional Requirements were derived from the Use Cases, defined earlier
in this chapter:

B.1 A real implementation of the service discovery protocol.The requirement means that we want to
explore real service discovery implementations with theESKEm. The emulated services and clients
should be able to use it for the purpose of announcement/discovery of services respectively.

B.2 Metrics measurement infrastructure. The feedback about the service discovery implementation
performance is received in form of performance measurement and calculation of the associated met-

8 CHAPTER 2. EMULATION FRAMEWORK REQUIREMENTS

rics. The set of interesting for the researcher metrics is specific for each experiment. As a con-
sequence, we are not interested in measuring some specific metrics. Instead, theESKEm should
provide an infrastructure which must be flexible enough to define and measure new metrics.

B.3 The Reproducibility. We mean the reproducibility of the emulation scenarios. This may be espe-
cially important for a comparison of the same scenarios under operation of different service discovery
protocols. The emulation scenarios should take into account the specifics of the service discovery
mechanisms.

B.4 Visualization. The service discovery operation should be ”appropriately” (graphically) visualized.
The visualization should support the user of the framework in understanding complex communica-
tion patterns between services and clients in the context of the service discovery. There are different
ways in which the visualization can be designed in our case. There are a couple of preliminary
concerns about the visualization in theESKEm:

(a) The graph-based visualization. A network with clients and services can be intuitively repre-
sented as a graph. We should consider the graph-based visualization of the service discovery
protocol operation as the primary alternative for the visualization. We think, that the other
forms of visualization are relevant too.

(b) Separate deployment.It seem to be reasonable to develop the visualization facility as a sepa-
rate module because of the performance concerns. Graphical visualization is usually resource
consuming. In other words, the visualization module should be deployed on the other host as
the set of modules, which are responsible namely for the emulation/simulation of the service
discovery protocol.

(c) Real-time. The visualization in real time should be supported. This also applies to the services
and clients which are ”real” (see Requirement B.6).

B.5 Heterogeneity.As we have seen from the office environment above, the service discovery protocols
are supposed to operate over the networks with different characteristics. The services/clients are
very often located on the devices with different network protocols stacks. The mentioned differences
areone of themost important sources for the heterogeneity of an environment in which a service
discovery protocol operates. Users’ behavior would be another such source. And we are supposed
to reproduce the heterogeneity of the networking environment (see also Requirement A.1).

B.6 Emulation of Services. The services emulated by theESKEm should be discoverable by the real
clients. This ”emulation” aspect is one of the reasons, why our framework is called anemulation
framework. In other words, the real clients should not be able to distinguish between real services
and the services imitated by theESKEm framework. It should be noted that the requirement applies
to the service discovery only. This means that the result of the service invocation on the emulated
service (e.g., invocation of theprint function on an emulatedprinting service) is undefined. The
Requirement B.3 ensures that aninitial emulated environment is always the same for the real clients.
The operation of the real clients in the emulated environment is likely to be in contradiction to the
reproducibility of the emulation scenarios.

B.7 Validation. Our expectations of theESKEm should be validated by the exploration of theUPnP
Cybergarage4. The protocol operation in the environment should be demonstrated using relevant
examples.

B.8 Scalability. The emulation framework should be designed with thescalability in the number of
emulated services in mind. The scalability is usually achieved by enabling the distributed mode of
the framework operation. This meanemulation of services on multiple hosts.

The Pseudo-Requirements were formulated by the ESK as following. Some of them were already men-
tioned indirectly but we would like to formulate them explicitly:

4This was first introduced in Chapter 3

2.3. REQUIREMENTS TO THE EMULATION FRAMEWORK 9

C.1 Low cost of the solution. The developed emulation framework should be available at affordable
costs.

C.2 Office Environment. The Service Discovery in the office environment is of primary interest.

C.3 Java-based.The platform independence of theESKEm should be achieved with Java.

C.4 LAN. Our primary interest lies in the exploration of the service discovery protocols over LAN-
based environments. Despite Requirement B.5, it was allowed by theFraunhoffer ESKto limit
the ESKEm to the exploration of the service discovery in the LANs. Nevertheless, theESKEm
provides the means for introduction of the other types of networks. Thus, this requirement relaxes
the Requirement B.5. The discovery over a network with different topologies and network links
characteristics should be possible.

Chapter 3

Service Discovery

We has already mentioned in Chapter 1 that an efficient discovery of services is an important task in the
service-oriented computing environment. It is obvious that the services should be discovered before they
can be used. The services exist in an environment, which in turn has very often some specific characteris-
tics. For example, a typical home environment differs from an office environment by the type and number
of services etc. The selection of the service discovery protocol should be based on the environment’s char-
acteristics, in which the service discovery will operate. We have already given our view onto theoffice
environment. Now we would like to consider differentService Discovery(SD) approaches in more details.
Among other things we are interested in the answers to questions like What are the different SD protocols?
What are the design goals of different SD protocols? What are the characteristics of the environment, for
which the specific SD protocol was designed? Which network transport do SD protocols usually use? We
need the understanding of the service discovery as a component, which we are going to explored with the
ESKEm.

Based on the office environment characteristics, we will select several SD approaches (UPnP, SLP, Salu-
tation, Jini), which are either used or could be used in this type of environment. The comparison of the
selected SD approaches will be done for two reasons. First, we will derive the Generic Model of the service
discovery based on the similarities between selected approaches. Second, we will interpret the differences
between selected SD approaches as the parameters, which influence the service discovery performance.
We may wish to explore the influence of these various parameters on the service discovery performance in
a given environment. The Generic Model will be used in Chapter 5 dedicated to the design of theESKEm.

Both specification and the reference implementation of the two mentioned in previous paragraph SD pro-
tocols (UPnP, SLP) will be considered in more details. There are several reasons for doing this. First, the
ESK has explicitly expressed interest in the exploration of the UPnP and SLP technologies in the office en-
vironment with theESKEm. Second, we wish to get deeper insight into the service discovery middleware
implementations for better understanding of the technical problems, which may arise when plugging them
into theESKEm. Third, we wish to consider theUPnP Cybergarage reference implementation, which will
be used later to validate our approach in accordance with the Requirements B.7 and B.7.

But we would like to provide the adequate Technical Background first.

3.1 Technical Background

The service discovery protocols operate at the application level in terms of the OSI model. They use the
protocols from the underlying network layers for the messages transfer. The keyword ”message” raises
two important question: What kind of messages are transferred during the service discovery operation and

10

3.1. TECHNICAL BACKGROUND 11

How are they transferred? The answer to the first question is usually specific for each service discovery
protocols. A short answer to the second question we would like to provide in the current section.

The way in which the messages are sent during service discovery can be characterized among other things
as following:

Unicasting is one-to-one communication from a source to a destination on the network.

Broadcasting is one-to-everyone communication from a source to the rest of hosts on the network. Broad-
casting wastes network bandwidth by flooding the network when only a small number of users need
the information.

Multicasting - the host sends out only one copy of the information, and only the destination hosts that
need the information receive it. It is specified in

Anycasting is a network addressing and routing scheme whereby data is routed to the ”nearest” or ”best”
destination as viewed by the routing topology.

Multicasting We will mostly refer to unicasting and multicasting. The multicasting require some addi-
tional explanations.

The multicasting is supported by the Internet Group Management Protocol (IGMP), which is referenced
in RFC 1112 [Deer]. In the addressing scheme in the IP protocol, class A, B, and C addresses identify
a host in a TCP/IP network. A class D address represents an IP multicast group in which many hosts
participate in the same IP multicasting application. The first four bits of the 32-bit class D addresses are
1110, and the remaining 24 bits can range from all 0s to all 1s. Therefore, IP multicast addresses can
range from 224.0.0.0 to 239.255.255. 255. The protocol reserves address 224.0.0.0 for operating systems,
and the protocol cannot assign that address to applications. For example, the protocol permanently assigns
224.0.0.1 to the all-hosts group, which includes all computers and routers participating in IP multicasting
in a local network.

UPnP uses the address 239.255.255.250 for multicasting.

There are three levels, at which multicasting can be supported by OS:

Level 0 has no support for multicasting

Level 1 supports sending but not receiving multicast IP data

Level 2 fully supports sending and receiving multicast IP data

Both MS Windows and Linux support Level 2 of multicasting.

For obvious reasons, network routers filter almost all broadcast traffic. This means that broadcast that is
generated on one subnet will not be forwarded, or ”route” to any of the other subnets connected to the
router (from the router’s perspective a subnet is all machines connected to one of its ports).

Multicast messages, on the other hand, are forwarded by routers. Multicast traffic from a given group is
forwarded by routers to all subnets that have at least one machine that is interested in receiving the multicast
for that group. A non-multicasting routers can multicast into own network, but it does not forward the
messages further to the other routers.

HTTPU and HTTPMU Both HTTPMU and HTTPU were designed to support UPnP and are not W3C
[W3C] standards. HTTPU (and HTTPMU) are variants of HTTP defined to deliver messages on top of
UDP/IP instead of TCP/IP.

HTTPMU is sending of packets with HTTP content over multicast UDP to a ”group”. HTTPMU is ex-
pected to use the syntax of HTTP without changing its semantics. HTTPMU allows the possibility ofnew
request types (such as NOTIFY in UPnP) beside of the standard HTTP requests of GET, POST, HEAD etc.

12 CHAPTER 3. SERVICE DISCOVERY

There is no response to these multicast requests (as in the case of usual HTTP protocol request) since the
message may be received by any number of clients, and this is not a request-response situation.

HTTPU sends a single datagram over UDP to a host. The recipient may send a reply back to the host and
port that sent the datagram. Again, it is not expected that a standard HTTP requests is sent, only that the
syntax should be obeyed.

Routing Routing specifies the algorithm, by which the messages from a sender A can find a way to the
receiver B over the network. The message is said to pass the routers, or hops. A hop count or so called
TTL (Time To Live) determines how many gateways or IP-routers the packet may pass in order to reach
the destination. If the hop count reaches zero (every hop decreases the value) the current gateway replies
with an error and its IP address as source address.

To ping the hosts on local network (even if it is localhost), the TTL should be set at least to 1 (”ping -t 0
localhost” breaks with the error).

DHCP The Dynamic Host Configuration Protocol (DHCP) is an Internet protocol for automating the
configuration of computers that use TCP/IP. DHCP can be used to automatically assign IP addresses or
other configuration parameters like the subnet mask and default router, and to provide other configuration
information such as the addresses for printer, time and news servers [DHCP].

3.2 Service Discovery definition

We start with a simple generic example before considering service discovery specifications in more details.
The example is based on the scenario described at [ZhMuNi 02].

Bob visits a University. He turns on his PDA. The PDA is adevice, which in turn contains
theclient used by Bob. Bob searches the Web and finds an online map. He wants to print the
map. He tries to find a printer for printing the map with the client. We define this process
as theservice discovery. The printer is adevice, which provides the printingservice. After
available printers are being found and one of them is selected Bob may print the map, or we
could also say that Bob mayinvokethe printing service.

A service is usually defined as”some computing resource used by users, user programs, or other services”
(for example, in [ZhMuNi 02]). Any function proposed by the devices in a computing environment is said
to be a ”service” like printing service, storage service etc. A device usually provides multiple services (for
example, a fax device could provide also the ”printing service”, ”copy service” etc. beyond the ”faxing
service”). The service usually has a name, the list of searchable attributes or an associated service descrip-
tion file and associated user privileges. A list of service attributes usually varies among different service
discovery protocols in respect to the syntax, semantics and the level of details.

The service are called to be used by theservice clientsor simply by theclients. In the scenario with Bob,
the PDA played the role of the client. Bob can also be called theservice user. The clients act as the
proxy entities, which mediate user’s interaction with services. We assume, that both services and clients
are usually located on thedevices. The services are also said to beprovided by the device.

The main goal of the service discovery process is to guarantee that a service client discover necessary
service(-s) (if any available). Some authors (like [Gold 02]) split the service discovery into two comple-
mentary activities: servicediscovery(initiated by the client) and the serviceadvertisement(done by the
devices or by the services itself). Both activities are supported in the service discovery protocols which
we are going to consider (an example of the SD protocol without the service advertisement would be the
Bluetooth Simple Service Discovery Protocol, where only the service discovery is supported). We will
refer to both the service discovery and the advertisement by the termservice discoveryas long as nothing
else is mentioned.

3.3. SD PROTOCOLS POPULARITY 13

We will often use the terms like”technology”, ”framework” etc. in the connection with the term of ”service
discovery”, which should be understood as a set of means, which are necessary to guarantee connectivity
between clients and services (we mean underconnectivitythe ability of the clients and services to link, or to
communicate with each other). The service discoveryprotocol is very often only a part (though important)
of this set. Theprotocol is defined in [HeAbNe 99] as following:

The protocols are precise specifications (in respect to the syntax, functions and semantics)
of steps and rules for exchange of the information between two or more parties on the same
functional level in a communication system.

The service discovery technologies are usually described by thespecification(or reference), which is usu-
ally an informal and abstract description of the service discovery approach. On the other hand, the ref-
erence implementation is an executable code. We mean primarily thespecificationwhen using the terms
like approach, technologyor framework, whereas the reference implementation is meant when using the
termmiddleware. For example, theUPnP is a specification, which implies existence of different reference
implementations. In general, the middleware is defined as software that is used to tie an application to a
network, thus the ”middle” terminology. In the context of our terminology, it mediates between the services
or clients and the network transport layer (see Figure 3.1).

Figure 3.1: The middleware is defined as a software that is used
to tie an application to a network, thus the ”middle” terminology

Why do we require service discov-
ery specification and a resulting ser-
vice discovery middleware? The service
discovery middleware encapsulates the
tasks, which are common for different
services and clients and are associated
with the discovery or advertisement of
the services. A new client should not
know the service directly, he just should
”speak” the appropriate protocol. The
middleware functionality is accessed by
the clients and services through the set
of interfaces. On the other hand, the
middleware also uses the interfaces pro-
vided by the lower network layers for
communication over the network. We
call this both types of interfaces themiddleware entry points. They connect a service discovery middleware
to the surrounding computational environment. This fact motivates us to investigate the middleware entry
points precisely in order to plug the service discovery middleware of our interest into the environment,
provided by theESKEm.

3.3 SD protocols popularity

There are a number of the service discovery protocols developed till now. Very often they are developed
with different goals in mind, and for the specific environment. For example, the GSD protocol (Table 3.4)
primary goal was to minimize power consumption during the service discovery. Which service discovery
protocols should we consider? On one side, the UPnP and SLP are the technologies, which are interesting
for ESK (see the Requirement B.7). And we should obviously analyze them. On the other hand, we would
not like to design theESKEm specifically for integration of this two protocols and that is the reason why
we would be also interested in the overview over the other service discovery approaches.

Which protocols could be considered as being popular? Our approach to the question is rather simple.
First, we base our SD protocols selection on the [Bett 00], which provides the analysis of the SD tech-
nologies popularity expressed by the number of companies, involved in the development of the particular

14 CHAPTER 3. SERVICE DISCOVERY

SD technology (see Figure 3.2). Our selection criterion here is pragmatic: why not to concentrate on the
protocols, which seems to be accepted by the industry (”follow-the-money” principle).

Second, we have analyzed the frequencies, with which different service discovery protocols are referenced
in the scientific papers (see Table 3.1). This was accomplished by keyword search over on-line search
interfaces such as [Google Scholar] (searches among other things also in the ACM Digital Library [ACM])
and [Citeseer]. In the cases, where the search results would provide too many matches because of the
multiple meaning of the SD protocol abbreviation, we used either full name of the protocol. For example,
we used ”service location protocol” to refer to SLP or added additional search words to specify the context
of our search. Thus we used ”salutation service” to search in the [Google Scholar] instead of using ”salu-
tation”1). Despite of the differences in the searched sources and search algorithm, the correlation between
the columns is about 0.97 (0 - no correlation; 1 - the maximally correlation score). So the frequency of
references can be considered as consistant at least among this two databases.

We use the frequencies in Table 3.1 as an index of relative popularity of the service discovery technologies
. Some of the presented technologies will be covered in more depth in the rest of this chapter. Not all
frequently referenced technologies from the next section were included into the Table 3.1. For example,
the UDDI (see the next section) technology is the most often referenced technology after Jini (referenced
in 7 260 documents available to [Google Scholar]). But we excluded it (and also other technologies like
Jini), because it was not required by theFraunhofer ESKto consider this technology.

Technology Keywords Citeseer2 Google/Scholar3

Jini ”jini” 654 11 200
UDDI ”uddi” 428 7 260
UPnP ”upnp” 106 1 480
Salutation ”salutation”/”salutation ser-

vice”4
80 1 400

SLP ”service location protocol” 19 1 090

Table 3.1: The popularity of different Service Discovery technologies by references in the research papers:
June, 2005

2search for exact pairing of words (order is not important)
3The search option ”with all of the words” was used
4in Citeseer and Google(Schoolar) respectively

We analyzed all four protocols from Table 3.1 in respect to their similarities and differences (Section 3.5).

3.4 Service Discovery Protocol Examples

An overview over different service discovery protocols was motivated by several interrelated reasons. First,
we are interested in the architecture of different service discovery middleware, especially in the middleware
entry points, which connect the service discovery protocol with the surrounding environment. Second,
we would like to compare those of the service discovery protocols, which would be interesting for the
office environment as defined in Section 2.2. Third, we are also interested in the service discovery design
characteristics, on which the service discovery performance depends. We may wish to control them in the
ESKEm to explore their influence on the protocols’ performance.

In this section we will also give detailed insight into the UPnP and SLP service discovery protocols because
of the Requirement B.7. We also consider their reference implementations to understand better, how they
can be plugged into theESKEm.

1the [Citeseer] searches for exact pair of words, so we searched for the word ”salutation” without putting it into the context. We
did not check manually, whether the ”salutation” was really mentioned in the service discovery context.

3.4. SERVICE DISCOVERY PROTOCOL EXAMPLES 15

A
bb

re
vi

at
io

n
F

ul
lN

am
e

O
rig

in
s

S
pe

ci
fic

F
ea

tu
re

s
U

P
nP

U
ni

ve
rs

al
P

lu
g-

an
d-

P
la

y
M

ic
ro

so
ft

T
he

U
P

nP
is

an
in

du
st

ry
in

iti
at

iv
e

de
si

gn
ed

to
en

ab
le

si
m

pl
e

an
d

ro
bu

st
co

nn
ec

tiv
ity

am
on

g
st

an
d-

al
on

e
de

vi
ce

s
an

d
P

C
s

fr
om

m
an

y
di

ffe
re

nt
ve

nd
or

s.
S

LP
S

er
vi

ce
Lo

ca
tio

n
P

ro
to

co
l

IE
T

F
U

se
ss

co
p

ef
or

lo
gi

ca
lg

ro
up

in
g

of
se

rv
ic

es
.

S
er

vi
ce

s
ar

e
po

in
te

d
w

ith
a

U
R

L
an

d
ar

e
de

sc
rib

ed
w

ith
th

e
lis

to
fa

ttr
ib

ut
es

Ji
ni

S
un

M
ic

ro
sy

st
em

s
T

he
ex

ec
ut

ab
le

co
de

fo
r

se
rv

ic
e

in
vo

ca
tio

n
is

do
w

nl
oa

da
bl

e
fr

om
th

e
ce

nt
ra

ll
oo

ku
p

ta
bl

e
S

al
ut

at
io

n
-

th
e

S
al

ut
at

io
n

C
on

so
rt

iu
m

,
In

c.
D

es
cr

ib
es

an
A

P
I,

a
P

ro
to

co
la

nd
op

tio
na

ld
at

a
pi

pe
s

an
d

jo
b

co
nt

ro
lt

o
as

si
st

in
d

is
co

ve
ry

an
d

u
se

of
de

vi
ce

s
an

d
se

rv
ic

es
.

T
he

ar
ch

ite
ct

ur
e

is
ba

se
d

on
a

m
od

el
ca

lle
d

th
e

S
al

ut
at

io
n

M
an

ag
er

.
O

S
G

i
T

he
O

pe
n

S
er

vi
ce

s
G

at
ew

ay
In

iti
at

iv
e

O
S

G
iA

lli
an

ce
A

n
op

en
st

an
da

rd
fo

r
co

nn
ec

tin
g

co
ns

um
er

an
d

sm
al

l-b
us

in
es

s
ap

pl
i-

an
ce

s
w

ith
co

m
m

er
ci

al
In

te
rn

et
se

rv
ic

es
.

T
he

sp
ec

ifi
ca

tio
n

w
ill

pr
o-

vi
de

a
co

m
m

on
fo

un
da

tio
n

fo
r

IS
P

s,
ne

tw
or

k
op

er
at

or
s,

an
d

eq
ui

pm
en

t
m

an
uf

ac
tu

re
rs

to
de

liv
er

a
w

id
e

ra
ng

e
of

e-
se

rv
ic

es
vi

a
ga

te
w

ay
se

rv
er

s
ru

nn
in

g
in

th
e

ho
m

e
or

re
m

ot
e

of
fic

e.
U

D
D

I
U

ni
ve

rs
al

D
es

cr
ip

tio
n,

D
is

-
co

ve
ry

an
d

In
te

gr
at

io
n

T
he

di
sc

ov
er

y
of

W
eb

se
rv

ic
es

bo
th

w
ith

in
an

d
be

tw
ee

n
en

te
rp

ris
es

JX
TA

”ju
xt

ap
os

e”
S

un
JX

TA
te

ch
no

lo
gy

is
a

se
t

of
op

en
,

ge
ne

ra
liz

ed
pe

er
-t

o-
pe

er
pr

ot
oc

ol
s

th
at

al
lo

w
an

y
co

nn
ec

te
d

de
vi

ce
(c

el
lp

ho
ne

,
to

P
D

A
,

P
C

to
se

rv
er

)
on

th
e

ne
tw

or
k

to
co

m
m

un
ic

at
e

an
d

co
lla

bo
ra

te
.

B
lu

et
oo

th
S

D
P

B
lu

et
oo

th
S

er
vi

ce
D

is
co

v-
er

y
P

ro
to

co
l

B
lu

et
oo

th
S

pe
ci

al
In

te
re

st
G

ro
up

O
nl

y
th

e
di

sc
ov

er
y

of
se

rv
ic

es
is

su
pp

or
te

d
(s

er
vi

ce
ad

ve
rt

is
em

en
ti

s
no

t
po

ss
ib

le
).

B
as

ed
on

th
e

B
lu

et
oo

th
sh

or
t-

ra
ng

e,
1-

M
b/

s
a

w
ire

le
ss

ra
di

o
sy

st
em

(a
bo

ut
10

m
et

er
s)

.
G

S
D

G
ro

up
-b

as
ed

S
er

vi
ce

D
is

-
co

ve
ry

pr
ot

oc
ol

de
cr

ea
se

av
er

ag
e

en
er

gy
co

ns
um

pt
io

n
du

rin
g

S
D

in
a

gr
ou

p
of

de
vi

ce
s

Ta
bl

e
3.

2:
O

ve
rv

ie
w

ov
er

S
er

vi
ce

D
is

co
ve

ry
te

ch
no

lo
gi

es
re

fe
re

nc
ed

in
re

se
ar

ch
pa

pe
rs

.

a
1-

m
eg

ab
itp

er
se

co
nd

16 CHAPTER 3. SERVICE DISCOVERY

Figure 3.2: Companies involved in the development of Jini, Salutation, UPnP and SLP ([Bett 00])

Jini Jini technology [Jini] is an extension of the programming language Java which has been developed
by the Sun Microsystems. It addresses the issue of how the devices connect with each other in order to form
a simple ad hoc network (a Jini ”community”), and how these devices provide services to other devices
in such networks. The Jini architecture principles are similar to that of the SLP. Devices and applications
register itself with a Jini network using a process calledDiscoveryandJoin. To join a Jini network, a device
or application places itself into theLookup Tableon a lookup server, which is a database for all services on
the network. Besides pointers to services, the Lookup Table in Jini can also store java-based program code
like device drivers that help the user to access the service. The Jini java object returned to the client as the
result of the search requests offers direct access to the service over the known to the client interface.

Salutation Salutation is another approach to service discovery [Salutation]. The Salutation architecture
is being developed by an open industry consortium, called the Salutation consortium. The Salutation archi-
tecture consists ofSalutation Mangers (SLMs)which provides the service brokers functionality. Services
register themselves with an SLM, clients query the SLM when they need specific service. After discovering
the desired service, clients are able to utilize the service through the SLM.

UDDI UDDI is short for Universal Description, Discovery and Integration. It can be defined as

3.4. SERVICE DISCOVERY PROTOCOL EXAMPLES 17

... a standard for a platform-independent, open framework for describing service on the
Internet.

... a XML-based protocol that provide a distributed directory (or lookup service) that
enables businesses to list themselves on the Internet and discover other services. Similar to
a telephone number, businesses can list themselves by name, product, location, or the Web
services they offer.

The UDDI is a complementary to other technologies used for integration of web-based applications (or
web services). For example, SOAP is used to transfer the data, WSDL is used for describing available
service, and UDDI is used correspondingly for listing available services.

The mentioned concept of the ”web service” is the term for group of loosely related web-based components
and resources that may be used by other Web applications (or services) over HTTP. We assume, that a
”usually” office environment services (like printing service) could be used only over HTTP too. So in
principle, the UDDI is applicable for the purpose of service discovery in the office environment. Whereas
actual strength of the UDDI is in discovery on the large (”whole world”) scale.

We will not be considering the UDDI deeper because of the Requirement B.7.

In the next two sections we will consider the UPnP and SLP service discovery in more details.

3.4.1 UPnP

The UPnP is the technology which enables connectivity among stand-alone device and PCs from many
different vendors. It is developed by the different vendors organized into the UPnP Forum, headed by
Microsoft [UPnP Forum].

The devices of the UPnP are build hierarchically (see Figure 3.3). In a compound device (for example, a
VCR/TV combo), a client (called acontrol point)) can address the individual sub-devices (for example, a
tuner) independently as soon as theroot devicewas discovered. Virtual Web servers in the device act as
an entry points for interacting and controlling of the device. Devices that do not speak UPnP directly are
called bridged devices. A bridge maps between UPnP and a device-native protocols.

The UPnP specification describe device addressing, service advertisement and discovery, device control,
propagation of events, presentation. Several protocols support these functions:

• AutoIP, a simple protocol that allows devices to dynamically claim IP addresses in the absence of a
DHCP service;

• Simple service discovery protocol (SSDP), the UPnP mechanism for service discovery and adver-
tisement;

• Simple object access protocol (SOAP), a protocol for remote procedure calls based on XML and
HTTP that is used for device control after discovery; and

• Generic Event Notification Architecture (GENA), a UPnP subscription-based event notification ser-
vice based on HTTP.

Each device must have aDynamic Host Configuration Protocol (DHCP) client. If DHCP server is
available on the sub network, the device must use the IP address assigned to it. If no DHCP server is
available, the device must use Auto IP to get an address.

A Simple Service Discovery Protocol(SSDP) is used as a mechanism for service discovery and advertise-
ment. Figure 3.4 shows the protocol stack for discovery search. SSDP is built upon HTTPU and HTTPMU
and defines methods both for a control point to locate resources of interest on the network, and for devices
to announce their availability on the network. The protocol operates as following:

Control Point upon booting up, sends an SSDP search request over HTTPMU to discover devices and
services available on the network.

18 CHAPTER 3. SERVICE DISCOVERY

Figure 3.3: The UPnP’s device model is hierarchical.

Device listen on the multicast port.Upon receiving of a search requestdevice examines the search criteria
to determine if they match. If they match, a unicast SSDP (over HTTPU) response is sent to the
control point. This response contains URLs, each pointing to an XMLdescription documentthat
describes a service. Similarly, a device,upon being pluggedinto the network, will send out multiple
SSDP presence announcements advertising the services it supports. SSDP also provides a way for a
device and associated service(s) to gracefullyleave the network(bye-bye notification) and includes
cache timeouts to purge stale information for self healing.

Mentioned above XML description document contains among other things following information:

• A presentation URLallows entry to a device’s root page, which provides a GUI for device control.

• A controlURL is the entry point to the device’s control server, which accepts device-specific com-
mands to control the device.

• An event subscription URLcan be used by clients to subscribe to the device’s event service. The
client provides anevent sink URLin the subscription request. Significant state changes in the device
result in a notification to he client’s event sink URL.

• A service control protocol definitiondescribes the protocol for interaction with the device.

SSDP is similar to the Internet Engineering Task Force’sService Location Protocol(SLP), but it lacks a
query facility which would support a search for service by an attributes.

UPnP specification is programming language independent. We have considered and selected Java imple-
mentation of the specification [Konn 04] for validation purposes of our approach.

3.4. SERVICE DISCOVERY PROTOCOL EXAMPLES 19

Figure 3.4: UPnP Protocol Stack for Discovery Search

UPnP Cybergarage: the Reference Implementation Example We have takenUPnP Cybergarage
[Konn 04] reference implementation of the UPnP specification. It was selected in accordance with the
Requirement B.7.

The most important classes, which participate on the service discovery, are introduced on the Class Diagram
at Figure 3.6. To avoid drawing the Collaboration Diagram, we also introduced them on the class diagram.
We have also shortened some dependencies for sake of the diagram simplicity. For example, instead of
using the expression like ”A calls B calls C” we just say that ”A calls B”.

During the investigation of the reference implementation, we are mainly interested in the way how the
middleware is connected to and interacts with the environment to accomplish service discovery tasks (see
Figure 3.5). Or in the other words, we need to know, (a) how the middleware is used by the services and
clients, which API is proposed to them; (b) how does the middleware depends on the transport system.

Figure 3.5: We are interested in the ”Notify/Search”
and ”Search Response” communication channels dur-
ing consideration of the service discovery in the
UPnP ([Konn 04])

As can be seen on Figure 3.6, the
HTTPUSocket and the HTTPMUSocket
classes use theDatagramSocket and the
MulticastSocket classes respectively to send
the messages over the transport system, which is
represented by thejava.net Java Foundation
Classes(JFC) library of the Java. The services
and control points are already represented in the
implementation and we may wish to extend them
for customization.

We are also interested in the types of messages,
which are sent in the process of the service dis-
covery. As will be seen later sections, this can be
required when measuring statistics of the service
discovery operation.

20 CHAPTER 3. SERVICE DISCOVERY

Figure 3.6: UPnP Cybergarage classes, which participate on the service discovery. The
java.net.DatagramSocket and thejava.net.MulticastSocket are the classes, which pro-
vide the interface to the transport system of the Java Virtual Machine (JVM).

Figure 3.7: There are two types of the multicastNOTIFY mes-
sages (”announce” and ”byebye” shown on Figure), one mul-
ticast message of the typeM-SEARCHand one unicastRE-
SPONSEmessages

TheUPnP Cybergarage parameters like
HTTP port or maximum wait for a de-
vice searching results before sending
one more search request is configured
by the changing appropriate variables
and recompiling the code.

We will mention the technical prob-
lems, which we have accounted with
the UPnP Cybergarage during valida-
tion phase in Section 6.

3.4.2 SLP

The service and clients (called ”user”)
in SLP aware environment have Service
and User Agents respectively. Addition-
ally, the Directory Agent should exist on

the network. Agents act on behalf of services/users. SLP not-aware services/users can be represented by
”SLP proxy”, which perform the same function as a corresponding agent.

The Directory Agent is a structure, not present on UPnP platform, which is responsible for the organization
of the services into directories. The directories introduce centralization to the service discovery. In small
installations, there may be no Directory Agents.

3.4. SERVICE DISCOVERY PROTOCOL EXAMPLES 21

Network sources, under a common administrative control, are good candidates for inclusion into admini-
strative domains called ”scopes”. Each user agent includes its configured scope in service requests. Scopes
may also indicate geographic proximity or network topology.

Following tasks are accomplished by SLP (first two functions are main, the rest are auxiliary):

• user agent obtains service handles (main)

• directory of advertised services maintenance (main)

• discovering available service attributes (auxiliary)

• discovering available Directory Agents (auxiliary)

• discovering available types of Service Agents (auxiliary)

These tasks define the flow of messages between different entities on SLP-aware platform.

All the SLP messages are prefixed by a common header. The header contains the type, length, and other
related information about the message. The communication flows are shown on 3.8 and explained in 3.3.

Message Type Abbreviation Usage
Service Type Re-
quest

SrvTypeRqst UAs send this message to SAs and DAs to request the types of
services available.

Service Type Reply SrvTypeRply SAs and DAs send these messages to the UAs in response to
their requests. These contain the service types requested by the
client.

DA Advertisement DAAdvert DAs send this message to the SAs and UAs to make them aware
of their whereabouts.

SA Advertisement SAAdvert SAs send this message to the UAs to make them aware of their
whereabouts.

Service Acknowl-
edge

SrvAck DAs send an acknowledge message to SAs in response to their
SrvReg and SrvDeReg messages.

Attribute Request AttrRqst UAs send this message to SAs and DAs to request the attributes
of a service.

Attribute Reply AttrRply SAs and DAs send this message to UAs in response to their At-
trRqst message. This contains the list of attributes of a requested
service.

Service Registration SrvReg SAs send this message to register their services with DAs.
Service Deregistra-
tion

SrvDeReg SAs send this message to DAs if they no longer want to make a
service available, causing the advertisement to be removed from
the DA immediately.

Service Request SrvRqst The UA and SA initiates active discovery by multi-
casting a service request (SrvRqst) with service type
service:directory-agent . The DA responds by
unicasting a DA advertisement (DAAdvert) with its URL and
the list of scopes that it supports. The SAs respond to UA too.

Table 3.3: SLP: Message types

DAAdvert can be sent both as multicast and unicast,SrvRqst are sent as multicast. There are messages,
which require acknowledgement about request success. Such transaction can be built on Transport Layer
protocol like TCP.

There are three ways to find Directory Agents:

22 CHAPTER 3. SERVICE DISCOVERY

Active Discovery UAs and SAs send a multicastSrvRqst to the network. DAs
reply with unicastDAAdvert .

Passive Discovery DAs multicast periodic unsolicitedDAAdvert to the network.
DHCP Options A host that uses DHCP may use it to obtain a DA’s IP address.

The SLP only define a way to locate a service and leaves open the interaction between clients and services
after the service have been discovered.

OpenSLP: the Reference Implementation Example In SLP, anagentis a software entity that processes
SLP protocol messages.

The Advertiser is the SA interface [RFC 2614],[RFC 2608],[SLP], allowing clients to register new service
instances with SLP with call toregister(...) andderegister(...) .

The locator is the UA interface, allowing clients to query the SLP framework about existing service types
with findservicetypes(...) , findattributes(...) andfindattributes(...) .

The ServiceLocationManager class contains methods that return instances of objects implementing SA and
UA capability. it manages access to the service location framework withgetRefreshinterval(...) ,
getLocator(...) andgetAdvertiser(...) .

The ServiceLocationEnumeration class is the return type for all locator slp operations. The ServiceLoca-
tionAttribute class models SLP attributes, and its instances are communicated along with register/deregister
requests.

The SLP can send messages 3.8 either as an unicast or as a multicast.

Figure 3.8: slp: message types and flows

OpenSLP implementation details:

• the SrvReg and SrvDeReg messages are sent over TCP.

• the SrvReg and SrvDeReg and Ack for them can be intercepted at NetworkManager: samessage(...),
sareadack(...,...) respectively.

3.5. SERVICE DISCOVERY COMPARISON 23

• the servicetypereques, servicetyperequest, attributerequest are finally processed in the serviceloca-
tionenumerationimpl.transmitdatagram() as udp message. to receive replies as shown in figure 3.8
the servicelocationenumerationimpl.next() is used, which is actually use servicelocationenumera-
tionimpl.readresponse(). the replies are received as udp packages too.

3.5 Service Discovery Comparison

The terminology of different service discovery approaches may be quite different. Nevertheless, some
concepts clearly overlap - the function of specific components from different SD frameworks are either
similar or comparable. For example, the tasks of the Lookup Table from Jini are comparable with those
of the SLP Directory Agent. So we assume that it should be possible to derive a generic model of various
service discovery approaches by mapping their concepts between each other. Why do we need a generic
model?

First, to derive the uniform terminology. Second, the Generic Model can be viewed as adomain modelin
terms of a UML domain model which ”relate objects in the system domain to each other” [JoFa 99]. Such
view onto the service discovery middleware will be required during the design phase.

3.5.1 Generic Model

The concept of theService Provider(or Service) and theService Useror Client is represented in all SD
protocols (Table 3.4). The UPnP concept ofDevicecan be viewed as a way to group several services,
proposed by the device. TheService Manageris an entity, which usually plays the role of the proxy to the
Service Provider. The relationships between service managers and services can differ. In the case of the
UPnP, the service and root device are toughly coupled (see Figure 3.3). In the case of the SLP the service
is something structurally independent from the service manager.

TheService Descriptionis a way to describe the services in different SD approaches. The service descrip-
tion is used to describe the service and provide the information to the client. But the syntax, semantics
and the set of possible operations on the service description are quite different. Nevertheless, the service
description assumes, that each service has unique name, orIdentity like ”printing service A” vs. ”printing
service B”. The services are also identified by theType, which syntax can still differ from the protocol
to the protocol (e.g., ”print” service in UPnP vs. ”printing” service SLP). The device characteristics are
described with the set ofAttributes. As the result of successful service discovery theClient receives the
User Interfaceor/andProgram Interface, which can be used for further interactions with theService.

TheService Cache Manager(SCM) is not represented in all service discovery technologies. The termcache
here means that there is some repository where the information about services available in the environment
can be inquired without need for discovering available services directly. The information about the services
is said to be ”cached” in such repository. TheSCMcan be either a central repository (like inJini), but it
also possible that each client has ownSCM as it is the case in Salutation. A Salutation client can still
profit from theSCM, because instead of conducting new service discovery it can try to find the service
in the locally availableSCM. So the idea behind theService Cache Managercomponent is to reduce the
service discovery complexity associated with the increased number of clients and service available in the
environment.

This findings of the current section will be used in Chapter 5, which deals with theESKEm design. Here
is just a short example of how the Generic Model could be used during design specification. The Services
are represented to the Clients over the Service Manager. So it is important for us to have control over the
Service Manager for imitation of the service life cycle. An example from the SLP specification can explain
this consideration better: the Service Manager interacts on behalf of the Service with the Service Cache
Manager, the Service is hidden behind the Service Manager, and so we do not require availability of the

24 CHAPTER 3. SERVICE DISCOVERY

Generic Model UPnP SLP Salutation Jini
Service Provider or
Service

Device or Service Service Service Record,
consists of
Functional Units

Service

Service User or
Client

Control Point User Agent Collection of
Functional Units

Client

Service Manager Root Device Service Agent Service Record Service or Device
Proxy

Service Description: Device/Service
Description

Service Registra-
tion

Functional Unit
Description

Service Item

– Identity Universal Unique
ID

Service URL Service ID

– Type Device/Service
Type

Service Type Service Type

– Attributes Device/Service
Schema

Service Attribute attribute records
(name, value)

Attribute Set

– User Interface Presentation
URL

Template URL Service Applet

– Program Interface Control/Event
URL

Template URL Service Proxy

Service Cache Man-
ager (SCM)

not applicable Directory Agent
(optional)

Registry of Salu-
tation Managers

Lookup Ser-
vice/Table

Table 3.4: Mapping concepts among various discovery protocols (motivated and based on work in
[DaMi 01])

real service. It means, that if we want to emulate the services in theESKEm, we just need to emulate the
Service Manager part.

3.5.2 Differences

In this subsection we would like to concentrate on the differences between service discovery approaches.
The differences between them usually results in the differences in the service discovery performance in
terms of speed, number of messages sent etc.

What is the nature of the differences between two service discovery approaches?First source of the dif-
ferences is the service discovery specification. One of the typical examples of such kind of differences
would be the absence or availability of the Service Cache Manager. Thesecondsource of differences is the
implementation differences. For example, the implementation language (very often C, C++ or Java) can
have impact onto the performance of the service discovery. We are interest in the specification-determined
differences in this section.

Why do we need the analysis of differences in the current work? One of their applications is to use them
to derive the set of parameters, which may influence the service discovery performance. As an example,
the availability of the Service Cache Manager (SCM) in the SD specification can be considered as one of
such parameters. The SCM is a ”must” in some SD specifications (e.g. in Jini), other specifications do
not use SCM structure at all (like UPnP). Some specifications (like SLP) specify the SCM as an optional
component. We could consider the ”availability of the SCM” as theparameter: ”a variable, measurable
property whosevalue is a determinant of the characteristics of a system” [AES]. The parameter’s values
are usually referred to as thelevelsof the parameter. In our example, there are two levels of the parameter:
”the SCM is available” and ”the SCM is absent”. In the case of the SLP, the parameter can becontrolledby
the researcher (compare Use Case ”Exploration” from Section 2.3). In the case of the UPnP or Jini from
the example above the level of this parameter is fixed and can not be changed by the researcher (but we can

3.5. SERVICE DISCOVERY COMPARISON 25

UPnP SLP Salutation Jini

Misc

Service description XML-based
description
file

service at-
tributes,
service URL

service at-
tributes

service attributes

Network transport TCP/IP TCP/IP independent independent
OS and platform dependent dependent dependent independent
Srv attributes search-
able

no yes yes yes

Context-aware N/A Administrative
domain

N/A Location and admini-
strative domain

Leasing concept yes yes no yes
Central cache reposi-
tory

no yes optional using
SLP

optional

Directory

Centralized vs. Dis-
tributed

N/A Centralized Either Distributed

Number of Service
Information Copies

N/A Multiple
Copies

Multiple
Copies

Multiple Copies

Flat vs. hierarchical N/A N/A Flat Flat or hierarchical
Number of directory
hierarchies

N/A N/A N/A Single hierarchy

Announce-
ment and
lookup

Query vs. announce-
ment

Both Both Both Both

Directory-based vs.
non-directory-based

Non-
directory-
based

Either Directory-
based

Directory-based

Communication Unicast and
multicast

Multicast Unicast and
broadcast

Unicast and multi-
cast

Table 3.5: The differences between Service Discovery Protocols. Motivated by [ZhMuNi 02] and [Bett 00]

still manipulate different characteristics of the SCM in Jini if we want to explore their impact onto the SD
performance).

On the other side the difference between SD protocols should be taken into account during design of the
ESKEm. So, the difference ”Directory address” implies that the way of finding the SCM differs among
different SD technologies. We may wish to take into account and provide the way to configure the SCM
address in theESKEm.

Network transport Very often both of them can advertise it is availability as well as send requests to the
network to discover other entities. The service discovery protocol resides at application layer as defined
by OSI Model. Both TCP and UDP Transport Layer protocols are commonly used to transfer messages,
which relates to Service Discovery.

Directory availability The availability of a directory is considered by some authors as the most important
characteristic, which distinguishes between two classes of service discovery protocols: directory-based and
non-directory-based. We prefer to use the terms ”mediator-based” and ”direct or peer-based” respectively
as proposed in [Schi 04].

In mediator-based approaches, service discovery is performed using one or multiple mediators, called
lookup services. Direct or peer-based approaches do not rely on the presence of a mediator.

Directories cache service information and answer clients’ lookup requests. Thus, the overhead of handling
unrelated requests for services and the communication between clients and unrelated services are removed.

26 CHAPTER 3. SERVICE DISCOVERY

More importantly, this facilitates large-scale service discovery. Directory architectures, service information
cache strategies, and hierarchies are different depending on the environments.

Centralike vs. Distributed Directories A central directory stores all the services’ information in a
central location. The directory is can potentially be a bottleneck and the single point of failure, which
may cause the whole system’s failure. In large service discovery domains, it is inefficient to go through
a centralized directory all the time. Most of the service discovery protocols use distributed directories,
which store services’ information within their own domains. Service information is distributed among
directories. A directory failure only affects part of the system. With less information in each directory,
service lookup within a directory is more efficient. On the other hand, a service lookup may go through
several directories. In contrast, a service lookup in a centralized directory only goes to one directory with
less network communication overhead and latency.

Number of Service Information Copies For each service the service information may be a single copy,
multiple copies, or fully replicated in directories. Many protocols have a single copy of services in its
domain. A directory failure will affect the domain for which it is responsible. In Jini and SLP service
discovery environments, multiple directories may coexist. Therefore, multiple copies of service informa-
tion may exist. It is more reliable with multiple copies of service information in several directories, but
the greater the number of directories, the greater the overhead. Some discovery protocols (like INS in
[Wang 04] and [ZhMuNi 02], not in the table) implements fully replicated copies within a sub domain.
The advantage of fully replicated directories is that a service search only goes to the directory to which a
client is attached. Multiple copies or fully replicated copies of service information should be consistent in
directories. Otherwise, querying different directories may result in different service information and may
cause problems.

Flat vs. Hierarchical Directory Structure In a flat directory structure, directories have peer-to-peer
relationships. In one type of flat directory structure, directories connect to each other and exchange in-
formation. These information exchanges generate much communication traffic, and therefore it is not
scalable.

Which in a hierarchical directory structure, directories have parent and child relationships. Domain Name
System (DNS) is an example of a hierarchical directory structure. Searching through the directory hierarchy
is necessary. Many service discovery protocols use tree-like hierarchical structures to provide scalable
solutions. Nevertheless, it is difficult to make directories both scalable and efficient.

Directory Address Conventional directories listen on well-known ports and clients are manually config-
ured with the directory addresses. Moving to different networks, clients need different directory addresses.
With DHCP servers, manual configuration is not necessary, but DHCP servers need to be deployed. To
avoid directory address configuration or support from DHCP servers, some service discovery protocols use
multicast addresses. Directories listen to and talk on a multicast address, such as in SLP. Clients query
for services by sending requests to a multicast address or by listening on a multicast address. If multiple
directories reply, clients can pick one directory to further communicate. Using multicast addresses, direc-
tories also provide fault tolerance features. A directory failure will not cause any problems, since other
directories listening to the same address may provide the same services. Number of directory Hierarchies.
A single hierarchy directory has a tree structure, while a multiple hierarchy structure could be a forest or
many trees sharing a set of leaf directories. Multiple hierarchies index service information on different
keys. Like a database index, service information search based on a key may greatly speed up the search.
Extra computing resources and house keeping jobs are obvious overhead for multiple hierarchy directories.

Service Attributes A service usually has many attributes. Service attributes also have standard nam-
ing conventions as service names to avoid conflicts. A request of the client is matched against services’

3.6. SUMMARY 27

attributes. More precise query requirements client results in fewer selected services. As a result, less
network traffic is generated and fewer services are involved. If a query is too strict, no services may be
matched and then the client needs to query again with fewer constraints. In addition to search function-
ality, almost all service discovery protocols provide wild card searches, which let clients examine all the
available services.

Query vs. Announcement The two methods for clients to learn which service are available are query
and announcement, also known as active and passive (or based on pull or push model). As announcements
go to all the clients or directories, interested clients or directories do not need to ask separately for the same
service. Nevertheless, clients or directories have to handle all the announcements, regardless of whether
they are interested. When asking actively, a client or a directory will receive an immediate response.
While listening to service announcements, a client or a directory may wait up to the interval of service
announcement.

Service Selection If many similar services are available to a client, which service should the client use?
It is challenging to find services for users efficiently and accurately. Service discovery protocols may
select services for a user. But for most service discovery protocols, client programs or users choose from
a matched list of services. The advantage of protocol selection is that it simplifies client programs or little
user involvement is needed. On the other hand, protocol selection may not reflect the actual user’s will.
Predefined selection criteria may not apply to all cases. Alternatively, too much user involvement causes
inconvenience. For example, it may be tedious for a user to examine many printers and compare them. A
balance between protocol selection and user selection is preferred.

Service Matching Some service discovery protocols match one of the services for a client. In Match-
making, a classified advertisement matchmaking framework, client requests are matched to services and
one of the matched services is selected for user [5]. In INS, the service discovery protocol matches the best
service based on application defined metrics. Most protocols match all the services and let the user choose.

Scope-awareness To support a large amount of service, defining and grouping services in scopes facili-
tates service search. Location information is helpful in many service discovery cases. Nevertheless not all
service discovery protocols integrate location information or propose it as optional feature. For example,
Jini uses location information for scope definition and it is an optional attribute for services. We say this is
a scope searched by physical location. The administrative domain is another kind of scope. For example,
two different departments A and B of the same company may wish to define and administer own domains
for their services so that users from department A do not find printers from department B. Other types of a
scope search can be defined like search by a network topology, geographical location. Multiple hierarchies
may be built based on scope categories; so different service searches may utilize different hierarchies. As
usual, the trade-off between speed of search and resources usage should be found.

Leasing Most of the protocols we have considered till now includes the concept ofleasing. Each time
a device joins the network and its services become available on the network, it registers itself only for a
certain period of time in the lookup table (by mediator). This process is called aleaseand a life time
that defines how long a lookup table (mediator) will store a service registration is called aleasing. This is
especially useful for very dynamic ad-hoc network scenarios.

3.6 Summary

In this chapter we have selected theUPnP, SLP, Jini andSalutation service discovery protocols for compar-
ison between each other. It resulted in the derivation of the Generic Model, which should provide uniform

28 CHAPTER 3. SERVICE DISCOVERY

terminology among different SD technologies.

We also analyzed the differences between mentioned above service discovery technologies. It is a good
starting point for derivation of parameters, which influence service discovery performance (see Section
4.3).

Because of the ESK interest in the UPnP and SLP middleware (see Requirement B.7) we have considered
the mentioned protocols in depth. We also provided ad-hoc motivation for the selection of the UPnP and
SLP for detailed consideration. They are oriented onto the intra-organization service discovery. The UPnP
and SLP are not implementation-dependant (in contrast to Jini, which relies on Java specific features).
Additionally, the UPnP is supported by a number of companies involved in its development (the SLP has
the lowest number of companies involved in its development). The UPnP and SLP technologies seem to be
widely accepted by the industry and they are going to be developed further (also compare to Table 3.4).

The UPnP Cybergarage andOpenSLP were selected as the reference implementations of the respective
specifications. According to the Requirements B.7 and B.7, we will use theUPnP Cybergarage for valida-
tion of our approach in Chapter 6.

As a result of the service discovery overview, we are ready to make the first suggestion about theESKEm
design. This in turn results in the set of problems, which will be considered in Chapter 4.

We want to explore the service discovery technology in the specific environment. We want to explore exist-
ing service discovery reference implementations in theESKEm emulative environment (see the Require-
ment B.1). It means, that we should recreate the environment, in which a service discovery middleware
will exist. In this chapter we have considered the characteristics of such environment on the example of the
office environment (according to the Requirement C.2). There are several findings, which should be taken
into account in the rest of our work.

First , the service discovery protocols use a transport layers to accomplish their tasks. As the consequence,
we should consider different approaches to the recreation of the networking environment (”Network Pro-
tocol” on Figure 1.1), over which the service discovery protocols operate.

Figure 3.9: The overview over emulation framework design (see also Figure 1.1). The components in grey
will be introduced in the subsequent chapters.

Second, we may require to provide components like ”Service User” or ”Service”, which would be re-
sponsible for simulation of user’s/service’s behavior respectively. What kind of service discovery related
behavior should we simulated? The services/clients can bestartedor stopped, client can send asearch

3.6. SUMMARY 29

request, service canadvertiseitself to the network. The actions behind this activities still varies among
different protocols. For example, the service manager (see Table 3.4) of the UPnP specification announce
its availability to the complete network over multicasting. On the other hand, the SLP service manager
register itself in the directory if it is available. The ”Control” module should be responsible for controlling
simulated behavior and for reproducibility of this behavior (see Requirement B.3).

We continue the discussion of our ideas about theESKEm design in the next chapter. We will try to
derive there the related questions, which should be considered before we can start with more precise design
specification in Chapter 5.

Chapter 4

Related Work

We have considered different Service Discovery (SD) technologies in the previous chapter. The service
discovery technology is amiddlewarewhich sits in themiddlebetween services or clients and the under-
lying transport system. It hides the details of the SD from the services and clients. We have considered
SD in the previous chapter and identified a ”Network Module” (see Figure 1.1). In this chapter we identify
additional modules required for theESKEm. We also will analyze different approaches to the realization
of the identified modules in detail.

4.1 Overview

Our first observation from the previous chapter was about the presence of the networking layers used by
the clients and services during the service discovery. The networking infrastructure is one of the sources
for the heterogeneity of the environment. The Requirement B.5 implies that we should be able to put the
service discovery middleware (SDM) onto the transport systems with different characteristics. It can be
quite costly if we decide to use real software and hardware to reproduce a network. The Requirement
B.6 further implies that we should allow the communication between real clients and emulated services.
Precisely speaking, the emulated services should be discoverable by the real clients. This concerns should
be taken into account when considering different approaches used tomimicthe behavior of a real transport
system. These approaches are a testbed, a network emulation and a network simulation.

Our second observation was that the environment characteristics may put specific requirements onto the
SDM in general and onto the service discovery protocols in particular. We can speak about effectiveness
of the service discovery in a given environment. But how do we know that the SDM is effective in the
environment? Or how do we know that the SD middleware A performs in the environment X better than
the SD middleware B? These questions were actually the motivation for the Requirement B.2. It is not
the goal of this work to enable measuring of some specific metrics. Indeed, the set of metrics used in
the experiment depends on the particular research goals. In fact, we require ameasurementinfrastructure
which would allow to add the measurement of new metrics easily. We make an overview for the various
metrics used by researches during investigation of different service discovery protocols. This will help
us to formulate requirement to the measurement infrastructure more precisely before we enter the design
phase.

Further, we must define theworkloadfor the SDM in order to measure its performance characteristics. The
load on the protocol is ensured by the appropriate activity of the services and clients which use provided
by the SDM functionality. Which activity of clients and services is relevant for exploration of the SDM?
How is it possible to ”conserve” this activity so that it can be repeated in theESKEm several times (see
Requirement B.3).

30

4.2. NETWORK LAYERS SIMULATION 31

Figure 4.1: The overview over the design of theESKEm emulation framework (compare with the Figure
1.1).

And last, we are interested in the approaches which could contribute to the visualization of service discov-
ery related activity. These may be approaches for the visualization of the network-based activity, visualiza-
tion of graphs etc.

4.2 Network Layers Simulation

The networking infrastructure is one of the most important components, in which service discovery mid-
dleware (SDM) operates. The properties of the networking infrastructure have great impact on the SDM
performance. This motivates us to search for a way to reproduce a networking infrastructure and its char-
acteristics in theESKEm. The module with these tasks is labeled as ”Networking Module” on Figure
4.1.

What are the different approaches which are used by researchers to reproduce and explore the most impor-
tant characteristics of a network? Which of the approaches are potentially relevant for our purposes? These
are the questions which we consider in this section.

Different approaches are usually used to reproduce the network environments. Basically, they differ ac-
cording to the level of abstractness (see Figure 4.2). Very often it would be perfect to have a real networking
system available for a research. In this case no reproduction of the environment is required as far as it is
already available. The approach is represented on the left of Figure 4.2. A real system consists of the real
software and the real hardware components. As can be assumed, researches very often do not have access
to a real system for a different reasons: too expensive, the real system with required characteristics does
not exists etc.

Figure 4.2: The range of approaches used to reproduce the networking infrastructure.

32 CHAPTER 4. RELATED WORK

The simulation lies on the other side of the scale. The simulation approach is very often used when the
networking system with specific characteristics does not exist and its creation is not possible for some
reasons. In this case the model of the network system is created and used for the network simulation.

There are also other approaches which lay somewhere in-between of these two extremes. They vary in the
amount of real components used to reproduce a network with desired characteristics. We provide a short
introduction to all of the mentioned approaches for the reason of completeness. In fact, we are interested
in the simulation and emulation approaches. These two will be considered in more detail.

Simulation. Simulation is defined in the [Chun 04] as:

Experimentation with a simplified imitation (on a computer) of a system as it progresses
through time, for the purpose of better understanding and/or improving that system.

The network simulation is a way to explore the network systems by imitating their characteristics. The
network simulation is usually written in a special simulation language and is executed by a simulator.
Both hardware and software components can be described by a simulation language and simulated. The
implementation of a network protocol for the purpose of the simulation is usually totally different from a
real implementation of the same protocol written to be executed in an operational system. The difference is
especially clear for the real and simulated hardware components. Additionally, researchers are not expected
to simulate all characteristics of a real component. They may concentrate on those of them which are
assumed to be the most important for the purposes of a research.

What are the advantages of the simulation or When is it good to use a simulation approach? The network
system simulation is probably the best way to study the behavior of a component or a system which does
not exist. For example, we may wish to explore the protocol which exists as specification only and the
protocol implementation is not available. Or we may wish to explore a system with a lot of users (e.g.,
1000 users) who are navigating the web. In both cases it may be more appropriate to create a model of the
network and use it for the simulation of the interesting network usage scenarios.

However, the typical problem with the network simulators - these are the programs which can execute
the simulation - is that they do not support direct execution of a real protocol implementation. First, a
researcher must implement the simulated protocol in the appropriate simulation language. Second, the
researcher should take a decision about protocol characteristics which should be taken into account during
protocol simulation. This latter task is not trivial. Implementation of an existing protocol in the simu-
lation language is essentially a transcoding activity based on the idea of reducing the level of simulation
abstraction. In other words, population of the simulation model with more details has as a consequence a
decreased level of simulation abstraction. Hence, the obtained simulative code may fail to reproduce the
behavior of the protocol due to either possible transcoding bugs or model simplifications that may lead to
inconsistent results. The researcher should always find an appropriate level of details taken into account
for the simulation. As a consequence, the simulation is not always appropriate. There is a seminal work
by Brakmo and Peterson (Brakmo et al., 1996) showing that even if an abstract specification of the TCP
transcode can be mostly useful for rapid experimentation, however running the actual TCP code must be
preferred if errors have to be avoided. The same concerns are valid to the other protocols.

The costs of the network simulation are usually lower compared to to the costs for the other approaches for
the network experiments. Among other things, we do not require any special hardware components.

Emulation In most general sense, an emulation duplicates the functions of a real system (RS) by substi-
tuting it with an emulated system (ES), thus the latter appears to behave like the first system [Wikipedia].
A third system - an emulation user (EU) - should not notice the differences between RS and ES. What is
the difference between ”emulation” and ”simulation”?

In the definition above the equivalence of the RS and ES in respect to EU is the most important character-
istics of the emulation. In other words, it is important that an interface provided by the ES to the EU to
be the same as the interface of the emulated RS. There are a lot of examples where an emulation is used

4.2. NETWORK LAYERS SIMULATION 33

in the computing environment. For example, an absent CD-ROM drive can be emulated in respect to the
installation software which is expected to be installed from a CD-ROM only. Or we may wish to emulated
multiple network adapters on the same host. The emulated network adapter propose the same interface to
be used by the applications. In contrast to the emulation, a simulated network adapter can not be used by a
real application.

Unlike the network simulation approach, the network emulation usually does make use of a real software
like network protocol implementation or hardware like network routers to mimic network characteristics.
Researchers very often reuse the real components like network drivers to develop ES.

Further examples of the emulation will be provided in the subsequent sections. But is a network emulation
approach better than simulation? An emulation is usually associated with a higher accuracy of the imitation
in comparison to the simulation approach. The problem of the simulation accuracy was already mentioned
shortly in the previous paragraph: a researcher must find a tradeoff between the level of the simulation
details and the simulation complexity. In contrast, an emulation approach does not force the researcher to
search for tradeoff like the mentioned one. Indeed, all implementation details were already accounted in
the software or hardware components reused for the emulation purposes. As a consequence, the emulation
approach has inherently higher accuracy as the simulation approach. But it has its price. An emulation is
not as fast as the simulation approach. The simulation of the complex networks is very often easier as its
emulation. The emulation usually consumes significantly more resources as the simulation for imitation of
the network with the same characteristics.

Further, it is obvious that it isnot possible to emulate a host or a link which is faster than its hardware.
Further, the real time behavior of the software is tied to the available specific hardware. Thus a hardware
performance has an effect onto performance of the investigated network protocol. The example about the
host with four was motivated by the [ZhNi 02] and [ZhNi 03], where a single workstation was equipped
with severalnetwork interface card (NIC) for experimenting with routing protocols. But there are still the
cases, when we need as many workstations as the instances of the protocol or application to be emulated.
This problem can be partially overcome with application of the virtualization software likeVMWare. But
this approach still can only be applied for the emulation in small networks.

Testbed The testbed is even closer to the real system than an emulated system. The idea of a testbed
is based on two basic assumptions. First, we have a real implementation of the protocol with which we
would like to experiment. Second, a real network infrastructure exists where the protocol may be explored
under the full control of a researcher. The main problem with such experimental environment is that it may
still produce incomplete results. In other words, a testbed may be bound to some given network conditions
during the test. For example, the traffic dynamics in a testbed may be different from that available in the
real systems. Further, a testbed hardly supplies a fully controllable environment where experiments may
be reproduced on a large scale at an affordable cost.

Real System The research in a real networking environment is the goal which is often hard to achieve.
Usually, real systems are used in a productive environment, where every associated with the experimenta-
tion instability is unacceptable. Reasonably large environments may put constraints onto experimentation.
It may be either hard or impossible to control specific networking parameters to study their influence on
the network system performance.

To sum up, each approach has its pros and cons. The best approach does not exist. The best approach can
only be defined in the context of the research goals. Even the real system can not be considered as the best
approach for all cases. If we want to investigate the robustness of some protocol, it could be better to use
either formal model checking or analytical modeling with the subsequent simulation. The investigation of
the protocol in a real environment may be ineffective for such problem statement.

Which approach to reproduce a networking environment and mimic its characteristics would be the most
appropriate in our case? There are actually several requirements which influence our selection. We use
the requirements to theESKEm already at this point to exclude from deeper consideration the approaches

34 CHAPTER 4. RELATED WORK

which are inappropriate in current context. Requirement B.8 (scalability) assumes that we may need to
reproduce reasonably big environments (compare with our description of the office environment in the
Section 2.2). As a result, we are likely to fail trying to meet the low-costs Requirement C.1 with either the
testbedor real systemapproaches.

The rest of approaches which are theemulation, simulationandhybrid (where both simulation and emula-
tion is used), will be considered in more details in the rest of the chapter.

4.2.1 Simulation

A lot of network simulators have been developed until now. They posses very different characteristics.
Some of them are targeted at research of networks with specific characteristics. For example, the Glo-
MoSim is used for simulation in global mobile networks. Other simulators can be used to simulate a wide
range of protocols. One of them is a widely excepted NS2 simulator. Some simulators use a general pur-
pose language to implement the simulations, other provide its own language in which simulation must be
written. Simulators also have different characteristics in respect to the accuracy, performance and scaling
of simulation.

The topic of the simulation is quite extensive and there is a lot of different simulators. For this reason we
selected only several network simulation frameworks to introduce in this section: NS2, DIANEmu and
JiST/SWANS . It is not our intention to give complete insight into these frameworks but rather to analyze
those features which are relevant in the current work. The most attention will be paid to JiST/SWANS
framework which we have selected for simulation of the networking system in theESKEm.

Analysis of the NS2 is interesting while it is ade factostandard for network simulations. The simulator
also has a modification which enables a hybrid approach combining simulation and emulation to explor a
network environment. DIANEmu is an environment for development of the application-level protocols in
the ad-hoc networks.

NS2 NS2 is a discrete event simulator used to research of the networks [NS2]. It began as a variant of
the REAL network simulator in 1989 and has evolved substantially over the past few years.

The NS2 is one of the most widely used general-purpose network simulators [Bajaj et al. 99a], [AlJi 03],
[NS2]. NS2 is a recent version of the NS simulator. The modeling language of the NS2 is extensive. NS2
provides substantial support for simulation of networks with different characteristics. It concentrates on the
simulation of the protocols at the Transport and lower layers (see Appendix C). Nevertheless, an approach
in described in the paper [BiHe et al. 04] where the NS2 simulator is usd to analyze the impact of the ap-
plication levelpeer-to-peer(P2P) traffic on theinternet service provider (ISP) subnet. Theapplication
level simulation (ALS) was transformed and fed into the NS2 to add packet level details crucial for evalu-
ating the influence of application behavior on the underlying network. The service discovery protocols are
actually the application level protocol. For this reason the approach described in the paper was taken into
account when designing theESKEm.

Further, we were attracted by the NS2 emulation interface [NS2Emu] which is the modification of the
”pure” NS2 simulator. The NS2 emulation interface allows the simulator to interact with the real network
nodes like hosts or their applications. This interface can be useful to evaluate the characteristics of the pro-
tocols and theirimplementationsin end-systems. The NS2 emulation facility is placed as an intermediate
or end node along an end-to-end network path. Further, the emulation interface can either capture or inject
a real network traffic from/into real network. The simulator behind the emulation interface is responsible
for the manipulation of the captured or generated traffic. The emulation facility differentiates between two
modes of operations in respect to the modification of the traffic:

opaque mode real-world protocol fields are not directly manipulated by the simulator. But live data pack-
ets may be dropped, delayed, re-ordered, or duplicated. The protocol-specific traffic manipulation
scenarios may not be performed. For example, it is not possible to drop the TCP segment containing

4.2. NETWORK LAYERS SIMULATION 35

a retransmission of sequence number 23045. It is also no possible to modify the packet so that CRC
error is introduced.

protocol mode the simulator is able to interpret and/or generate live network traffic containing arbitrary
field assignments. The operations mentioned in the examples to the opaque mode are allowed.

As soon as the live traffic is captured by the emulation interface, the effects of the simulated network are
applied to it. The real-time scheduler of the simulator synchronizes event execution within the simulator
to real time. Provided sufficient CPU horsepower is available to keep up with arriving packets, the sim-
ulator virtual time should closely track real-time. If the simulator becomes too slow to keep up with the
elapsing real time and the skew exceeds a pre-specified constant ”slop factor” (currently 10ms), a warning
is continually produced.

We were also interested in the NS2 visualization tool (Nam) that allows researchers to see the complex
behavior in a network simulation in the intuitive way. The visualization shows the dynamics of the network
system and may allow a deeper understanding of the protocol behavior.

The simulation approaches can differ in respect to the set of network characteristics which can be taken
into account during simulation. Usually it is possible to specify network topologies, specify network
links characteristics like link failure probability, generation of complex traffic patterns etc. Just mentioned
characteristics can be described as a scenario and executed multiple times. NS2 proposes two ways of the
scenario creation: by configuring each single network component or by adopting the automated generation
of scenarios. The second approaches provides an automated generation of scenarios. This in turn allows
researchers to explore more complex scenarios than with a manual approach.

NS2 adopts two different levels of programming. A higher level uses the Tcl scripts to define simulation
scenarios and to configure modules of the simulator. The low level programming allows the C++ imple-
mentation of new modules. For example, introduction of the new simulated protocols is associated with
the creation of new modules in C++. This modules can be configured and used from within a Tcl script.

There are studies comparing performance and accuracy of the NS2 simulation with other framework. The
NS2 is claimed to have pure performance in comparison to the other simulators (see [JSim 03], [SWANS],
[SiBrUn 00]). The use of the Tcl for simulation scripts is claimed to be among factors which negatively
influence NS2 performance. NS2 incurs also a substantial memory overhead and increases the complexity
of the simulation code. NS2 was extended by researches to parallelize its event loop [RiAm 03], but
this technique has proved primarily beneficial for distributing NS2’s considerable memory requirements.
According to a number of published results, it is not easy to scale NS2 beyond a few hundred simulated
nodes. The comparison of accuracy was found in [Bjoe 05]. NS2 accuracy varies from scenario to scenario.
The tuning of the simulator can improve its accuracy significantly in comparison to testbeds.

Most efforts to improve the NS2 performance are concentrated around tuning its implementation and pro-
viding multiple levels of the protocol abstraction. The idea is to remove unnecessary details without vio-
lating the validity of the model. NS2 provides different levels of abstraction each of which sacrifices some
details to preserve computer resources. A user can tune simulator performance versus accuracy by adjust-
ing the simulation abstraction level. This means that one can increase the level of abstraction to improve
the performance of the simulation or decrease it to supply a greater accuracy.

DIANEmu The DIANEmu framework was developed at the Technical University of Karlsruhe as a
part of DIANE (from germ. ”Dienste in Ad-hoc-Netzen”: ”Services in the Ad-hoc Networks”) project
[DIANEmu]. The DIANEmu was defined by the authors as a ”program for simulating ad hoc networks on
a high level”. We were attracted to the framework because of the following goals of the DIANEmu stated
in the [DIANEmu 04]:

• GOAL 1: Simulate ad hoc network protocols on a high level. It was attractive for us because of the
fact that the service discovery protocols are the application level protocols.

36 CHAPTER 4. RELATED WORK

• GOAL 3: Protocols can be transferred to real devices without change. It was attractive, because we
also expected that an opposite direction would be true too. In other words, we expected that a real
service discovery implementations can be explored in the DIANEmu.

Additionally, the design of the framework was likely to meet some of our requirements. The framework
was only partially documented at the moment of writing current thesis. So it was not clear, how well
our requirements are met. As a consequence, we decided to explore the framework. Our experience is
introduced here.

The DIANEmu architecture is quite intuitive. It defines the following layers:

Meta layer - the documentation for the layer was not available, we did not explore the layer.

Behavior layer - define behavior of the service users.

Protocol layer - define protocols which are used by the users. This also include the protocol implementa-
tion.

Network layer - is responsible for delivering of the messages between nodes. The layer is rather rudimen-
tary.

Connectivity layer - contains the topology of the network and its characteristics.

Additionally, the DIANEmu were expected to work in a distributed mode which could help us to fulfill the
requirement of scalability.

Unfortunately, we were not able to reuse DIANEmu in theESKEm. We analyze here the reasons, why the
DIANEmu failed to match our requirements.

Development, testing and debugging of the new protocols are the most important goal of the DIANEmu.
These goals put special requirements on the DIEANmu design. One of them is that the protocol execution
must be deterministic.

In contrast, the performance and the scalability of the framework is not the primary goal. Several modes
of the DIANEmu operation were mentioned in the manual: Event-, Thread- and Distributed modes. At
the time of writing this paper only Event-based mode was supported (version 1.0 of the DIANEmu). The
Distributed mode which would enable running the simulation on several workstations was still under devel-
opment. The Thread-based mode was developed but not actually used because of beingnon-deterministic:
scheduling of the threads was accomplished by the JVM (Java Virtual Machine) which led too often to the
racing conditions between single nodes. The are also a number of implementation related decisions which
negatively influence the performance of the framework.

We also failed to find a direct way how existing protocols can be integrated into the DIANEmu. Never-
theless, we used an approach similar to that described in the NS2 emulation interface (see 4.2.1). The real
packets from theUPnP Cybergarage were attached to the objects representing messages in the DIANEmu.
We also modified the scheduler of the framework. We emulated at total 30 clients, the clients started one
after another with interval of 1 second. As a result, the last user was expected to start on 30th second. Each
user sent a multicast ”search request” message as specified in UPnP reference. The results are presented in
the Figure 4.3. The graph shows nominal vs. actual start of the users. The delay of the user start becomes
visible very fast as the number of users increases. We attribute the difference between nominal and actual
start time of the device to the design characteristics of the DIANEmu framework. Such conclusion is the
result of investigation of the framework performance in the described scenario with a profiling tool. Ac-
cording to our suggestion, the difference is because of the large number of multicast messages which can
not be processed by the DIANEmu at appropriate speed.

ProprietaryVisualizationmodule of the DIANEmu was unsatisfactory for our goals too. The visualization
of the messages flow may be appropriate for small simulations or for the debugging purposes. But with
increasing number of the simulated nodes the visualization is unlikely to be supportive. Neither code nor
design of the visualization framework could be of use for our work.

4.2. NETWORK LAYERS SIMULATION 37

Figure 4.3: Load Test of DIANEmu combined withUPnP Cybergarage

Nevertheless, we were interested in the measuring infrastructure, provided by the DIANEmu.
It consists of the Gauges which are registered to receive specificAnnouncements like a
MessageSentAnnouncement . The metrics are calculated as the result of processing and analyzing
the announcements in the gauge.

As a conclusion, we attribute the differences between our expectation and the DIANEmu features mainly
to the differences in the goals of our projects. Framework performance and scalability characteristics are
unsatisfactory for our purposes. There is no support for integration of already developed service discovery
protocols. As a result, we refused to use the DIANEmu framework.

JiST/SWANS TheScalable Wireless Ad hoc Network Simulator(SWANS) built atopJava in Simu-
lation Time (JiST) platform, a general-purpose discrete event simulation engine [SWANS].

TheJiST was developed at Cornelt University by Rimon Barr in May 2004. The JiST is adiscrete event-
basedsimulation. The JiST is rather complex to be covered here completely. The framework design can
be found by interested reader in the PhD Thesis at [JIST]. Here, we would like to concentrate on principles
of event-based simulation in general and on JiST-related concepts and mechanisms in particular.

Is such overview really required? Is not it possible to use theJiST simulation as a black box? Unfortunately
not. According to our requirements (at least, the Requirement B.6), theESKEm should be able to run in
real time. The roots of this problem lay in the problem of coupling the simulation and emulation. We
come back in Chapter 5 to this question and suggestions about its solution. Here we would like to provide
the general background required for understanding the problem. We proceed as following. We shortly
introduce the concept of the discreteevent-basedsimulation and related terms. Next, we introduce the
most important design aspects ofJiST/SWANS which are directly related to the event-based simulation.
The parts will be touched upon which are required later in the Chapter 5 for understanding theESKEm
design.

Discrete event-based simulation There are several approaches to the simulation in respect to the model-
ing of time progress. The time-slicing, continuous simulation or discrete event simulation are some of the
examples mentioned in the [Robi 03]). The discrete-event simulation is used by theJiST framework. There
are a number of mechanisms which were proposed for carrying out discrete-event simulation. Among them
are the event-based, activity-based, process-based and three-phase approaches1. The JiST usesevent-based
approach.

1You may wish to check the [Robi 03] for references to the sources, where this approaches are described in details. The [Robi 03]
gives a detailed example of the three-phase mechanism.

38 CHAPTER 4. RELATED WORK

There are also other approaches. For example, with the time slicing approach the time is advanced at the
fixed intervals, the time of the model during discrete-event simulation is advanced to the time of the next
significant event. The event-based algorithm of the discrete-event simulation is explained in [Pidd 97]. We
give here an informal explanation, based on the example with the booking clerks which has only two tasks
to perform:

• the attend to people who arrive in person and queue for service

• they also answer the phone when it rings

An event-based approach simulation model would have the following event routines:

1 Personal inquirer arrives: if a clerk is idle, a service begins and its end must be scheduled via the
event list. Otherwise, the arrival joins a queue. The next personal arrival event is scheduled on the
event list.

2 Phone call arrives: if a clerk is idle, a phone conversation begins and its end must be scheduled via
the event list. Otherwise the call joins a queue. The next phone call event is scheduled on the event
list.

3 End of personal service: if a personal queue exists, a new service starts and its end must be scheduled
via the event list; or, if a phone queue exists, a new phone conversation starts and it send must be
scheduled via the event list. Otherwise, the clerk becomes idle.

4 End of phone conversation: if a personal queue exists, a new service starts and its end must be
scheduled via the event list; or, if a phone queue exists, a new phone conversation starts and its end
must be scheduled via the event list. Otherwise, the clerk becomes idle.

There are several observations. First, each event leads to the scheduling of another event. Second, the so
calledsimulation executivecontrols the progress of the simulation by looking at the event list to find the
time of the next event. It then executes the event routine(s) due at that time. Third, event execution results
in more entries on the event list unless the event is one that terminates the simulation. When all events due
at this current time are complete, the executive repeats itself.

Time There are three kinds of time which can be met in the literature about simulation: real executive
time (or simply real time), executive time and simulative. Thereal executive timeis the time of the real
system which we want to simulate. Theexecutive timeis defined as the run time of the simulator. Finally,
thesimulative timeis the representation of time in the simulative model. It is the wall clock of the simu-
lation. For example, the simulation time is advanced above as the result of picking up the next event from
the events list.

JiST design The overall design of theJiST is rather complex to be described here. We are going to
consider the most relevant part of it which will be used as a reference in Chapter 5. We are interested in
the exact way of the simulation in the JiST as far as it is a basis for the simulation in SWANS, a network
simulator. Precisely speaking, we are interested in the simulation kernel. The completeJiST/SWANS
design description can be found in [JIST].

JiST extends the traditional programming model with the notion of simulationentities, defined syntactically
as instances of classes that implement the emptyEntity interface.

entities Every simulation object must be logically contained within an entity, where object contain-
ment within an entity is defined in terms of its reachability: the state of an entity is the
combined state of all objects reachable from it. Each entity has its own simulation time and
may progress through simulation time independently. To be consistent, the entity cannot
share its state with any other entry. Entities are components of a simulation and represent the
granularity at which theJiST kernel manages a running simulation.

4.2. NETWORK LAYERS SIMULATION 39

simulation events All instructions and operationswithin an entity follow the regular Java control flow
and semantics. In contrast, invocations on entities correspond to simulation events. The ex-
ecution semantics are that method invocations on entities are non-blocking.They are merely
queued at their point of invocation. The invocation is actually performed on the callee (or
target) entity only when it reaches the same simulation time as the calling (or source) entity,
see Figure 4.4. In other words, cross-entity method invocations act as synchronization points
in simulation time.

Figure 4.4: JiST/SWANS: simulation events are scheduled for the execution first; the execution is post-
poned to the time, when B reaches the same simulation time as A.

The node functionality is partitioned into individual, fine-grained entities. Here, an example for the node
could be a device on the network or just an application which runs over the networking protocols stack.
Partitioning of the node in entities would mean that the networking protocols on the protocols stack could
be simulated as the single entities (e.g. one entity pro protocol). An alternative would be that a complete
protocols stack is simulated as a single entity.The partitioning into individual entities provides an ad-
ditional degree of flexibility for distributed simulations. The distribution of entities across physical hosts
running the simulation can be changed dynamically in response to simulation communication patterns and
it does not need to be homogenous.

In the next paragraph we introduce the SWANS framework (also calledJiST/SWANS) which build on the
top of theJiST simulator.

40 CHAPTER 4. RELATED WORK

Figure 4.5: SWANS Design highlights, [SWANS]

SWANS design According to the authors,
SWANS was created primarily because existing
wireless network simulation tools are not sufficient
for current research needs. Most published ad hoc
network results are based on simulations of few
nodes only (usually fewer than 500 nodes), for
a short duration, and over a small geographical
area. Larger simulations usually compromise on
simulation detail. For example, some existing
simulators simulate only at the packet level with-
out considering the effects of signal interference.
Others reduce the complexity of the simulation
by curtailing the simulation duration, reducing the
node density, or restricting mobility. The SWANS
was targeted at both goals: high simulation speed
and without the need to decrease the level of
details.

The capabilities of SWANS are similar to NS2 and
GloMoSim [GloMoSim]. The components of the
SWANS implement different types of applications;
networking, routing and media access protocols;
radio transmission, reception and noise models;
signal propagation and fading models; and node

mobility models. The components can be easily interchanged with appropriate alternate implementations
of the common interfaces and for each simulated node to beindependently configured. Finally, SWANS
also confines the simulation communication pattern. For example,Application or Routing compo-
nents of different nodes cannot communicate directly. The messages can only be passed along their own
node stacks.

The SWANS simulator consists of event-driven components (Figure 4.5) that can be configured and com-
posed to form the desired wireless network simulation. The components of the simulator are clearly divided
into the layers:

• Physical

• Link

• Network

• Routing

• Transport

• Application

As was already mentioned, the components can be replaced by the alternate interface implementation.

JiST/SWANS advantages As was mentioned at the beginning of the current paragraph, the motivation
behind SWANS was to reach high performance without decrease the level of details.

”It is important to note that, in JiST, communication among entities is very efficient. The
design incurs no serialization, copy, or context-switching cost among co-located entities, since
the Java objects contained within events are passed along by reference via the simulation time
kernel. Simulated network packets are actually a chain of nested objects that mimic the chain
of packet headers added by the network stack. Moreover, since the packets are timeless by
design, a single broadcasted packet can be safely shared among all the receiving nodes and

4.2. NETWORK LAYERS SIMULATION 41

the very same object sent by anApplication entity on one node will be received at the
Application entity of another node. Similarly, if we use TCP in our node stack, then
the same object will be referenced in the sending node’s TCP retransmit buffer. This design
conserves memory which in turn allows for simulation of larger network models.

Which performance is high enough? The performance of theJiST/SWANS was measured by the devel-
opers of the SWANS against similar frameworks by simulating an ad hoc network of nodes running a
UDP-based beaconingnode discovery protocol(NDP) application2. The scenario was also implemented
in NS2 and GloMoSim for comparison.

The SWANS performs better in proposed scenario (a scenario for a wireless network), as can be seen from
the Table 4.6 and Figures 4.7 and 4.8 as its counterparts - GloMoSim and NS2 (”hier” (hierarchical binning)
and ”scan” denotes different algorithms for radio-signal propagation, see [JIST] for more details).

Figure 4.6: Data points showing SWANS time and memory performance, relative to GloMoSim and NS22,
running node disocvery protocol simulations [JIST].

The code of theJiST is also claimed to be compact. According to authors, components in JiST takes less
than half of the code (in uncommented line counts) of comparable components in GloMoSim which are
already smaller than their counterpart implementation in NS2.

Beside high simulation throughput, other advantage of the SWANS is its ability to run standard Java appli-
cations over the simulated network without modification, thus allowing for the inclusion into simulation of
existing Java-based software, including application-level protocols. These applications do not merely send
packets to the simulator from other process. They operate in simulation time within the sameJiST process
space, allowing far greater scalability (the overhead for context change by multithreading is high).

Further, the components of the SWANS can be easily interchanged with an appropriate alternate imple-
mentations of the common interfaces and can be independently configured for each simulated node or
application. Among other things it means that nodes can be configured with different network protocols
stacks.

2NDP utilizes the entire network stack and transmits over every link in the network every few seconds.

42 CHAPTER 4. RELATED WORK

Figure 4.7: SWANS outperform both NS2 and GloMoSim in simulations of the node discovery protocol,
log-log scale [JIST].

Figure 4.8: SWANS can simulate larger network models due to its more efficient use of memory.

As was mentioned, the SWANS performed better as NS2 and GloMoSim for the wireless networks. What
about simulation of LAN? Or put it in other words, what are the sources of performance? Will they be still
there, if we decide to introduce additional protocols like those for the LAN into theJiST/SWANS ?

According to theJiST documentation, two source of the performance can be derived. One of them is
the overall architecture of the JiST which reduces threading overhead, synchronization costs, and message
copying during event dispatch. Another source of performance is specific to the simulation of wireless
network. It is a so called binning algorithm (see JiST design documentation for further explanations). So
we can still expect to profit from the design of the JiST to achieve higher performance as with NS2 and
GloMoSim.

Unfortunately, we do not aware about any reports about accuracy of the network simulation with SWANS.
JiST is also very young - it appeared only in May 2004 (in contrast to NS2 which isde factostandard for

4.2. NETWORK LAYERS SIMULATION 43

the network simulations, and widely known GloMoSim with its specialization on mobile networks). We
did not found anyJiST/SWANS related papers besides those published on the home page of the framework
[SWANS].

4.2.2 Emulation

We cannot consider emulation as an alternative to simulation, but rather as a complementary approach. The
main idea behind emulation approach is to use real hardware (e.g. workstations, routers, network adapters
etc.) and real software (e.g. network drivers, routing protocols software etc.) to reproduce the real network.
The main advantage of this approach is that an emulator runs real protocols. This means that the behavior
of a real protocol and all its implications (like processing overheads for example) must not be simulated.

The emulation approaches exploits the resources of real powerful component for reproduction ofmultiple
less powerful components. For example, the EMPOWER framework described in the [ZhNi 02] integrates
multiple network adapters on the single workstation. Each network adapter is responsible either for a router
or end host. The CPU, memory etc. are the resources of the host which are used to run router code. Another
example would the slower links and larger propagation delays which can be simulated by means of links
with reasonable higher bandwidth.

The word of ”simulation” may disappoint the reader. Are not we speaking about emulation right now?
Aren’t we done with ”faked” protocols? The reason to use the term of ”simulation” in this context may be
not obvious for the first time. The term of ”emulation” is applied to describe some inherent characteristic
of the real component. For example, it could be a failure to send every 10th package because of the bug in
the protocol implementation. On the other hand, the ”simulation” denotes some kind of the behavior which
is not attributed to the protocol by itself. For example, we may wish that our protocol implementation from
previous example fails to send every 5th package. This kind of behavior is simulated. In accordance to the
previous notes, it is not possible that the protocol fails to send every 20th package.

For the explanation of the concepts in this section we use the concept map 4.9. It should provide an
overview over all important concepts used in this section. We introduce the term first, and than put them
into the context of the service discovery exploration.

As to network emulation, it promotes the integration of the real network into an emulative environment,
leading to an emulative scenario. Special interfaces calledemulation interfacesare provided to introduce
live network trafficinto the emulative environment and to injectsimulated trafficfrom the emulative envi-
ronment back into the live network.

The main aim of any network emulator is to reproduce the behavior of anetwork scenarioin order to study
the performance of the integration between this scenario and the software communications over it which is
accomplished by thesystem under study (SUT). Therefore, each emulator needs anetwork modelto mimic
a specific network scenario and to characterize its properties.

Theemulation interfaceis a combination of both software and hardware that provides anentry pointto the
SUT within the implemented network model (see also Figure 4.10). The emulation interface is in charge
of integrating the emulated network and its live traffic coming from the SUT, operating either in opaque or
in protocol mode (compare the NS2 emulation facility mentioned in 4.2.1).

The SUT can be located at different layers. This means that the emulation interface must supply entry
points at appropriate for the SUT layer which is named theemulation abstraction layer. The emulation
interface can have several such layers. The choice of an emulator for a specific scenario depends on the
emulation abstraction layer it supplies for the study of the SUT. Which layers are usually considered as
adequate to be an emulation abstraction layer? Here they are:

Transport Layer, here emulation reproduces the features of the communication channel at the transport
level (of the stack ISO-OSI) like TCP or UDP. The entry point of this kind of emulators is set at
transport layer, so they promote the measurement of the performances of the applications on their
emulated communication channels.

44 CHAPTER 4. RELATED WORK

Figure 4.9: The emulation approach concept map. See explanations in text. Read it like ”emulated network
hasemulation interface”.

Network Layer, here emulation mimics the end-to-end behavior of a network connecting hosts at the net-
work level, by reproducing the performance of the network protocol due to packet delays, congestion
losses, etc. The entry point of this kind of emulators is set at network layer, so they promote the
measurement of the performances of the transport protocols and the applications on their emulated
end-to-end behavior of a network.

Link Layer, here emulation replicates the behavior of a single network links at the data-link level due to
limited bandwidth, frame delay, etc. The entry point of this kind of emulators is set at Data-Link
layer, in addition to the measurement of the performances of the network protocols, they promote
the transport protocols and the applications on their emulated links.

As in the case of the simulation, we still have the problem of accuracy with the emulation approach. Or put
it in other words, how good does the emulated network reproduce the characteristics of the real network?
The problem is that each aspect of the network model should reproduce physical effects, hardware design,
and protocol issues of a real network. For example, network layer emulation should reproduce (”fake”) the
effects of the network level, like routing, queuing, discarding etc. Instead, link layer emulation approach
can exploit the actual implementations of network protocols to create these effects. Hence, these consid-
erations show that it is more difficult to realize realistic emulation on a higher abstraction layer than on a
lower. This is due to a great number of factors that one should consider. Lower emulation abstraction layer
will carry out more realistic results. According to [HeRo 02], the emulation on link layer is the lowest
possible emulation abstraction which is possible without using special hardware.

The emulation approaches show some limitations due to the hardware on which emulation runs: i) to
emulate a network with ten hosts one needs ten workstations, ii) it is not possible to emulate a host or a
link which is faster than its hardware and iii) the real time scheduling of the software is constrained to
the frequency of the specific used hardware. For example, if an emulator has a time accuracy of 10 ms, it
cannot emulate the exact delay involved in sending packets smaller than 20 Kb on a 2Mb/s link, because it
takes exactly 10 ms to send this amount of bits.

It is also obvious that the approach requires availability of the real components in appropriate amount. Thus
high bandwidth link can be used for simulation of lower bandwidth links, it still has the capacity limits: it
is not possible to simulate more than 10 of the 1Mb/s links with a single 10Mb/s link.

4.2. NETWORK LAYERS SIMULATION 45

Figure 4.10: A generic emulation framework architecture

EMPOWER emulation framework EMPOWER is a framework developed at the Department of Com-
puter Science and Engineering of Michigan State University. The EMPOWER is and emulation environ-
ment which is used for investigation of the routing protocols in wireline and wireless IP networks. This
could be just what we need according to our vision of the office environment (Section 2.2). The emula-
tive environment consists of several workstations (emulation nodes), each equipped with multiple network
adapters to emulate the routers (virtual routers). The real network routers topology is mapped onto this
environment. to an emulation configuration in a private local area network.

Our primary expectation was to put the service discovery middleware behind virtual routers. But as will
be seen, this solution can not match our requirements. The application of the EMPOWER approach would
resulted thus in higher accuracy but in pure scalability ofESKEm.

The problem of EMPOWER performance was investigated in [ZhNi 03]. When more than one NIC (net-
work interface card) are plugged into a workstation, the maximum throughput of each network port may
not achieve its link bandwidth (100Mbit/s). For the purpose of the experiment, the NICs on the single
workstation were chained (see Figure 4.11), the input and output throughput were compared and related
to the load of the usage of the system resources like CPU. Among other things, the experiment derived
a list of factor which influence the maximum end-to-end throughput of the routers: CPU speed, PCI bus
bandwidth, system bus bandwidth, buffer size of the network interface card.

We were mainly interested in specific experiment results. So, it was found that the resulting throughput
of the host with 4 chained NICs reached 60 Mbit/s (from 100 Mbit/s maximally available). There are two
reasons for such decrease in performance: resources competition and pure performance of software-based
routers.

The authors tried to improve EMPOWER performance. As a result of these modifications the maximum
network throughput was increased by 23%, but nevertheless it was not possible to achieve an end-to-end
throughput of greater than 75Mbits/s in case of a virtual router chain of 4 virtual routers.

The paper mentions also several possible approaches for increasing performance in similar to EPOWER
emulative environments. They are modifications to the interrupt-driven mechanisms and techniques of

46 CHAPTER 4. RELATED WORK

Figure 4.11: EMPOWER: performance degradation because of the resources competition and pure perfor-
mance of software-based routers.

interrupt mitigation (see [ZhNi 03] for further references). To reduce the number of memory copies of a
packet in a host-based router, peer-DMA is used to directly copy packets between two network interface
devices. This approaches can be further investigate, if the problem of the performance arise during progress
of the current work. The approaches mentioned seems to be more promising as that used in EMPOWER.
But we assume that an increase in performance or scalability which would be acceptable in our case, can
not be achieved. The reason for the conclusion is that emulation is tightly coupled with the execution of real
code on real hardware. There is no way in context of pure emulation approach to abstract some resources-
consuming operations and replace them with a simulation. Thus winning in the accuracy of the emulated
network characteristics, we are likely to loose in the scalability (Requirement B.8) with the EMPOWER.

Dummynet, NISTNet One of the most well-known network emulators is Dummynet [Rizz 97]. It was
developed by Luigi Rizzo at the University of Pisa. Dummynet is a simple, but flexible and accurate
network emulator that was built as a result of modifications to the communication protocol stack.

Dummynet runs on a standalone system by intercepting communications of the protocol layer under test
and by introducing them into an environment where the effects of bandwidth limitations, communication
delays and packet losses are exploited. In other words, the idea is to insert a simplified network model
characteristics into an operational protocol stack and to conduct trails on a standalone system.

Dummynet is actually a hybrid between the simulation and emulation. It has control over parameters of
emulation, simplicity, capacity to use real traffic generators and real protocol implementations. A set of un-
modified real world applications like FTP, SSH and HTTP on a workstation can be used in the experiments
with network protocols. Dummynet is inserted between the interfaces of the network layer and the transport
layer of the protocol stack of the computer on which is executed (Figure 4.12). Therefore, it reproduces
the network infrastructures between two hosts including two different types of elements in the stream of
the communication: routers and links. In order to simulate their presence, respectively a router is repre-
sented as limited queue and adopted queuing policy, while links are represented as bandwidth limitations,
communication delays and packet loss.

The basic configuration of a trail consists of one or two routers and one link. These elements are modeled
by means of a couple of queues (namely, router-queue and link-queue) that intercepts the communications
between the protocol layer under observation and its lower layer. The queues can be configured separately
for each direction of the communication. The router-queue is characterized by a maximum size, while

4.2. NETWORK LAYERS SIMULATION 47

Figure 4.12: The principle of operation of dummynet, [Rizz 97].

the link-queue by a bandwidth and a communication delay. The packets are processed in the router-queue
and than in the link-queue before being sent to the protocol layer under observation. For example, the
packets in the router-queue could be eventually reordered. Next, the link queue could be used to simulate
the bandwidth limitation by holding the packets for a while before sending them further.

Dummynet like the other network simulators and emulators show some limitations to reproduce the behav-
ior a real system. The main limitations come from the granularity and the precision of the system clock.
The granularity limits the resolution in all timing related measurements. This is due to the modeling of
high-speed networks where the packet delay becomes comparable with the time quantum of the system
clock (see also our ”20Kb on 2Mb/s link” example). Another limitation is that the overload of a time-
driven system might deliberately delay some packets or might miss one or more timer ticks. Finally, we
conclude by highlighting that only a prototype implementing this approach between IP and TCP exists.
This is certainly in contradiction to the Requirement B.5.

The NISTNet network emulator is a general-purpose, Linux kernel-based tool for emulating performance
dynamics in IP networks [CaSa],[NISTNet]. It has a fixed queue size, but adds delay variation, packet
reordering, and packet duplication. NISTNet is a tool working within the Linux kernel. As Dummynet,
it can introduce bandwidth limitation, delay, and packet loss, and then it adds delay variation, packet
reordering, and packet duplication. NISTNet operates at network emulation layer and therefore can only
be configured on the basis of IP layer addresses. By using up a number of connected nodes running an
emulation tool, a comprehensive network scenario can be set up.

4.2.3 Summary

Theperformanceandaccuracyare the most important criteria which matter when selecting either simula-
tion or emulation framework to mimic networking environment. We consider the scalability (Requirement
B.8) as one of the performance characteristics. The scalability of theESKEmhas higher priority for us as
the accuracy. This is the first reason, why we selected to apply simulation approach to reproduce network-
ing infrastructure inESKEm.

Other consideration is that with an emulation approach it can be problematic to achieve the heterogeneity
(Requirement B.5 of the reproduced networking environment. Emulative environments usually specialized
on the reproduction of specific network environments. Additionally, the emulation is usually associated
with higher investment compared to the simulation approach, and this is not desirable in our case (Require-
ment C.1).

So we would like to consider different simulation approach in respect to the performance and eventually
accuracy. In general, the simulation seems to be more liable to inaccuracies as emulation because of its

48 CHAPTER 4. RELATED WORK

model-based nature. Surprisingly, few papers and studies can be found dealing with the topic of network
simulator comparison. The main reason for this is that most developers are only familiar with one simulator,
and a daily comparison just does not take place [Bjoe 05].

The network simulator design, implementation language and levels of the simulation details are mentioned
in the papers as having the most important impact on the simulators’ scalability and performance. It is
not obvious that the lower-level languages guarantee higher performance. As was shown above, written in
C++ NS2 performs worse as written in javaJiST/SWANS (and some other not represented in this chapter
java based simulators like JSim [JSim 03]). This can be attributed both to improvements injava virtual
machine(JVM) and architecture of the simulator itself.

The researcher may also have more flexibility in determining the level of detail with simulation approach in
contrast to emulation. The level of details has actually strong impact on both of performance and accuracy
of the simulation. What are the examples for differences in the level of details? One of them would be
the timescale of the simulator (we mentioned it when considering the NS2). An illustrative example about
influence of the level of details on the accuracy is provided in [Heid 00d].

Our finding from the overview over simulation and emulation frameworks can are short summarized in the
Table 4.1.

Require-

ments

JiST/SWANS NS2 DIANEmu Dummynet EMPOWER

B.8 + - - -/+ -
B.5 + + +/-, pure support for

transport and lower
layers

- -

B.1 - - - - -
B.6 - -, + for NS2 emula-

tion interface
- - -

C.1 + + + +/- -
C.4 + + + + +

Table 4.1: Comparison of selected simulation and emulation effort in respect toESKEm requirements.

4.3 Measurement

The concept ofmeasurementis widely used. We want to use this section to define precisely, what we
understand under themeasurementin the Requirement B.2. We will also considered related concepts like
metrics, workload andmonitors. Next, we will consider the measurement in the context of the service
discovery researches. We are mainly interested in the question which metrics are of interest for different
researcher goals.

Informally speaking, the measurement should be considered as a way to get feedback about system perfor-
mance. The termmetricsrefers to the criteria used to evaluate the performance of the system. For example,
the time required for the service discovery (is searched service is available on the network) could be used
as a metric to compare two different service discovery approaches. The concept of theworkloadis used in
our case to characterize the client and service activity which ”load”, or provoke the service discovery oper-
ation. The metrics which we will consider are measured under certain workload conditions. The workload
characteristic will be considered in the Chapter 5 aboutESKEm design.

In theESKEm we are interested in the measurement infrastructure which would support us in measurement
of different metrics which would reflect the operation of the service discovery protocol under considera-
tion. We are not interested in the measurement of some specific metrics. Nevertheless we would like to

4.3. MEASUREMENT 49

consider which metrics are used by researcher to capture different performance characteristics of the ser-
vice discovery protocols. We will come back to the measurement infrastructure characteristics in Chapter
5.

We summarized the metrics used in different papers in the Table 4.2. We aware that the set of the metrics
is strongly depend on the goal of the experiment. But we the goals of the single experiments are not of
primary interest for us.

Category Metric References Explanation
speed average waiting time [Hong 04] the minimum time period in seconds, av-

eraged over all the clients, starting from
the sending of a service query message and
ending with the receiving of a service reply
message

discovery speed [Junw 01] total number of requests during a certain
period divided through

update responsive-
ness

[DME 02] How much latency is required to propagate
changes

reliability update effectiveness [DME 02] What is the probability that a node receives
a change?

number of transmit-
ted messages

[Hong 04],
[GoBa 00]
(analytical
model)

the number of messages transmitted in
each round by all the nodes in the net-
work, including search discovery, reply
and search announcement messages.

service discoverabil-
ity

[Chak 02] expresses the chances of a protocol discov-
ering a service

success rate [Hong 04],
[Bjoe 05],
[Junw 01]

the ratio of the number of clients which
successfully locate the services, over the
total client number.

power and
resources
consumption

update efficiency [DME 02] How many messages must be sent to prop-
agate a change throughout the topology

load balancing [Junw 01],
[Chak 02]

express the degree, to which the load
among different network components
(like, devices) is fairly distributed

energy efficiency [Schi 04],
[Chak 02]

amount of time that idle nodes spend in
sleep mode

Table 4.2: The categories of service discovery metrics as found in research papers

We identified several three groups of metrics (see Table 4.2). This can be interpreted in the way that the
researchers exploring different service discovery approaches are usually interested in service discovery
speed, reliability andpower/resources consumption.

Further, we differentiate between component under study (CUS) which is the service discovery protocol
and system under test (SUT) which is the environment of the CUS. The metrics are measured on the level of
the SUT. As we have mentioned earlier, the service discovery can be considered as a middleware. It means
among other things that there are components of the SUT which lay above and under the service discovery
component (compare also with the Figure 4.1). As a consequence, the metrics are measured either at the
upper or at the lower level of the SUT in respect to the CUS. For example,number of transmitted messages
is the metric at the Network Module level (see Figure 4.1). Thesuccess ratecan only be measured on the
service user level as far as only client can decide, whether the discovery was successful or not. The metrics
like load balanceare measured even at higher level like the level of the device, on which client or service
is located.

Found metrics could also be characterized as eitherindividual metrics (reflect the utility of each user) or

50 CHAPTER 4. RELATED WORK

globalmetrics (reflect the systemwide utility). Mentioned in the Table 4.2 ”load balancing” metric is good
example of global metrics. The difference is that the global metrics does not make sense for a single node
instance. For example, the fairness metrics make sense only with more than one node. Other examples
of global metrics would be reliability, and availability. As a consequence, in general a single node can
not decide, whether it is reliable or not. As a result, the global metrics can be usually calculated based
on the information from the whole system. On the other hand, individual metrics like namelookup speed,
number of transmitted messagesor other may be measured for each individual as well as globally for the
system. Sometimes the decision that optimizes some individual metrics is different from the decision that
optimizes the global metric. For example, in the network where the total number of packets allowed is kept
constant, increasing the number of packets from one source may lead to increasing its throughput, but it
may also decrease someone else’s throughput. Thus, both the systemwide throughput and its distribution
among individual users must be studied. In general, using only the individual metrics or only the global
metrics may lead to unfair results.

4.3.1 Workload

The service discovery protocols are used for discovery of services. They are used by services and clients.
The service discovery protocols dont make too much sense without them. The measurement of the service
discovery characteristics can only be revealed under appropriate activity of services and clients. We call
this activity as theworkload. The workload is applied at the level of the SUT (system under study).

What should be used as workload in our case? We did not find any workload description or characterization
which would be relevant for the service discovery. But we can still define it base on the overview of different
service discovery protocol from Chapter 3. On this place we just say that it should be some activity on the
side of service and clients. We will come to the problem of workload in the Chapter 5. The workload
is something which affects the performance of the SDM under consideration. Other factors affecting the
SDM performance are located at the system level parameters.

Both system and workload parameters should be taken into account during comparison of different service
discovery protocols. As a researcher, we want to useESKEm framework to explore given SDM in a given
environment. Put it in other words, we want to study the influence of different parameters onto performance
of the SDM. This groups of parameters we have just defined. As a result, there should be the way how
the researcher (see also Section 2.1 with scenarios) could control mentioned parameters in theESKEm
framework. So there are two questions which are interesting for us in this context.Which parameters
should be controlled andHow should they be controlled. In this section we would like to address first
question, we will come to the second question in Chapter 5.

To the system counts the parameters like speed of CPUs of devices where the service/client and other par-
ticipating in the service discovery components are located, different parameters of the network system, the
speed of I/O operations on devices and many others. In general, we assume that the parameters are inter-
esting which significantly affect (either increase of decrease) the SDM performance. It is hard to predict
which system parameters may be of interest for a researcher. So we decided in first turn to concentrate on
the parameters of the networking layers.

We selected the simulation approach to mimic network layers. This has an additional advantage that the
parameters of the simulated network layers can be changed easily. But which parameters should we be
able to manipulate? As a result of the analysis from the Section 4.2.2 we can conclude that decision
depends on theabstraction layerwhich will be used as an entry point to the simulation facility. For
example, if the entry point into the simulation is at the Link Layer, the parameters affecting performance are
bandwidth limitation (including frame serialization delay emerging from a limited bandwidth), propagation
delay (usually fixed), medium access delay (may very from frame to frame), frame loss (corruption loss)
according to [Herr 02]. [CaSa] mention also duplication of packets. In general, it is easier to control
the parameters at the lower network layers because less of them should be taken into account to achieve
realistic simulation (the same apply also to the emulation).

4.4. VISUALIZATION 51

Which workloadparameters should we able to control? In the Section 3.6 we have concluded with the set
of services and clients activities which is a workload for the service discovery protocols. Both services
and clients can bestartedor stopped, the client can additionally send thesearch requests, the service can
advertisethemselves. Which workload parameters should we be able to control? Again, the answer to the
question depends on the research goals. Here are the examples of them:

• the time between successive service starts (or client start, or time between successive discovery
requests etc.)

• location of the services/clients on the network

• number and sizes of the service discovery request parameters

• number and size of the service attributes (compare with the row ”service description” in the Table
3.5) - increased number of attributes may result in the increased load onto the SDM.

There is also third set of parameters which we may wish to control. This are the characteristics of the
service discovery middleware by itself. For example, the SLP can work either with DA (directory agent
which is responsible for lookup services) or without it. This may affect performance of the discovery
protocol significantly.

4.4 Visualization

It is not so simple to analyze the behavior of a complex system involved in large scale networks providing
only tables of summarize performance numbers or some plots. From the simulation packages considered
in the previous parts of the current chapter the NS2 and DIANEmu simulators provide the visualization
interfaces.

The motivation for the section is the following. First, there is explicit Requirement for a visualization
facility in the ESKEm (see Requirement B.4). Second, we will consider some visualization related ap-
proaches/frameworks here which do not relate to already mentioned network simulators mentioned earlier.
So we decided to consider in the current section also the approaches to the visualization which are parts of
the network simulators mentioned earlier in this chapter like visualization for the NS2.

Figure 4.13: Nam: Network Animator.

NS2/Nam Nam is a Tcl/TK based an-
imation tool for viewing network simu-
lation traces and real world packet trace
data [NS2Nam]. It supports topology
layout, packet level animation, and var-
ious data inspection tools. The first
step to usenam is to produce the trace
file. In the next step this file is used by
nam for visualization. It is not possible
to control simulation parameters with
nam. But it is possible to come back
in the animation, or control the anima-
tion speed. Only visualization of trans-
port and lower network layers specific
information is possible without extend-
ing nam.

52 CHAPTER 4. RELATED WORK

Figure 4.14: Visualization in DIANEmu. The arrow could mean
a ping message from one node to another.

DIANEmu As a NS2/Nam, the DI-
ANEmu propose the graph-based view
onto the simulation. The service or
clients are represented as nodes, the
graph is not connected in initial state.
The DIANEmu visualization interface
is tightly coupled with other modules
and components of the DIANEmu like
event scheduler. We assume that the
DIANEmu visualization of larger net-
works (for example, more than 20
nodes) will be rather complex to the user
.

Left side of the DIANEmu visualization
frame contains nodes. The nodes are not

connected as far as DIANEmu is intended for simulation of ad-hoc networks. The communication between
nodes is visualized as the arrow which disappear once showed. On the left side the list of scheduled events
is represented. The event is discarded from the list as soon as it is accomplished. It is possible to control
the simulation like to let the simulation progression step-by-step.

Figure 4.15: Visualization in JXTA peer-to-peer platform.

Visualization in JXTA We
decided to mention the JXTA
platform because of its visu-
alization features. The JXTA
is a platform which enable
development of peer-to-peer
(P2P) networks [JXTA b].
The P2P network should be
considered as The JXTA-
Monitor project goal was
to develop the monitoring
tool, ”that captures mes-
sages between JXTA Peers”
[JXTA d].

It is intuitive to visualize the
network as a graph, where the
graph nodes are the network
components and the edges
represent either connection or

communication between network components. Different metrics can than be associated with edges or
nodes.

Let us consider the visualization of the communication. The edge could be marked with a value which
should represent the number of bytes sent over the link. We could call such kind of visualization as the
”point-in-time visualization”. Thehistoryof the communication between nodes would be lost in this case.
The alternative approach to visualization would be the ”over-time visualization”. The JXTA visualization
tool on the Figure 4.15 can serve as one of the over-time visualization examples as we mean it. The user
can select a communication link between two peers in upper part of the GUI. The lower part of the GUI
visualizes the distribution of the sent bytes for the link over time.

4.5. SUMMARY 53

Figure 4.16: Prefuse: a user interface toolkit for
building highly interactive visualizations of struc-
tured and unstructured data, [Prefuse].

Visualization of graphs The simulator specific
visualization tools which we have found and con-
sidered did not match our criteria to the visualiza-
tion tool. The DIANEmu visualization seems to
be only good for small networks. Additionally, it
is strongly coupled with the rest of the DIANEmu
modules. The Requirement B.4b to the visualiza-
tion module is very likely to fail. The NS2Nam is
targeted to visualization of the processes at trans-
port and lower network layers.

This considerations motivated to develop own vi-
sualization module. We decided to based it on the
framework which enable visualization of graph-
like structures. After consideration of several
frameworks for this purpose we stopped on the
Prefuse[Prefuse]. The authors of the Prefuse define
it as ”a user interface toolkit for building highly in-
teractive visualizations of structured and unstructured data”. We were interested in the support of Prefuse
for visualization different kinds of networks. The nodes and edges of the visualized by the Prefuse graphs
can be either read from an XML file or be created dynamically. The Prefuse is built using Java2D graphics
library and claims to use architectural techniques for scalability. The user is also free to customize different
aspects of the Prefuse appearance or functionality.

4.5 Summary

In the previous chapter we suggested different modules that make up theESKEm framework. We identified
the networking, measurement, control and visualization modules. We made an overview of the work which
is related to one of the mentioned modules.

First, we considered different approaches to mimic a networking system and its characteristics. We con-
centrated on the emulation and simulation approaches as the most appropriate candidates to be used in the
ESKEm. As a result, we decided to build our framework over theJiST/SWANS network simulator. Our
decision is summarized in the Section 4.2.3.

Second, we introduced the concept ofmeasurement. We identified different categories of metrics which
are usually used during service discovery researches. These arespeed, reliability and power/resource
consumption. The metrics could also be grouped based on the criteria of beingindividualor groupmetric.

Third, we considered two sets of parameters which the researcher might wish to control when exploring a
service discovery protocol. These two sets of parameters influence the performance of the service discovery
middleware. We gave examples of the networking parameters which are expected to be interesting for the
researcher. We decided to provide the means to control for these parameters in theESKEm. Another set of
parameters are the workload parameters. For example, the location of the services on the network is one of
the workload parameters which the researcher may wish to control in order to explore its influence on the
service discovery performance.

Finally, we shortly considered several approaches to the visualization of the network simulation. The
visualization modules of DIANEmu and NS2Nam failed to meet our requirements. We therefore decided
to explore frameworks which would be suitable for visualization of network structures. We identified the
Prefuse as a promising tool and we will use it later in theESKEm. The Prefuse should be suitable for
visualization of large networked structures and has been characterized by authors as scalable.

We will use the experience from the previous chapter during the design of theESKEm in the next chapter.

Chapter 5

Design of theESKEm framework

We implemented theESKEm based on the design considerations from the previous chapter. In the current
chapter we are ready to consider the design of theESKEm framework in more detail. In fact, we have
already started with the design aspects of the framework in the previous chapters. The identification of
the most important modules for theESKEm was introduced in Chapter 3 as a result of analyzing different
service discovery protocols. It was continued in Chapter 4 where we identified the complete set of modules,
that are required to build up theESKEm (see Figure 4.1). Furthermore, we selected the frameworks which
could be reused in theESKEm.

But even if the realization of some modules can be supported by the reuse of the existing code, there are still
open question. Not all requirements are met by the identified frameworks. How can existing frameworks
be extended or modified to meet our requirements to theESKEm? What are the additional components,
which must be developed for theESKEm and how should they be designed? What are the interfaces
between different modules and how can the modules be integrated together in theESKEm? These are the
most important questions which we would like to consider in this chapter.

The chapter is structured that as follows. We start with an overview of theESKEm modules and com-
ponents in Section 5.1. This overview concentrates on the identification of questions which should be
addressed by the design. The questions will be addressed in the subsequent sections.

5.1 Design Overview

For the purpose of the current work we divide the design related questions into two groups. The first group
of questions deals with internal structure of the modules and their tasks. The second one addresses the
questions, which are related to the interfaces between different modules. We mapped these questions on
Figure 5.1, representing the overall design of theESKEm. The questions will be introduced and addressed
in the subsequent sections.

The components on Figure 5.1 are drawn either without or with the use of a specific filling pattern. The area
filled with a pattern reflects the fact that the component was modified. The components filled completely
with the pattern, like Measurement and Control, were designed and developed from scratch.

The motivation for the design as represented on Figure 5.1 was to great extent already given in Chapter
3 where different service discovery protocols were introduced. The service discovery protocol can be
considered as a component under study (CUS). It is referred to as the system under test (SUT).

There are different components which belong to the SUT. One of them is the Service Manager and/or
Service User components used to generate workload that forces the CUS to do some useful work, namely
service discovery. As a result, we are able to measure the performance of the CUS with the support of

54

5.2. WORKLOAD COMPONENTS 55

Figure 5.1: TheESKEm design and related questions (see the text for the explanation).

the appropriate Measurement infrastructure. Note, that both workload and measurement are applied at the
level of SUT. We introduce the Control module, which cares about the management of the emulated Service
Managers and Users. Closer discussion about this set of components of theESKEm and questionsQ1and
Q2 is given in Section 5.2.

The network system is another component of the SUT. The service discovery protocols1 are usually the ap-
plication layer protocol in terms of the OSI Reference Model. The network characteristics are an important
factor influencing the performance of the service discovery protocol. We decided to introduce it into the
ESKEm. We selected a network simulator used to mimic the network system. What should be modified
in the network simulator (questionQ4)? How do we communicate with real external clients or services
(questionQ5)? How can a real Service Discovery Middleware communicate over the simulated network
(questionQ3)? These are key problems considered in Section 5.3.

A discussion about the design of the Measurement and Visualization infrastructures is offered in Section
5.4 and 5.5 respectively.

5.2 Workload Components

The Service Manager and Service User are the components which generate the workload resulting in the
activity of the service discovery middleware. We also often refer to the Service Manager as to theservice

1The service discovery protocol (SDP) of the Bluetooth is not an application layer protocol.

56 CHAPTER 5. DESIGN OF THE ESKEM FRAMEWORK

or device. A device is often associated with several services. The Service User is referred to asclient.
There are several questions, associated with these components (questions Q2 on Figure 5.1). For reasons
of simplicity we will usually mean both services and clients2, when using either term: ”service” or ”client”.

Q2.1 How is it possible to emulate an (internal)ESKEm service in a way that it is discovered by an
external real client as if it were a real service?

As a result of considering different service discovery protocols in Chapter 3, the Generic Model of the
service discovery was derived. TheService Manager(SM) was identified as a component, which acts on
behalf of service. The same applies to theService User(SU). Some service discovery protocols require
only the existence of theSM for the service to be discoverable. This means that the service might not even
exist or might be down but still be discoverable by a potential client. The question which arises is how can
we make the client think that a service is there.

The information about services is delivered to the client in the form of messages. On the other hand,
the messages like search requests from the clients should be answered by the services or lookup tables
appropriately. We are therefore only expected to generate appropriate messages and answers to messages
from clients in order to mimic the existence of a service. It is important to note, that as a consequence of
theESKEm requirements we are only imitating the service in respect to theservice discoveryand not in
respect to theservice invocationor something else. The behavior of the system is undefined if an external
client decides to invoke some functionality of an emulated service.

As a consequence, we are not expected to provide any implementation of the service functionality. It may
significantly save the consumption of resources when emulating the service managers.

The next consequence is that we must implement the complete service discovery protocol in order to
emulate the services.

Q2.2 What kind of client/service behavior should be reproduced in order to generate a workload on the
service discovery middleware?

According to Chapter 3, there are different activities which relate to the process of the service discovery.
Services may send advertisements. Clients may send service discovery requests either to the lookup table
or to all devices available in the network. The type of messages sent is the service discovery protocol
dependant. The same applies to the number of the messages sent, the interval between messages etc.

Nevertheless, the behavior of both clients and services can be abstracted to thestartandstopof the devices,
on which the clients/services are located (see also Section 3.6). For example, the start of the device with
services is associated with the advertisement messages sent to the network.

As a result, we find it reasonable to associate the service discovery activities of both clients and services
with thestart andstopactivities of the device.

Q2.3 Should the Service Mangers/Users be developed from scratch? How would it be possible to inte-
grate the existing services into theESKEm for the purpose of services emulation?

In the worst case, we should implement the behavior of the Service Manager so that it appears to an external
client as if it were a real service. But as we saw in Chapter 3 (see UPnP specification and especially its
reference implementation), basic implementation of services is often available. For example, these are
abstract classes which can be extended with an additional functionality in order to develop customized
services. The abstract classes already know how to use the specific service discovery protocol.

We could reuse an existing service implementation. We believe that the resulting Service Manger and
Service User component can be created with less effort and with a higher accuracy of the emulation. We
adaptthe real services implementation.

2the same applies when referring to a user ashe(or him) - we actually mean ”he/she”(or ”his/her”).

5.2. WORKLOAD COMPONENTS 57

How could we reuse the existing services intoESKEm? There are two problems that we would like to
address in this context.

First, we possess the means for instantiation of services and for controlling its behavior. As a consequence
from Question 2.2,start andstopof the device are the most important aspects of the device’s life cycle,
which we would like to control. The technical side of the question will be covered in the next chapter.

Second, we wish to control the messages transfer between the adapted services. There are several reasons,
why this may be beneficial for us. For example, it would be possible to block the message from/to the
service to imitate. This would save the resources required for true stopping of the service. The messages
could also be analyzed for the purpose of the metrics measurement on their way to other devices.

How can we intercept the messages passed between different devices? A similar question was addressed
in Section 4.2.1, where we talked about NS2 emulation interface. Section 4.2.2, dedicated to the network
emulation approaches also discussed this question. We decided to intercept the messages related to the
service discovery protocol before they enter the transport layer, the 4th Layer. We return to the question of
message capturing in Section 5.3.

We assume, that the Service Manager or Service User should be responsible for the adaptation of services.
The classes are also calledadaptersof a service implementation.

Q1.1 How can the reproducibility of the emulation scenarios be achieved (see also Requirement B.3)?

The emulation scenario can be described and made persistent in the so calledemulation scenario scriptsor
simply emulation scripts. The approach is usually used in the simulators. For example, the scripts in the
NS2 network simulator guarantee reproducibility of the network simulations. The scripts are written in the
Tcl/Tk scripting language. The scripting language of the NS2 and most of the other network simulators
concentrates mainly on the first four network layers. The scripting language must be extended by additional
commands, if we want to describe the simulation at the level of the application layer. The selected network
simulatorJiST/SWANS does not have its own scripting language. As a consequence, any selected scripting
language would result in the overhead associated with the interpretation of the language. As a result, we
decided to describe the emulation scenarios as a list of commands with a set of associated parameters. Each
such command leads either to the start of the service/client, or to its stop. The commands have at least two
parameters. First is the ID of the emulation service or client, to which the command should be applied.
Second is the time of the command invocation relative to the beginning of the emulation. The emulation
script should be generic and independent of the service discovery protocols.

Additional files may be needed for the configuration and customization of the emulation scenarios. These
files should reflect the differences between different service discovery protocols. For example, the UPnP
Service Manager needs to know, where the service description file is located (see also Chapter 3). On
the other hand, the Service Manager of the SLP requires a list of attributes to describe (and eventually
advertise) the service.

To sum up, there are at least two types of script files required to describe a single emulation scenario:

general file defines commands and their parameters independent of the service discover technology. The
command name, the IP address of the service device are candidates for this file.

middleware specific file contains parameters for each service, which are service discovery middleware
specific.

The commands read from the emulation scripts are instantiated to theactions. Each action results in some
kind of a Service Manager or Service User activity. Theactionsare queued into the scheduler. The main
characteristic of this scheduler is that it is a real time scheduler. This means that the scheduled actions are
executed in the real time. Our scheduler runs during the duration of the emulation and is ready to react to
theactions, delivered to it over a network.

58 CHAPTER 5. DESIGN OF THE ESKEM FRAMEWORK

We decided to execute theactionsin concurrent threads. This results in faster processing of the queued in
the scheduler actions, because no time is ”wasted” by the scheduler’s thread for the complete execution of
the action. The second consequence is that it may result in the non-deterministic behavior of the emulation.
The order of the started services can be different for the same emulation script. Nevertheless, we decided
to parallelize the execution of the actions because the performance of the emulator is more important for
us than its determinisms.

5.3 Network Simulation Component

The selected in Chapter 4JiST/SWANS network simulator (see also Section 4.2.1) can not be taken ”as
it is” without any changes for the purposes of theESKEm. There are a number of fundamental questions
(see questions Q3, Q4 and Q5 on Figure 5.1), which must be addressed before building theESKEm over
the JiST/SWANS. The Q3 questions are related to the problem of the interfaces between a real service
discovery protocol implementation and a network simulator. The Q4 represents the questions which deal
with the modification of the network simulator and the reasons for the modification. The questions marked
as Q5 consider the problem of integrating theESKEm emulation environment into an environment with
real clients.

Q3.1 How can the messages be captured on their way from some arbitrary service A to the service B (see
Figure 5.1)?

This question provokes a critical reader to ask other questions. Why do we need the message capturing in
the case of theESKEm framework? The motivation for the message capturing is twofold.

First, it is motivated by the consideration, which is the result of the discussion question Q2.3. The service
discovery protocol operates at the level of the application layer in terms of both the OSI and TCP/IP
Reference Models. The messages from the service A are passed through the other network layers to it
counterpart on the side of the client B. The message capturing makes only sense in the case when we want
to have control over the communication between adapted services/clients. Otherwise, the Service Manager
or Service Client imitate the service discovery behavior as a result of our efforts and the message capturing
is not actually necessary as we already have full control over the Service Manager or Service Client.

Second, we consider themessage capturingas a way of providing the interface between a real service
discovery code and the ”faked” network transport layers, imitated by the network simulator. The problem is
not new and was mentioned in the papers, which try to integrate a network simulator in a real environment3,
or where network emulation use capturing to modify the traffic characteristics (see Section 5.3).

Section 4.2.2 introduces the terminology (see Figures 4.9 and 4.10) related to the emulation of the net-
work environments (the ”emulated network” on Figure 4.9). Despite our the decision to use a simulation
approach to reproduce a network, the terminology just referenced will be reused. Indeed, in the case of
the network simulators we have a ”simulated network” (compare with Figure 4.9), which has a ”simula-
tion interface” providing the ”simulation abstraction layers” with ”entry points” (compare also with Figure
4.10).

The approaches to the message capturing differ mainly in respect to the simulation abstraction layer, at
which the messages are captured. This difference influences the technical aspects of the message capturing
realization. We should also actually use different terminology, when speaking about capturing at different
simulation abstraction layers. So, themessagescapturing relates to the interception of messages at the level
of the transport (4th) layer. Thepacketsemphasize that the capturing is done at the network (3d) layer.

The examples of different approaches to the packets capturing were introduced in Chapter 4. Mentioned in
Section 4.2.1 NS2 emulation interface provides a collection of objects including so calledtap agentsand
network objectsfor transition of packets between the simulator and live network. Tap agents embed live

3see NS2 emulation interface as example, Section 4.2.1

5.3. NETWORK SIMULATION COMPONENT 59

network data into objects used for the packets representation in the simulation and vice-versa. Network
objects are installed in tap agents and provide an entry point at a particular protocol layer for the sending
and receipt of live data [NS2Emu]. The capturing is done with use of the LBNL packet capture library
(libpcap), so the packets are captured at the system level in the kernel mode of the Unix-based OS. There
are also other approaches (compare Dummynet tool [Rizz 97] and how IPTABLES module is used to
capture packets). An interesting approach, calledvirtual router method, is described in [Russ 00]. The
main idea is to enable communication between hosts A and B over the host E with installed emulator,
which captures the packets and modify appropriately before sending them further to B.

The observation of this and other examples has lead us to the several observations, which are useful in the
context of theESKEm design. With the word ”layer” we refer to the ”network layer”.

First (as was already discussed in Section 4.2.2), the simulation at the lower layers (with the real imple-
mentation taken for the upper layers) is usually associated with the higher accuracy of the simulation as far
as less factors should be taken into account during simulation.

Second, the simulation gives us more flexibility in reproducing different network protocols stacks for dif-
ferent devices. According to our design, no real implementation of the protocol is required at thesimulation
abstraction layerand lower levels. On the other hand, we assume that the real implementations are used
for the protocols at the layers above it (especially service discovery protocol by itself). As a conclusion,
theentry pointsat the lower layers results in less flexibility of the network simulation. This also results in
less flexibility to reproduce heterogeneous networks. So we conclude further, that providingentry points
at the lowersimulation abstraction layeris in contradiction with the Requirement B.5.

Third, a real protocol implementation use real resources like memory, CPU resources. It may also require
availability of the specific hardware resources. As the result, the costs for the emulation will grow sig-
nificantly with moderate increase in the size of the emulated network (see [ZhNi 03] for the performance
measurement of the EMPOWER emulation framework). The simulation is much more appropriate for
experimentation with large and complex networks. As a consequence we assume that providing theentry
pointsinto simulation facility at the higher layers (and simulating at as much networking layers as possible)
is more beneficial for us.

And forth, providing theentry pointsat the 3d (network) and lower layers are usually associated with the
modification of the system libraries (compare to Dummynet, NISTNet in Section). This is in contradiction
to the Requirement C.3.

As a result of this consideration we decided to intercept the messages related to the service discovery
protocol before they enter the transport layer (the 4th Layer). The technical realization of this design
choice belongs to the implementation. Nevertheless, we would like to consider some general suggestions
already in the design section. So the next question.

Q3.2 How can be the message capturing at the 4th Layer realized?

Two alternatives were considered to address the question. We assume, that these alternatives are indepen-
dent of the specific Transport (4th) Layer implementation. Nevertheless we will discuss the alternatives in
the context of Sun’s Java platform. It should simplify the explanation.

The bottom four layers can be seen as the transport service provider, whereas the upper layer(s) are the
transport service user(s). The transport services are provided in the form of function calls. For example,
the java.net package contains classes likeDatagramSocket , which can be used by the application
to send the messages over the network.

One approach would be to replace the calls to thejava.net classes with the calls to custom classes,
which take care of the captured messages. The result is that theService Discovery Middlewarecom-
ponent on Figure 5.1 must be modified in order to use custom functions calls. For example, the
calls to (DatagramSocket)dgmSocket.send(myMessage) would be changed to the calls like
NetAdapter.send(myMessage) .

60 CHAPTER 5. DESIGN OF THE ESKEM FRAMEWORK

Another approach would be to change the semantic of the transport layer functions. For implementation in
Java it would mean, that the semantic of appropriatejava.net classes should be changed. For example,
the changed classes may collaborate with appropriateService Managerclasses to decide, whether the
message should be sent further or blocked. As a consequence, the signature of the methods used by the
Service Discovery Middlewareis left intact. No modification of theService Discovery Middlewareis
required.

We chose the first approach, as thejava.net need not be modified. The modification of the original
java.net could have unexpected side effects. Further, we used the source code (Java language) of the
Service Discovery Middlewareas a reference implementation. The original calls to the transport layer are
replaced with the calls to the class(es), which we name theNetAdapter .

Figure 5.2: Real packets (here, Sun’s JavaDatagramPacket) are passed throughJiST/SWANS over
NetAdapter interface.

The captured service discovery messages of the adapted service are passed to the Service Manager. How
should we process the message further? The idea is to let the message flow from source A to destination
B over the simulated network. An example of the approach is given on Figure 5.2. The messages of
the adapter service (encapsulated into the Sun’s JavaDatagramPacket if sent over the connection-less
transport) are captured and passed to theService Manager. They are further passed to the entry point of
the network simulator (JiST/SWANS in our case). For everyDatagramPacket the SWANS Message
is created as its representative in the simulated network. The Figure 5.2 shows that theSWANS Message
knows itsDatagramPacket . TheSWANS Messageis received by the targetService Userafter the effect
of the network characteristics had been calculated for the message transfer. Theentry pointdetaches the
DatagramPacketand passes it further to theService User.

There are two modes in which theDatagramPacketis passed through the simulated network (compare the
modes used by the NS2 emulation interface, Section 4.2.1). In theopaquemode theDatagramPacketis

5.3. NETWORK SIMULATION COMPONENT 61

not modified and only its transfer characteristic (like, packet delay) are changed. In theprotocolmode the
packet may be modified. For example, the specific flags in the message header can be set or an error can
be intentionally introduced in the packet.

Curious readers may already asked how the calculations of theSWANS Messagedelay are applied to the
real packets. Usually, thecalculationof the delay is significantly less, than thedelay itself. Technical
details like this one will be covered in the context of the implementation (see Section 6).

Q4.1 The SWANS is a simulator for the ad hoc networks. How can we extend it so that LANs can be
simulated too? (see Section 2.2 for a motivation behind this question).

JiST is a general purpose simulation framework and SWANS was initially designed for the simulation of
the wireless mobile ad hoc networks. This results into the fact that the simulation of the LANs is missed in
the SWANS. Our need for the LAN simulation is a consequence of the office environment definition given
in Section 2.2.

The design of theSWANS implies, that new simulated network protocols can be added as a result of im-
plementing appropriate interfaces, provided by theSWANS (see also Section 4.2.1). Figure 5.3 represents
the network layers at which LAN specific protocols should be introduced. You may wish to compare it
with Figure 4.5 where original SWANS protocols stack is introduced.

Figure 5.3: The modification of the original protocols stack of the SWANS.

It is usually easier to simulate a network protocol than to implement it. But an accurate protocol simulation
is still not a trivial task (it is good analyzed in the [Bjoe 05]). The focus of the current work is not on the
simulation of the network protocols at the lower layers, we therefor decided to oversimplify the simulation
of protocols as shown on Figure 5.3. Only the most interesting aspects of the protocol functionality are
taken into account.

Which parameters of the LAN should the user be able to manipulate during the simulation? We approach
this question according to the steps defined in a generic model of thenetwork experimentdefined in the
[BiHe et al. 04] (see also Figure 5.4). We have already considered some phases of thenetwork experiment,
shown on Figure. We already discussed the question (for example, question Q1.1) of theApplication Level
Traffic Generation. TheTopology GenerationandNode & Link Propertiesare the characteristics of the
network, which should be addressed by the network simulator.

The Topology Generationassumes that a (physical) topology of the network, on which the Routing pro-
tocols will operate, should be specified, . Precisely speaking, we are interested in the topology of the
routers, to which other devices (with services and/or clients) are connected. The topology can be naturally
expressed as a graph. The wordgenerationimplies that such a graph can be generated by some external
tool. To make things easier, we do not consider different topology generation tools. Instead, we specify the

62 CHAPTER 5. DESIGN OF THE ESKEM FRAMEWORK

Figure 5.4: The steps of a generic network experiment, as found in [BiHe et al. 04]

topology of the routers in theflat file manually. It is important for us that the specific characteristics of the
router can be specified too. We are mainly interested whether the router is a multicasting router or not (see
Technical Background in Section 3.1). With the evolution of theESKEm it may be required to add new
router characteristics. The network topology is specified in a flat file together with its characteristics. This
topology is aninitial topologywhich may change over time. For example, the router may be turned off etc.
We account for the number of hops passed by the message on its way between devices A and B.

Further, we are interested in theLink Propertiesof a simulated network. We account for packet propagation
delay and packets loss on the link. The simulation of the characteristics like bandwidth limitation or
medium access delay (see Section 4.3.1) were not taken into account for the sake of simplicity.

As a consequence, the simulation of the network system is rather trivial in the case of theESKEm. Further
development of the emulation framework may require improvements of the LAN’s simulation. It may also
be interesting for the users of the framework to introduce the simulation of other protocol stacks. For
example, Bluetooth protocol stack is quite common in the modern environments.

Q4.2 How should the simulation kernel be modified in order to work with the emulation?

The question is actually of a generic nature and is not specific to theESKEm. For example, it was addressed
in the design of the NS2 emulation interface. It can be reformulated as following: ”How can the simulation
and emulation work together?” We explain the problem by using the example of theJiST/SWANS.

As already mentioned in Section 4.2.1, theJiST is a discrete event-based simulation framework. Events
are processed as soon as the effects of all prior events are evaluated. The simulation runs in a so called
simulative time. The emulation, on the other hand, runs in areal executive time(see Section 4.2.1). As a
result, we need to synchronize these times, if an emulation and simulation are to work together.

An example should help clarify this problem. The simulators can work with network models, and the sim-
ulation kernels can compute the effects which specified network properties have on the traffic, traversing
the model. Assume that such effect should be calculated for a message transferred from A to B. Let us
assume, that the message delay was calculated to be 900ms. Let’s further assume, that the calculation by
itself was accomplished in 300ms. How should the packet be ”delayed” before delivered to B? TheDum-
mynet solves the problem by introduction ofqueues, where the messages are delayed artificially. Thus B is
guaranteed to receive the packet with a 900ms delay. But theDummynet deals with a single link between
two nodes. In the case of theESKEm, the communication over multiple links is simulated concurrently.
Our solution is rather technical and it will be explained in Section dealing with implementation details.

Further, what if higher bandwidth were simulated? Indeed, if the simulation in previous example takes
300ms, but the calculated by the simulation delay is 100ms, it means, that the simulation ”took too much
time” and we are too late delivering the message to the destination. The approaches to this problem differ.
The NS2 emulation [NS2Emu] just inform the user about a failure to be in pace with real time. The user
is provided with statistical data so that the user can decide whether the simulation was really ”too much”

5.3. NETWORK SIMULATION COMPONENT 63

behind the real executive time. The other approaches aim explicitly at the low bandwidth links emulation
[DBCF 95]. But the parallelization of the discrete event simulator can be a solution to the problem to some
extent too [SiUn]. According to the performance measurement of theJiST/SWANS and its support to run
the simulation in the distributed mode (see Section 4.2.1) we believe that the framework can address the
mentioned problem well.

And now the last but not least we would like to mention the following problem here. There are two
schedulers in theESKEm. A real time scheduler was introduced when discussing Question Q1.1. It is
responsible for scheduling and execution of theemulation commandsfrom the emulation scenario script in
a real executive time. The timestamp of each command defines when it should be invoked relative to the
beginning of the emulation. Another scheduler belongs to the simulation kernel ofJiST and executes the
events in asimulative time. The problem is explained through an example. Let us assume that the last event
was executed at the simulative time equal to 10 second. What if a new service A is started by the real time
queue at the 20th second? The simulation of the message transfer should be started on the 20th second
of the simulative time, not on the 10th second. We approach the problem byadvancing the simulative
time from within the real time queue as soon as newaction is executed in the real executive time. Both
times should be synchronized. Additionally, we modify theJiST scheduler so that it can run as long as the
emulation runs and is ready to start the simulation of the packet transfer (or similar events) at any time.

Q5 How can the emulated services communicate with the real clients?

According to the Requirement B.6, the emulated services should be discoverable by the external clients,
without modifying the external clients’ implementation. As we already mentioned, the appropriate mes-
sages about availability of the emulated service must be deliverable to the external clients. On the other
hand, the external clients may require contacting (emulated) services. For example, the UPnP clients should
be able to contact the services to read their description (description.xml is disposed to the clients
with aweb server, available on the service’s device).

The address of theService Managerplays a crucial role in the service discovery. The communication over
the network is accomplished over NIC (network interface card). The number of NICs on a single host
is limited and in the case of theESKEm the number of the emulated devices will be significantly larger
than the number of NICs available on the host with theESKEm. A naive approach to the problem would
be to emulate multiple NICs on the host with a single NIC, so that each emulated device can bebound
to its own NIC. Indeed, the approach would work and theNISTNet could be used for the network cards
emulation. However, it would require additional effort for the configuration of the emulated network cards.
We also assume that the emulation of NICs would consume more system resources as the approach, which
we actually selected.

Our consideration was that the IP address of the device is important to distinguish services on the different
devices. Each device is assigned at least one IP address. In other words, each device must posses an
IP address. We found that it is much easier to define analias interfacewith assigned IP address. As a
consequence, the devices are bound to the alias IP address (see Figure 5.5), the packets from the device
are stamped with the correct source IP address and external clients can contact the emulated services by
sending messages to the alias IP address.

The IP aliasing is supported at least by Linux and Windows XP operational system. In Linux environment
an aliased IP addresses can be assigned to the network adapter withifconfig command likeifconfig
eth:3 192.168.153.21 up .

To summarize, the problem was to guarantee that each device has at least one IP address, which would dis-
tinguish it from another devices. We considered two alternatives and selected one of them which meets our
requirement and is easier to implement. More details involved into emulation of the services to the external
client in respect to service discovery are considered in the subsequent chapter dealing with implementation.

64 CHAPTER 5. DESIGN OF THE ESKEM FRAMEWORK

Figure 5.5: With aliases every emulated device (and as a consequence, service) has own IP address, which
can be used by external clients and services.

5.4 Measurement Component

The monitoring and measurement of emulation framework activity is accomplished with
Announcement s andGauges. The names for these components were motivated by the [DIANEmu 04].

The approach with gauges and announcements works as following.Gauge is a component, which can
listen for interesting events and processes them, also for metrics calculation. ”interesting events” are deliv-
ered to theGauge in form of theAnnouncement s. For example, theMessageSentAnnouncement
andMessageReceivedAnnouncement are announcements, which can be used to calculate the ratio
of successfully sent messages, average delay for the messages etc. The configuration file should be used to
register specific announcements to be listened by specific gauges. TheGauger is the component, which
dispatches announcements to the gauges interested in them.

Figure 5.6: The System Under Test (SUT) and The
Component Under Study (CUS) representation as de-
fined in [Jain 91].

We already introduced the concept of the SUT
(System Under Test) and CUS (Component Under
Study). In our case, the CUS is the service discov-
ery middleware (SDM), which is explored in an en-
vironment reproduced with theESKEm (see Fig-
ure 5.7). The measurement is accomplished at the
level of SUT [Jain 91]. The SDM is in the ”mid-
dle” between SU/SM and networking layers. Both
of them are considered as the layers, at which we
may wish to measure the metrics. It is up to the
user of theESKEm to decide about measured met-

rics and the level where it should be done. The introduced concept of gauges and announcements (GaA)
should be applicable to the measurements at both levels.

5.5. VISUALIZATION 65

Figure 5.7: Identifying the SUT and CUS is impor-
tant for the workload and metrics selection.

The concept of GaA can be extended even further.
One of the directions for the extension is to enable
gauges to run on the workstation, which is differ-
ent from the workstation where the main emulation
takes place. This extension would be especially
reasonable to meet Requirement B.8, if we decide
to calculate metrics in real-time.

The concept of GaA is very flexible. We provide
a simple example. Assume the gauge G1 is inter-
ested in announcements of types A1 and B1. These
are used to calculate some metric M1. Then as-
sume, that there is the gauge G2, which would be
interested in using the metric M1 to calculate some
additional metric M2. Instead of registering the
gauge G2 for the announcements of A1 and B1,
we can create a new announcement of type AM1,
on which the G2 could be registered. G1 is then
the component, which is suggested to generate the announcements of type AM1.

The described infrastructure of GaA plays actually the role of a monitor. According to [Jain 91], the
monitors are used to observe system performance, collect performance statistics, analyze the data, and
display results. Precisely speaking, the role of the monitor is played by theGaugecomponent. It can be
classified as a software monitor by the level of its implementation. A hardware and hybrid monitors are the
other variants. By a triggering mechanism our software monitor can be classified as an event-driven, where
the Announcement s are representing the events. A sampling monitors is another variant. According
to the ability to display results the Gauge is rather like a batch monitor, which collects data that can be
analyzed later using a separate analysis program. Our Gauges are usually expected to pre-calculate some
metrics, which can be used by the researcher as soon as the emulation is finished. Another type of monitor
is the on-line monitor, which displays the system state continuously or at frequent intervals.

5.5 Visualization

According to our decision in Section 4.4, thePrefuse is taken as a basis for our visualization efforts. How
should we extendPrefuse to meet our requirements?

As already said, we have the following requirements to the visualization. The services and clients and their
connectivity should be visualized. We wanted to deploy the visualization module on the workstation, which
is different from the workstation with the rest of theESKEm (”other-host” requirement). Our visualization
should be done in real time and should provide meaningful visualization keys.

First, we would like to consider, what we are going to visualize. The network can be intuitively represented
as a graph. This was the reason why we searched for something likePrefuse. There are at least three types
of vertices which should be available in our graph: clients, services and routers. The connectivity in wired
networks seems to be better visualized as a link between vertices. In a wireless environment it could be
either a circle or a link. The communication over the link could be visualized as a value assigned to the
link. Besides the link value we decided to visualize the traffic flow over the link by its thickness. As far as
a number of messages processed by the vertex on the graph matters, we visualized them as the size of the
vertex. Sending the messages over the link results in its increased size.

We identified two types of visualization in Section 4.4. The current version ofESKEm supports only the
”point-in-time” visualization. As a consequence, the thickness of the link between two vertices shows only
an accumulated number of sent message. The information about distribution of messages transferred is
lost. The same applies to other aspects of visualization.

66 CHAPTER 5. DESIGN OF THE ESKEM FRAMEWORK

The visualization of the aspects above is achieved by the set of the commands, which are sent to the visu-
alization module. The commands have usually the set of parameters. At least the following visualization
commands should be supported:

• the command which creates/deletes a vertex. The vertex type - namely client, service, and router -
and associated IP address used as ID in the visualization module should be passed as the parameters.

• the command which creates/deletes the link between two vertices to visualize the connectivity be-
tween them. The IP address of the two vertices is passed as the parameter.

• the command which visualizes the transfer of the message over the specific path. The pairs of IP
addresses are passed as a parameter. Each pair is responsible for a single link.

As far as we should be able to deploy the visualization module on another workstation, we need
some means to communicate our commands to it. Among different alternatives (i.e. RMI, SOAP
etc.) we selected the simplest approach - we use UDP-based messages. The visualization commands
are generated either in the application-level code (like in SU/SM, Figure 5.1) on in the network lay-
ers (Network Module on Figure 5.1). The commands and its parameters are than sent and inter-
preted on the other side in visualization module. They are passed as an usual text with separators, i.e.
’’command=create;type=client;ip=10.150.61.33’’ .

Chapter 6

Implementation

We implemented theESKEm emulation framework according to the design ideas elaborated in the previous
chapter. TheUPnP Cybergarage was used to validate our approach (Requirement B.7 and B.7). The
framework is implemented in Sun’s Java programming language (Requirement C.3).

In this chapter we consider different implementation details of theESKEm framework. We start with the
description of the framework’sinstallationdetails such as required libraries and their versions. Further, we
analyze different components of theESKEm starting from itsmainclass. The overview of the complete
framework’s implementation is given first. Specific technical details will be provided in the consecutive
paragraphs.

We generate several emulation scenario scripts and use them for the emulation in theESKEm. The results
are used for the validation of the framework.

6.1 Installation and Execution

Figure 6.1: TheESKEmwas developed under a Linux operational system
with the Sun’s JDK 5.0 (Java Development Kit).

In this section we introduce
an environment used for the
development and test of the
ESKEm. We present fur-
ther the instructions explain-
ing how framework should be
started. TheEclipe 3.1 plat-
form was used for the IDE (integrated development environment) for development of theESKEm. The
JDK5.0 (see Figure 6.1) or later should be installed in order to compile and run the framework.

Directory structure The workspace of theESKEm consists of several subprojects:

./Em theESKEm subproject

./jist-swans-1.0.6 the modified version of theJiST/SWANS framework.

./upnpDirJist the modifiedUPnP Cybergarage framework.

./upnpDirOriginal the original version of theUPnP Cybergarage framework, which should be used to
run on the external devices. The framework was slightly modified. An explanation for this
is given later in the chapter.

./EmulGUI the visualization module of theESKEm

67

68 CHAPTER 6. IMPLEMENTATION

The user of the framework will mainly work with the./Em directory, where the emulation scenario scripts
and relevant configuration files are placed.

Run The shell scripts mentioned here are assumed to be located under./Em directory, if nothing else is
specified. The explanation and screenshot are related to the Linux operational system.

Before the emulation framework is started with the./run.sh script, several configuration steps need to
be accomplished.

First, the emulation scenario should be defined in a file like./etc/script <number >.em . The num-
ber of the script is used to differentiate between different emulation scripts. Additionally, the topology of
the simulated network should be specified in the appropriate./etc/rnet <number >.xml file.

Figure 6.2: The figure above shows the results from executing the shell script./etc/config4.sh .

Second, the IP aliases should be configured with the call to the appropriate
./etc/config <number >.sh shell script. The script uses the calls for theifconfig and
route commands, which require the privileges of the superuser. Under Linux this would be theroot
account.

6.2. IMPLEMENTATION OVERVIEW 69

Figure 6.3: The routing table after invocation of the
./etc/config4.sh shell script.

The routing table is changed
too. The example of the rout-
ing table is shown on Figure
6.3. The important routes are
shown in bold.

Now the ./run.sh shell
script is ready to be run. The
java call is the most impor-
tant part of the script:

java -Demulguiserver=10.150.61.35 -Dmode=emu -Dduration=30 -classpath$CLASS-
PATH jist.runtime.Main org.esk.Main –test 4

The org.esk.Main main
class of theESKEm is exe-
cuted from within theJiST ’s
main classjist.runtime.Main . The parameters of theESKEm are passed either as the java
system property parameters (i.e., as a ”-D<name>=<value>” pairs) or as command line parameter
like --test 4 here. The system property value is accessed in the Java with the invocation of the
System.getProperty(<name>) method. The following parameters can be passed to theESKEm:

-Dmode the emuandsimuare possible values. They specify the mode of operation for the
JiST simulation kernel.

-Demulguiserver the IP address of the host, on which theEmulGUI is started.

-Dduration specifies duration of the emulation in seconds. The emulation is finished after the
specified time and the measured statistics are printed.

–test the number of the emulation script, which is to be executed. For example, the ”4”
means, that the routers’ topology from the./etc/rnet4.xml will be read and the
emulation scenario from the./etc/script4.em will be executed,

–platform Only upnpvalue is currently supported; the value specifies the service discovery pro-
tocol implementation, which should be used during emulation. Theupnphere as-
sumes a specific reference implementation of the UPnP specification like theUPnP
Cybergarage in our case. Another version of the UPnP could be specified with a value
like upnpA.

The visualization frameworkEmulGUI can be started either on the same or on the separate host with a call
like:

java -classpath$CLASSPATH esk.ubicom.emulator.visualization.VisualizationFrame

6.2 Implementation Overview

Before covering the implementation in details, we provide a short overview of the main logic of theESKEm
execution. Instead of phrase”the subclasses implementing the interfaceInterface call ...” we just say
”the Interface calls ...” as it is easier to read. Further, calls like(QueueE)q.start() should be
read as”the instanceq of typeQueueE” . On the other hand, calls likeRoutersNet.getInstance()
are calls to the static methods.

The execution of theESKEm is started in theorg.esk.Main main class. The framework is configured
before the emulation starts:

• the initial routers’ topology is configured with a call to theRoutersNet class.

70 CHAPTER 6. IMPLEMENTATION

• theScriptReader reads theemulation commandsfrom the script file, instantiates theIAction s
from commands and schedules them in theQueueE real time scheduler.

TheWaiter is executed in a separate thread. It has the task to finish the emulation as soon as the time for
it elapses. This is the time specified by the ”-Dduratino” parameter. TheWaiter also initiates the output
of the calculation for the emulation scenario statistics.

The emulation is started with a call to the(QueueE)q.start() . TheQueueE is a real time scheduler
of the ESKEm. The scheduler can execute theIAction classes, which are specified as the command
in the emulation script. EachIAction class is associated with theEskUnit class, which is either the
Service Manager or Service User . TheIAction is executed on the associatedEskUnit .

TheEskUnit can send the messages over the simulated network with theSimAdaptee instance. The
SimAdaptee is theentry point into the network simulation facility. It can also receive the messages
from the simulated network.

The implementation is covered in more detail in the next few paragraphs.

6.3 Emulation Scenario

Here we introduce the emulation scenario script format and related Java classes.

6.3.1 Emulation Scenario Scripts

The emulation scenario script(or simply emulation script) contains different commands influencing the
life cycle of the services and clients. This results in a service discovery related activity. For example, the
start of a device may lead to the fact that its services are registered at a lookup table. Here is an example of
how a simple emulation script looks like:

start dev2 device 192.168.151.21 1000
start clnt1 client 192.168.153.23 5000
stop clnt1 9000
start dev3 device 192.168.152.22 12000
stop dev2

The syntax is rather simple. Nonetheless, it meets our current requirements. Every line of the script file
consists of the script command and the command’s arguments (or parameters). Thestart andstopare two
types of commands which we currently support. All consecutive positions are arguments to the command.

Let us consider the first line from the example above. The first argument to thestart command is the
symbolic name of the device to start (here,dev2). The second argument says whether the device contains
services or clients. The argumentdevicehere means that we start a device with services (or Service Man-
ager, according to the terminology from Section 3). The argumentclient means, that we start a device with
a client on it (or simply Client). The third argument to thestart command is the IP address of the started
node. The last argument is the timestamp for the command invocation relative to the beginning of the
emulation. Thestopcommand only takes a symbolic name of the node and the timestamp of the invocation
as the arguments.

Each command of that kind results in the instantiation of appropriate subclass of the typeIAction , which
is scheduled to theQueueE. TheIAction is executed in the real time.

Further we introduce the classes responsible for the interpretation of the emulation scrips.

6.3. EMULATION SCENARIO 71

6.3.2 Classes

The emulation scripts are read by theScriptReader in theMain class (see Figure 6.4). TheIAction
is created by the call to theActionFactory , which is passed to the emulation command and its pa-
rameters. The command name is used by the factory to decide, whichIAction subclass should be
instantiated. For example, thestart command causes theActionFactory to instantiate the object of the
type StartUnitAtion . The IAction object is instantiated by passing the emulation command and
its arguments to the class’s constructor. It is up to theIAction subclass, how the command’s parameters
should be interpreted.

Figure 6.4: TheESKEm architecture: the classes participating in the execution of the emulation script
scenarios and their most important methods.

There are twoIAction classes supported by theESKEm now: the StartUnitAction and
StoptUnitAction . The StartUnitAction is the class where theEskUnit is instantiated and
parameterized. We will come back to theEskUnit later. TheStartUnitAction makes a call to
the register(adapter,thread,ip,name) method at the end of its initialization. The call is im-
portant and creates the mappings between passed parameters. For example, the mapping betweenthread
and theIP address facilitates the finding of the device’s thread by its IP address. We use the ”mapping”
technique rather often.

Listing 6.1: There are several loops in theQueueE. Loop [2] waits until the actions queue is non-empty.
The next loop [3] waits until the first action on the stack is executed. The outer loop [1] is executed until
the queue thread is not stopped for some reason.

1 / / i r r e l e v a n t p i e c e s o f t h e code were l e f t ou t
2

3 pub l i c c l a s s QueueE{
4

5 pub l i c i n t s t a r t E v e n t s (){
6

7 / / 1 . loop u n t i l t h e e m u l a t i o n shou ld s t o p
8 do {
9 / / 2 . wa i t here u n t i l t h e a c t i o n s s t a c k i s no t empty

10 whi le (isEmpty ()) {

72 CHAPTER 6. IMPLEMENTATION

11 / / 2 . 1 . e x i t c u r r e n t loop because o f t h e s t o p
12 i f (s t o p) break ;
13 Thread . s l e e p (SLEEP) ;
14

15 i f (System . c u r r e n t T i m e M i l l i s ()− s ta r t edS imAt>d u r a t i o n){
16 s t o p =t rue ;
17 }
18

19 }
20

21 / / 3 . e x i t c u r r e n t loop because o f t h e s t o p
22 i f (s t o p) break ;
23

24 / / 3 . 1 t h e a c t i o n s s t a c k i s no t empty .
25 / / But wa i t i n t h e loop u n t i l t h e a c t i o n shou ld be e x e c u t e d .
26 do {
27 / / 3 . 1 . g e t n e x t a c t i o n
28 e v e n t = (I A c t i o n) t h i s . g e t (0) ;
29

30 / / 3 . 2 wai t , i f t h e a c t i o n shou ld no t be e x e c u t e now
31 i f (! bS imu la te){
32 Thread . s l e e p (SLEEP) ;
33 } e l s e {
34 / / 3 . 3 . p r o g r e s s s i m u l a t i o n t ime b e f o r e e x e c u t i n g t h e a c t i o n
35 J i s t A P I . s l e e p (exeTime−J i s t A P I . getTime ()) ;
36 }
37 } whi le (! bS imu la te) ;
38

39 / / 4 . e x e c u t e a c t i o n i n a s e p a r a t e t h r e a d
40 Thread t = new Thread ((Runnable) event , e v e n t . g e t C l a s s () . t o S t r i n g ()) ;
41 t . s t a r t () ;
42

43 / / 5 . remove a c t i o n from t h e s t a c k
44 removeEvent (e v e n t) ;
45

46

47 } whi le (! s t o p) ;
48

49 }
50 }

The IAction is executed by calling itsperform() method. TheIAction instances are executed
in the QueueE. The QueueE is a real time scheduler. The essential parts of the scheduler’s loop are
represented on the Listing 6.1. To sum up, the scheduler works as following. If the events are on the stack,
they are executed provided it is time for the action to be executed. If either the actions’ stack is empty or
it is too early to execute a current event, the scheduler sleeps for a specified number of a millisecond (e.g.,
20 millisecond) and tries either to execute the action again or check the stack for new events.

TheQueueE also synchronizes the simulative and real executive times. When the action is executed, the
QueueE compare the real executive time and the simulative time. The real executive time in this case is
the time elapsed from the beginning of the emulation. The simulative time is advanced if it is behind the
real executive time (see also Sections 4.2.1 and 5.3).

6.4. ESKUNIT 73

6.4 EskUnit

The EskUnit is an abstract class, which should be extended by the specific to the service discovery
protocolService ManagersandService Users. As already mentioned in the previous chapters, theService
Managershould behave ”as if the service were there” in respect to the service discovery protocol. For
example, ourService Manageris not supposed to react in any way when a client tries to invoke it. On the
other hand, theService Managersshould reply to the service discovery messages from the client according
to the protocol. The same applies to the emulatedService Users. Each additional service discovery protocol
which is to be explored in theESKEm is expected to implement its own subclasses of theEskUnit .

The methods call of theEskUnit class are designed according to theTemplatePattern [GoF 95]. The
class should be extended by the implementation of its SPI (service provider interface) methods like
receiveSpi() .

The service discovery related behavior of theService Managercan be either implemented from scratch or
adaptedfrom existing services. In the case of theUPnP Cybergarage, the templates of the services are
already available. They already ”speaks” the UPnP’s SSDP (Simple Service Discovery Protocol). Our
approach is explained on the example of theEskUpnpDevice . TheEskUpnpDevice (see Figure 6.4)
adaptsthe org.cybergarage.upnp.Device , which is specific to theUPnP Cybergarage and is a
superclass of devices with services likeLightDevice (compare to theAdapterPattern from [GoF 95]).
The EskUpnpDevice can instantiate, start and stop the adaptedDevice . The start (or stop) of the
Device results in the service discover related messages. The messages flow over theEskUpnpDevice
and can be either passed further to the network or blocked. The blocking of the messages can be used to
imitate the stop of the adapter device instead of actually stopping the device. The stop and start ofDevice
is resource consuming and the just mentioned imitation is intended to save resources. The technical details
are explained in the next section.

On the other hand, theEskUnit adapts also the classes, which provide theentry pointsinto the simulated
by theJiST/SWANS network. Precisely speaking, this is theSimAdaptee class, which can be used both
to send and receive message to/from the simulated network.

The EskUnit runs in a separate thread concurrent to the otherEskUnit s and in particular to theJist-
Controller thread responsible for the network simulation. TheEskUnit ’s thread sleeps most of the time
to save system resources. The events can be passed to theEskUnit by calling an appropriate method with
parameters (likereceive(...) (see Listing 6.2). The call occurs out of the threadT, which is different
from theEskUnit ’s thread. The event and its parameters are encapsulated into the private help class and
put onto theEskUnit stack. Finally, theinterrupt() on the unit is thread is called. This results in
the interruption of the unit’s sleep. The unit takes the event(s) from the stack and processes it/them in its
own thread and not in the threadT.

Listing 6.2: TheEskUnit sleeps [2] until an interesting event arrives. The call to thereceive(...)
in [5] results in the thread interruption. The code then continues in [3.1] by processing the passed events
[3.2].

1 / / see EskUn i t . j ava f o r comp le te code
2

3 pub l i c vo id run () {
4 / / 1 . e x e c u t e s u b c l a s s−s p e c i f i c code
5 s t a r t S p i () ;
6

7 whi le (s t a r t e d) {
8 / / 2 . wa i t as much as p o s s i b l e u n t i l i n t e r r u p t e d
9 Thread . s l e e p (1000000000) ;

10

11 / / 3 . 1 . i t e r a t e over e v e n t s passed when s l e e p i n g and . . .
12 i n t i =0 ;
13 f o r (; i < e v e n t s . s i z e () ; i ++){

74 CHAPTER 6. IMPLEMENTATION

14 a c t i o n = (S t r i n g) e v e n t s . g e t (i) ;
15 i f (a c t i o n . e q u a l s (” r e c e i v e ”) && s t a r t e d && d a t a !=n u l l){
16 / / 3 . 2 e x e c u t e them , i n t h i s case i n SPI
17 r e c e i v e S p i (d a t a) ;
18 }
19 }
20

21 / / 4 . d e l e t e p r o c e s s e d e v e n t s
22 synchron ized(e v e n t s){
23 whi le (i >0){
24 e v e n t s . remove (0) ;
25 i −−;
26 }
27 }
28 }
29 }
30

31 / / 5 . t h e code i n o t h e r t h r e a d i n v o k e s t h e methods l i k e t h i s one
32 pub l i c vo id r e c e i v e (. . .){
33 . . .
34

35 t h r e a d . i n t e r r u p t () ;
36 }

Each instance of theEskUnit represents either an internal or external service. For example, if an emulated
service A responses to the external client B, the messages from A are sent over the simulated network to the
proxyof the client B on the host withESKEm first. The role of aproxy is accomplished by theEskUnit .
For example, it is the instance of theEskUpnpClient for the external clients. TheEskUnit unit for an
external client is created as soon as appropriate new information about an external environment arrives in
theESKEm. In our case, theEskUpnpClient proxy for the external real client is created as soon as the
search requestmessage arrives in theESKEm. The communication with external clients over their proxies
will be covered in more detail in the next subsection.

6.5 Communication over the Simulated Network

Here we explain, how the messages are passed between differentEskUnit s over the simulated network.
In the next section we describe the classes which participate in the network simulation.

Figure 6.5: The classes related to the network simulation in theESKEm.

The message flows between two emulatedEskUnit s as shown on Figure 6.6. According to our in-
spection of theUPnP Cybergarage source code, theHTTPMUSocket andHTTPUSocket are the
classes, used byDevice s for the service discovery related communication. Further, these classes use
the java.net.MulticastSocket and java.net.DatagramSocket Java classes respectively

6.5. COMMUNICATION OVER THE SIMULATED NETWORK 75

in order to communicate with their counterpats over the real network. We replaced calls to this classes
like (DatagramSocket)socket.send(DatagramPacket dgmPacket) with the calls to the
NetAdapter.send(DatagramPacket dgmPacket) . The calls receiving the messages from the
real network are left without changes. TheDatagramPacket passed as parameter is forwarded to the
appropriateEskUnit instance (step [1] in Figure 6.6).

Figure 6.6: An example for communication between anemulatedservice and a client over a simulated
network.

As already mentioned, each instance of theEskUnit owns theSimAdaptee instance (see Figure 6.5).
It is used by theEskUnit to pass message to and receive them from the simulated network (see step
[2] on Figure 6.6). TheSimAdaptee knows how to attach thejava.net.DatagramPacket to the
EskIp , which is the object representing the packet in theJiST/SWANS network simulator. The simulation
is applied to theEskIp messages. The instance contains the values calculated by the simulation. An
example is a delay of a message.

TheEskIp packet is received by theSimAdaptee related to the (emulated) client (see step [3] on Figure
6.6). TheSimAdaptee detaches theDatagramPacket from the EskIp and pass it further to the
EskUnit . It was already described in the previous section how the events and their parameters are passed
to theEskUnit . TheEskUnit may also wish to pass the message further to the adapter service or client.

Figure 6.7: TheESKEm sequence: Sending Messages

76 CHAPTER 6. IMPLEMENTATION

This is the complete path traversed by the message from the sender to the receiver. There are a couple of
technical notes left to be made for a complete understanding of the just described process.

Simulated network protocols stack TheJiST/SWANS defines the set of interfaces which can be imple-
mented by the developer in order to introduce new network protocols into the simulator. For example, the
NetIp implements theNetInterface (both are delivered with theJiST/SWANS) and thus is respon-
sible for the simulation of the network characteristics at the 3d (Network) layer. The simulated protocols
stack for theEskUnit is constructed in theUnitFactory class and is bound to theSimAdaptee (see
Listing 6.3). Indeed, this is theSimAdaptee which finally make calls to the simulated protocol on the
top of the stack. As a result, theNetIp is the first network layer which receives the messages from the
SimAdaptee .

Listing 6.3: An example of the initialization of the simulated network protocols stack (UnitFactory).
The developer may wish to extend the class and to provide a different network protocols stack for different
EskUnit s.

1 / / see Un i tFac to r y . j ava f o r comp le te code
2

3 p r i v a t e s t a t i c EskUni t i n i t P r o t o c o l S t a c k (EskUni t u n i t){
4

5 . . .
6

7 MacEthernet mac =new MacEthernet (new MacAddress (nodeNum)) ;
8 NetAddress i p =new NetAddress (I n e t A d d r e s s . getByName (u n i t . i p)) ;
9 Net Ip n e t = new Net Ip (ip , NetAdapter . protMap , NetAdapter . p l , NetAdapter . p l) ;

10 SimAdaptee app =new SimAdaptee (nodeNum , u n i t) ;
11

12 . . .
13

14 u n i t . setApp (app) ;
15 app . s e t N e t E n t i t y (n e t . ge tP roxy ()) ;
16 n e t . s e t P r o t o c o l H a n d l e r (C o n s t a n t s . NETPROTOCOLHEARTBEAT , app . ge tNe tProxy ()) ;
17 n e t . s e t R o u t i n g ((new RouteRIP (n e t)) . ge tP roxy ()) ;
18 mac . s e t N e t E n t i t y (n e t . ge tP roxy () , i n t I d) ;
19

20 . . .
21

22 re turn u n i t ;
23 }

JistController and EskUnit threads The network simulation of theJiST/SWANS is accomplished in a
separateJistControllerthread. The attached to theEskIp DatagramPacket is passed to theEskUnit
after the effect of the network characteristics are calculated for theEskIp . TheDatagramPaket should
be processed further either in theEskUnit or adapted classes. And theJistControlleris not a right place
for this processing. So we decided to pass messages from the simulated network to theEskUnit ’s thread
as describe in the previous section (see also Listing 6.2). As a consequence, theSimAdaptee runs in the
JisController thread and calls thereceive(DatagramPacket dgm) method on theEskUnit . In
the next step, thedgmmessage is processed in theEskUnit in a concurrent to theJisControllerthread.

The EskUnit is actually a good place for the application of effects. These effects were calculated by
the simulation kernel for the transfer of theEskIp . Indeed, if the simulation took 300ms to calculate
that the message should be delayed for 900ms, how should the effect of the simulation be applied? The
JistController thread is a wrong place for waiting 600ms before transfering the packet to theEskUnit .
The delay can be applied in theEskUnit itself without any sideeffects.

6.5. COMMUNICATION OVER THE SIMULATED NETWORK 77

Communication with real (external) clients According to Requirement B.6, the emulated services
should be discoverable by the real clients. Up until now we have only considered only the communication
over the simulated network. A question which remains unanswered is how the discovery of an emulated
service is accomplished by a real client. The idea is also represented on Figure 6.8.

Figure 6.8: An example for the commnication betweenemulatedservice andreal external client.

Each emulatedDevice connects with the Java’sDatagramSocket to one of thealias interfaceof the
host (eachalias interfacehas analias IP address), where theESKEm runs (see Figure 6.8). The message
from an external client arrives at one of the alias interfaces and at the end in theEskUnit (step [1] on
Figure 6.8). If the IP address of the message is not associated with any (responsible for an external client)
EskUnit , a newEskUnit is created, and is marked as being responsible for an external real client
(step [2] on Figure 6.8). This means that the communication between an external client and an emulated
(internal) device is accomplished through this newly createdEskUnit . This was actually the reason why
we earlier referred to this instance of theEskUnit as aproxy.

The messages from the external client is passed to the just created (or picked from the hash table) instance
of theEskUnit by the call of asend(DatagramPacket dgmPkt) method (step [3] on Figure 6.8).
Further, the message is passed through the simulated network as described earlier.

The messages from an emulated service are passed to theEskUnit of the external client in a uniform
way. TheEskUnit then decides whether the message received through the simulated network should be
passed further to the real client through the real network. The proxy sends the messages to the real client
over the Java’sDatagramSocket . It is bound to the IP interface of the service which originally send the
message (step [4] on Figure 6.8). In this way the real client receives the message as if it were send from
the IP address of the original emulated service.

Finally, we would like to stress the fact that the topology of the simulated network is taken into account
during transfer of the message from the real client to the emulated service. Further, the routing tables of
the real client should be configured appropriately so that the client messages appear on theESKEm alias
interfaces.

The scheme for the communication between emulated and real service or clients works well for our pur-
poses. But there is a problem with the proposed approach which is explain here. The multicasting packets
from the emulated services are not influenced by the topology defined for the network simulation as soon
as the packet is sent over the alias interface. For example, deviceA sends the multicasting packet. Assume,
that there are two real clientsB andC on the local subnet. The clientC receives the multicasting packet

78 CHAPTER 6. IMPLEMENTATION

even if it is not reachable fromA according to the topology of the routers. This problem will not occur
in the case of a unicast message as far as the simulation can decide whether the unicast message can be
sent exactly toC or not. The workaround for the problem is possible. For example, when the real routers
betweenA andC are configured in the appropriate way.

6.6 Simulated Network andJiST/SWANS

The previous section explained how the simulated network is used in theESKEm. The internal mechanisms
of the network simulator were only partially covered. This section intends to consider the parts of the
network simulator which we extended.

The NetIp is the SWANS’s implementations of the OSI Network Layer according to the [RFC 791].
The routing protocol should be bound to it in order to account for its effect during the sending of packets
over the simulated network. We name the class responsible for the routing asRouteRIP . This isnot the
simulation of theRIP protocol according to the [RFC 1058]. Our approach was rather straightforward as
far as the exact simulation of the network layers responsible for the transport service was not the focus of
the current work. We describe below how the routing is taken into account in theESKEm (refer to Figure
6.5).

Routers’ topology The information about the routers’ topology is made persistent in the
rnet <number >.xml , where thenumberis the number of the emulation scenario. Here is an exam-
ple of the file:

<graph directed=”0” graphic=”1” >
<node id=”1” label=”10.150.61.254”></node>
<node id=”2” label=”10.150.62.254”></node>
<edge id=”1 2” label=”1” source=”1” target=”2” ></edge>
</graph>

In the example above two routers are defined with the IP addresses10.150.61.254and 10.150.62.254
respectively. The link between the routers defined with theedgeXML tag. TheRoutersNet class reads
the initial topology of the network from a file like above. In the current implementation of theESKEm
we assume that all routers are multicasting. During the initialization phase theRouter help classes in the
RoutersNet are used to hold information about routers. It is among other thing the list of the devices
which are connected to the router. We assume thenetmaskof 255.255.255.0 and as a result the device
with the IP10.150.61.x will be connected to the first router etc.

TheRouteRIP uses theRoutersNet to calculate the route between sender and receiver of the packet.
TheRouteRIP is also used to calculate all reachable through the multicasting receivers packets. The class
also accounts for the packets transfer characteristics such as the number of passed hops and associated
delay. TheRouteRIP makes calls to theGauger.announce(...) for the purpose of the metrics
measurements. It also makes calls to theVisualizer.visualize(...) to visualize the packets
transfer over the network. The details of the measurement and visualization modules are explained in the
consecutive sections.

The routing between sender and receiver is calculated in advance as follows. Assume that the node A that
is a device with a service sends the message to the node B which represents a device with a client located
on it. The devices are connected to the different routers like the A-Router and the B-Router. The shortest
path between the A-Router and the B-Router is taken from the matrix produced by the Floyd-Warshall
algorithm [Floyd-Warshall] (use the reference to find pseudo-algorithm):

6.6. SIMULATED NETWORK AND JIST/SWANS 79

TheFloyd-Warshall algorithmis an algorithm used to solve the problem of finding all pairs
of shortest paths in a weighted, directed graph. The edges may have negative weights, but no
negative weight cycles. The pseudo-algorithm of the Floyd-Warshall algorithm can be found
under [Floyd-Warshall] (see also D for the pseudo-algorithm of the Floyd-Warshall algorithm).

Figure 6.9: The Floyd-Warshal matrix is printed out
just before theESKEm emulation starts.

Every entry in such a matrix is the next router
on the way from the A-source-Router to the B-
destination-Router. The A-Router is located on
the X-axis while the B-Router is located on the Y-
axis of the matrix. The Floyd-Warshal matrix is
printed by theESKEm just before the emulation
starts (Figure 6.9.

Controller The Controller is a
JiST/SWANS class responsible for the exe-

cution of the scheduled events. This is the heart of the JiST’s simulation kernel. We modified the
eventLoop() of the Controller by allowing an endless loop. In its original implementation, the
simulation exited as soon as the queue with scheduled events was empty. In the current implementation,
the queue of the events is checked every 10ms for new events.

6.6.1 Measuring module

TheGauges listen toAnnouncement s, which are generated either by services/clients or by the network
simulation layers. We use configuration files to register specific announcements that must be sent to specific
gauges as follows:

[org.esk.gauging.specificgauges.MessageGauge]
org.esk.simulator.networklayer.MessageSentAnnouncement
org.esk.simulator.networklayer.MessageReceivedAnnouncement

In the example above we register theMessageGauge gauge to listen for
MessageSentAnnouncement and MessageReceivedAnnouncement announcements. The
announcements are sent by an invocation of an appropriate method on theGauger instance. It is the
Gauger who meets the decision about sending the announcement to the specificGauge.

The users of theESKEmare encouraged to implement own gauges and announcements. The information
encapsulated into the announcement and the way of its processing in the gauge can be quite different.
The announcements from the example above contain the information about the messages, which were
either sent or received. TheMessageGauge accumulates them. The announced message is accounted
as ”received”, if the gauge is able to find the matchingMessageReceivedAnnouncement to existing
MessageSentAnnouncement . TheMessageGauge can be used further to output the information
about the messages, which participated in the service discovery (see Figure 6.10). Another interesting
example of the gauge is theSearchGauge . It counts how many services a client has discovered. It can
be further compared to the total number of services available in the environment.

Figure 6.11: The gauges can also calculate basic
statistics based on the data represented in Figure 6.10.
Here, we show a count of different UPnP messages by
type.

The information processing in the gauges can be
of arbitrary complexity. The example on Figure
6.11 shows how the information from Figure 6.10
can be grouped. The messages captured here cor-
respond to different types of the UPnP messages
(compare with Section 3.4.1).

80 CHAPTER 6. IMPLEMENTATION

Figure 6.10: An example of the output of a gauge. All messages which were transferred as the result of the
service discovery processes are shown.

6.6.2 Visualization

Visualization is based on thePrefuse framework,
which is aimed at visualizing different structures.
We are interested in the visualization of graph
structures. We therefore usedPrefuse to build the

EmulGUI visualization module (see Figure 6.12), which meets our requirements.

Figure 6.12: Visualization of the emulation scenario. Foreground:UPnP Cybergarage client. Background:
emulated network infrastructure, where red node are routers, blue - devices/services, green - clients.

TheEmulGUI can be run on a separate workstation. It receives the so called visualization command from
the core components of theESKEm. The UDP transport is used to deliver the visualization commands
to the visualization module. The commands are sent as plain text. Here is an example of visualization
commands:

6.7. VALIDATION 81

command=create;unitip=192.168.153.254;unittype=router;xLocation=300.0;yLocation=300.0
command=create;unitip=192.168.153.23;unittype=device;xLocation=305.0;yLocation=290.0
command=link;from=192.168.152.254;to=192.168.152.23
command=path;192.168.153.23=192.168.153.254;(<ip1>=<ip2>;)*
command=stop;unitip=192.168.152.23

Firstcreatecommand creates a vertex on the graph of the specified typeunittypeand at a specified location
(xLocation,yLocation). The first two commands create a router and device nodes respectively. The link
command creates a link between two nodes. Thepath command is used to visualize the traffic between
nodes. This command is the result of sending a message (multicast of unicast) from the node of the network.
Each pair of the form<ip1>=<ip2> in the path command defines one of the links, which were passed
during the message transfer. TheEmulGUI accounts for these links and uses them for a visualization of
the graph edges. The last commandstops the node with the ID equals to the 192.168.152.23 IP address.

We use custom layout inEmulGUI to specify a position of the vertices. As a consequence, new commands
like moveof the vertices can be implemented without significant effort.

6.7 Validation

In this section we introduce the results of theESKEm validation. We used theUPnP Cybergarage reference
implementation to validate our approach. First, we consider a simple example of an emulation scenario.
We validate the accuracy of the example by means of analyzing the trace of the gauges and the graph drawn
with theEmulGUI module. Second, we consider more complicated examples. On one side, they are used
to demonstrate performance of the framework. On the other side, they demonstrate metrics measurement
and visualization for theUPnP Cybergarage. The explanation in this section assume the reader has basic
knowledge of the Linux-like operational systems. Most of the output for the introduced scenarios can be
found in Appendix B and A.

6.7.1 Accuracy validation

The following emulation scenario is a simple example of theESKEm functionality. But it is easy to trace
and thus may be better for the demonstration purposes than more complex examples.

Out emulation scenario consists of 3 emulated services, 1 emulated client and 1 real client. We validate the
number and distribution of messages sent by the services and clients, their visualization and discoverability
of the emulated services by a real client. The emulation script looks as follows:

start dev1 device 192.168.151.21 1000
start dev2 device 192.168.152.22 5000
start dev3 device 192.168.152.23 9000
start clnt1 client 192.168.153.23 20000

TheESKEm host must be configured for this scenario with the alias IP interfaces as follows:

ifconfig eth0:3 10.150.61.21 netmask 255.255.0.0 up
ifconfig eth0:4 10.150.62.22 netmask 255.255.0.0 up
ifconfig eth0:5 10.150.62.23 netmask 255.255.0.0 up
ifconfig eth0:6 10.150.63.23 netmask 255.255.0.0 up
route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

82 CHAPTER 6. IMPLEMENTATION

The last call to theroute command is required for the multicast packets be routed to theeth0 network
adapter.

The metrics measured with theESKEm measurement infrastructure were compared with those measured
for the real services and clients. The messages from the real devices were captured with theEthereal
(tcpdump-like GUI-based tool used to capture network traffic).

Both textual and graphical output from theESKEm are represented in Appendix A. The textual output is
manually commented to associate it with the UPnP-based service discovery. The trace of the messages is
expected to be used in conjunction with an external packet for the statistical analysis. Usually, this output
is rather detailed to be analyzed manually.

Results All in all, the emulation works as expected. But careful consideration for the graphical and
textual output will reveal a discrepancy to the number of messages which would be captured in a real
environment. Namely, thesearchmessages from the external clients are not accounted accurately in the
current version of theESKEm because of a technical problem as explained in the next paragraph.

As you can see on Figure A.1, the number of messages on the link between external client (marked with
an arrow) and its node is equal to 6. But it must be 4 according to our expectations: 1 multicast search
request and 3 unicast search responses. The 6 messages were accounted because 1 multicast message was
calculated as 3 unicast search request messages.

The roots of the problem are the following. We have already explained how the messages from the external
clients are sent over the simulated network. As a consequence of our technique, the multicast packets from
the external client are received by all alias IP interfaces (see Figure 6.13). In turn, the messages are passed
to the appropriateEskUnit instance which plays the role of theproxy for an external real client. The
proxy is responsible for the external client and send the messages on its behalf over the simulated network.
Further, the message received on the different IP interfaces ([2]) result in theDatagraphPacket of Java.
The problem is that anyDatagramPacket passed to the proxy ([3]) is considered to be a new packet.
In other words, the proxy can not recognize whether two packets are actually the same packets received on
two different alias IP interfaces or not. TheDatagramPacket does not even have the timestamp when
it was created on the source host - namely, it could help us to detect identity of the messages. Why is it a
problem? It is explained in the next paragraph.

Figure 6.13: The problem with the multicasting messages from the real external devices. See also com-
ments in text.

The proxy should send the packets to the emulated devices on behalf of the external client ([4]). We can
not send all passed to the proxy packets in step [4] because it would result in too many messages received

6.7. VALIDATION 83

by the emulated services. It is also not possible to detect whether two messages are actually the same
or not according to the explanation in the previous paragraph. Thus we decided to sent the packets as a
unicast according to the already explained technique used for communication between real and emulated
services/clients. As a consequence, the multicast messages from the real clients are accounted incorrectly.

6.7.2 Performance validation

In this section we consider performance characteristics of theESKEm. In this section more complex
emulation scenarios are used as in the previous section.

ScriptGenerator We implemented theScriptGenerator for the generation of emulation scripts.
It generates randomly the commands for start and stop of the services/clients according to parameters
specified by the user. Thernet.xml files are created manually.

In short, theScriptGenerator works as follows. Here are the most important parameters which a user
can specify:

• the number of devices (both clients and services) in the emulation scenario;

• the probability that a device contains a service and not a client;

• the probability that one of the previously started devices/clients should be stopped;

• the pool of the IP addresses which can be used by the services/clients. For example, the template
”10.150.61.x” specifies the pool of IP addresses where the last ”x” should be replace with a valid
number in the range ”0-253” (the addresses like ”x.x.x.254” are reserved for router in theESKEm).

• MAXDIFFTIME , the maximal time difference between two consecutive commands. Lower values
of the variable results in more commands for the unit of time.

• the number of the emulation scenario.

The script generator saves both emulation script and commands to config-
ure alias IP interfaces into ./etc/script <num>/script <num>.xml and
./etc/script <num>/config <num>.xml files respectively.

Environment TheESKEm performance was measured in the hardware and software environment with
the following characteristics:

workstation Acer TravelMate 291LMi notebook with Intel Pentium M 1.4Ghz (Centrino) processor,
512Mb RAM

OS GNU/Linux, kernel release 2.6.8-24, machine hardware name: i686

JVM Java 2 Runtime Environment, build 1.5.001-b08

The Java Management Extensions (JMX) technology [JMX] was used to measure performance of the
Java platform during emulation scripts execution. The JMX support influences the performance of the
emulation. As a consequence, the JVM was stared with the JMX support only for the measurement of
the memory consumption and number of threads in the system. Other metrics like the number of captured
messages were measured with the disabled JMX.

Factors selection

In short, theindependent factorsare the factors which we control. For example, the number of the devices
in the emulation scenario. We are interested in the influence of independents factors ondependantfactors.
For example, the memory consumption by the java virtual machine during the emulation is one of such

84 CHAPTER 6. IMPLEMENTATION

factors. Here we select both independent and dependant factors which we consider during our experiments.
Different value of the independent factor are also referred to aslevelsof the factor.

There are several dependant factors which might be interesting for us. We list all of them here:

real time nominal/actual execution of the real-time emulation commands in theQueueEwhich
are read from an emulation script.

the size of the messages queuethe size of the messages queue in theNoDropMessageQueue of the
JiST/SWANS network simulator. TheEskIp packets explained earlier are queued
here before they are sent over the simulated network. Many such queues are instanti-
ated during the network simulation.

the size of the simulation events queuethe size of the simulation events queue in theController
of theJiST.

heap size the memory heap size used by the java virtual machine (JVM) during emulation

CPU consumption of the CPU resources during emulation

messages distribution distribution of theUPnP Cybergarage service discovery protocol messages by
type

The reason for the monitoring of the queues was the associated technical problems. The size of a queue
reflects the needs for the memory during the emulation.

We identified two independent factors which most obviously should influence performance of the emula-
tion:

the burstness of the emulation scenario The concept introduce the idea that different emulation sce-
narios may specify different number of the emulation commands which are to be
executed per unit of time (for example, per minute). We manipulate this factor with
theMAXDIFFTIME variable of theScriptGenerator . The variable defines the
maximal time between two successive commands in the emulation script. The gen-
erator select randomly the time between current and the next command in the range
between 0 andMAXDIFFTIME

the number of devices the number of devices (both with services and clients) participating in the emu-
lation scenario

Measurement . As was already mentioned, the JVM performance was measured with the support of the
JMX (Java Management Extensions). We used the monitoring facility of this technology. The JVM must
be started with a set of parameters in order turn on the JMX support:

java -Dcom.sun.management.jmxremote.port=5001 -Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false<rest skipped>

Additionally, the jconsole must be started which connect to the JVM instance. Thejconsole is
available in the JDK5.0 distribution. The screenshots are provided in the Appendix B. Thejconsole
provides an overview over the JVM parameters like version, loaded libraries, heap size, number of threads,
consumed CPU resources etc (see Table B.1).

Additionally, we monitored the size of two different types of queues of theJiST/SWANS network simu-
lator which we mentioned when considering the dependant factors. The monitoring was accomplished by
a thread running concurrently in respect to the thread with the queue instance. The size of the queue is
sampled every 50ms. We are interested in the dynamic of the queue size and the peak values of the queues.

6.7. VALIDATION 85

Experiments

There are two independant factors which influence on the performance of the emulation we would like to
analyse. As a consequence, we generated different emulation scripts as represented on Figure 5.4. The
scripts from 7 to 10 differ in the burstness characteristic of the emulation scenarios. The scripts from 15 to
16 differs in respect to the number of emulation devices. The distribution for the UPnP service discovery
messages is provided in Table B.2.

Figure 6.14: The emulation scripts and their characteristics in respect to the number of devices and burst-
ness of the emulation scenario. We refer to the emulation scripts by the numbers like 15, 10 etc.

The results of the experiments are represented compactly in Table B.2 of Appendix B.

Plots But before we start, the plots like those represented on Figure B.1 need to be explanation. We use
the plots basically to represent the dynamic of the size of the queues. Each such queue is monitored by a
separate thread. The queue size is sampled every 50ms. As a consequence, a textual file with a single very
long column is the result of monitoring. The plots which we use is the result of visualization such files.

As was already mentioned, there are two types of queues which we monitor. There is a single instance
of the simulation events queue and a number of theNoDropMessageQueue instances. Whereas each
instance of the latter queue is monitored by from a separate thread. This has the consequence on how the
plot looks and how it is interpreted. Special explanation is required for the plots of the message queues. We
take Figure B.1 as a typical example. A separate plot like the plot for the script 7 consists of dots organized
into the line patterns. Many of such virtual lines overlap. Each such virtual line represents the changes in
the state of the message queue.

Burstness of the emulation First, we considered the influence of theemulation burstnessonto the de-
pendant factors. The independent factor has different levels in the 10th, 9th, 8th and 7th scripts as can be

86 CHAPTER 6. IMPLEMENTATION

seen on Figure 5.4. For example, the script 10 has the burstness equal to 1000ms. The number of devices
is fixed through the considered scripts. The results of the experiments are represented in Table B.2 (a).

According to Figure B.1 in Appendix B the burstness of the emulation has a moderate influence on the
size of the messages queue. But the influence of the factor on the size of the simulation events queue
is considerable. As can be seen on Figure B.2, the size of the queue increases with the decreased time
interval between consecutive commands of an emulation script. Considerable is also the difference in the
size of the queue for the 8th and 9th emulation scripts. We interpret it after explaining some important for
understanding details.

The feature of theESKEm design is that the implementation of the real services and clients is used when
possible. This results in higher accuracy of the emulation but also in increased resources consumption.
The life cycle of the real device implementation can be split intoinstantiationof the device,start of the
device andstopof the device. The design of theESKEm implies that the devices are instantiated before
the emulation is start. For this reason the instantiation of the device has no influence on the emulation
performance. On the other hand, the start and stop of the devices is the main part of the emulation. We
measured the time spent by the devices in three mentioned phases on the sample of 100 devices (samples
were done separately for each device). The average time required for the start is about 500ms with the
distribution skewed to the left, for the stop of the device 162ms is required.

As a consequence, we propose the following explanation for the differences in the queue size on Figure
B.2. The maximal time between two consecutive commands is 500ms, 750ms and 1000ms for the scripts
8, 9 and 10 respectively. This is either equal or greater than 500ms and 162ms required for the start and
stop of the device respectively. In the case of the scripts 8, 9 and 10, the simulator has enough resources to
manage calculation of the simulation for all messages resulted from the start or stop of the devices. This
is accomplished with the moderate size of the events queue. This is not the case when the time between
commands is allowed to be lower than 500ms. The computing resources used by the network simulator
must be shared with the adapted devices. This results in the significantly increased size of the simulation
events queue. As a consequence, the emulation scripts with higher burstness may require more memory to
be executed.

As can be seen from Table B.2 (a), the burstness of the emulation script has also significant influence on
the real-time characteristics of the emulation. First, we analyzed the nominal and actual execution time
of the emulation commands in the real-timeQueueE. The descriptive statistics for the difference between
them is shown in Table B.2 under the column”Average delay of the emulation commands execution”. As
a consequence of theQueueE design, we expect delay for the execution of the emulation commands to be
in average about 20ms. Even without careful statistical analysis it is clear that the delay for the script 7 is
too high.

Further, we considered the difference between nominal time for the end of the emulation and actual time
of processing the last simulation event in theJiST/SWANS simulator. The nominal time for the emulation
end is associated with the time for the last emulation command specified in the emulation script. The
difference between this two times is introduced in the columns”End of the emulation”of the table. A
negative difference indicates that the simulation was finished to late to be in real time. On the other hand, a
positive difference may be an indication that the simulation was fast enough to send the messages over the
simulated network in real time or faster.

Number of emulated devices The number of the emulated devices is the next independent factor which
we consider in this section. The scripts 15th, 10th, 12th, 13th, 14th and 16th have different levels of this
factor as shown on Figure 6.14. The results of the experiments are represented in Table B.2 (b).

As can be seen in the table, the number of emulated devices influences both the size of the simulation events
queue and the size of theNoDropMessageQueue instances. The dynamic of the first simulation events
queue size is shown on Figure B.3. The maximal simulation events queue size is increased significantly
with the jump from 80 to 100 of the emulated devices. The same applies to the average delay for the
execution of the emulation commands: it is twice as high as the expected delay of 20ms. The end of the

6.8. SUMMARY 87

processing the last simulation event in the network simulator lies behind the emulation end as taken from
the emulation scenarios with 100, 120 and 140 devices. This is expressed in the negative differences in
Table B.2 (b).

Stuck messages Further, we have observed different side effects during the emulation scenarios for the
script 13, 14 and 16. The side effects are shortly introduce in the table. The first of them can be called as
thestuck messagesside effect.

The messages in some of theNoDropMessageQueue instances stuck in the queue for some time without
being processed. This can be observed when zoomed into the plot for the message queues for the script 14
which is represented on Figure B.4. The patterns of the dots grouped in the parallel to the X-axis lines are
clearly observable. The pattern means that the size of the messages queue is unchanged for some time. We
interpret this pattern as a side effect that the messages are stuck in the queue. The pattern appears seldom
for the emulation scenarios with lower number of devices.

The observed phenomenon is likely to be the consequence of the increase load onto the host with the
ESKEm during emulation. Closer investigation of the problem showed that the queue instances run not in
the separate threads but rather in theJistController thread which is the thread responsible for the
network simulation. What if the message queues would run in the concurrently? In this case the problem
would occur too. But we assume, that it would be easier to improve the performance of the network
simulator by running it on the host with multiple processors. Whereas at the expense of the network
simulation becoming non-deterministic.

Runtime exceptions A specific exception occur with a high probability during execution of an emula-
tions with 120 and more UPnP devices. The exception originates from theUPnP Cybergarage implemen-
tation:

1 Excep t i on i n t h r e a d ” Thread−433” j a v a . l ang . Ar ray IndexOutOfBoundsExcept ion :
2 Array index ou t o f range : 4 2
3 a t j a v a . u t i l . Vec to r . g e t (Vec to r . j a v a : 7 1 0)
4 a t org . c y b e r g a r a g e . xml . NodeL is t . getNode (NodeL is t . j a v a : 2 8)
5 a t org . c y b e r g a r a g e . upnp . C o n t r o l P o i n t . ge tDev i ce (C o n t r o l P o i n t . j a v a : 3 2 6)
6 a t org . c y b e r g a r a g e . upnp . C o n t r o l P o i n t . addDevice (C o n t r o l P o i n t . j a v a : 2 4 1)
7 a t org . c y b e r g a r a g e . upnp . C o n t r o l P o i n t . n o t i f y R e c e i v e d (C o n t r o l P o i n t . j a v a : 5 1 7)
8 a t org . c y b e r g a r a g e . upnp . ssdp . SSDPNot i fySocket . run (SSDPNot i fySocket . j a v a : 1 0 3)
9 a t j a v a . l ang . Thread . run (Thread . j a v a : 5 9 5)

The exception found with the support of theESKEm demonstrates that our framework can be used to
validate the existing service discovery protocol implementations in an emulated environment.

Unprocessed messagesThe next observation is realted to the execution of the script 16. As can be seen
on the plot (a) in Table B.3, the messages are stucked in some of theNoDropMessageQueue instances
for the rest of the emulation. The messages from the queue results in the simulation events. We could
suggest that the simulation events queue is busy but it is not the case - it is empty after certain period of
time as shown on the plot (b) in Table B.3. We do not have any suggestion for the problem at the moment.
The problem requires more closer analysis.

6.8 Summary

This section provided the implementation details ofESKEm. Further, we analyzed different emulation
scenario scripts in order to validate our framework. We selected two independent factors and investigated
their influence on theESKEm performance.

88 CHAPTER 6. IMPLEMENTATION

We considered the steps required to install and run the framework and then introduced the framework
implementation details. The description was concentrated around the modules of the framework consid-
ered in Chapter 5 about design. We explained in detail the most important classes of the framework like
EskUnit andQueueE. Also the modifications introduced to the reusedJiST/SWANS network simulator
were described.

Several experiments were conducted to validate the framework. First, we used the simple emulation scripts
to demonstrate the basic functionality of theESKEm. We mentioned the problem associated with the vi-
sualization of the communication between emulated services and external real clients. Further, we used
generated emulation scripts to considered the influence of two different independent factors on the perfor-
mance of the framework.

The increase in the burstness of the emulation scenario is associated with the increase of the size of the
simulation events queue, decreased speed of the network simulation and higher delay of the emulation
commands execution. The influence of the burstness on the size of the message queues is not considerable
according to our experiments. We also associated the burstness of the emulation scenario and the time
required for the start and stop of the adapted devices.

The increase number of the emulated devices influence the maximal size of the message queues, maximal
size of the events queue. We described different side effects observed for the emulation scripts with 100
and more emulated devices.

As a result of the experiments we conclude that it is possible to emulated about 80 devices (with either
services or clients) without undesired side effects. Whereas the emulation commands should be executed
with the maximal interval of 500ms or higher. The statement may differ for the environments with other
characteristics of the software and hardware than ours. An additional instance of theESKEm can be started
on the separate host in order to emulate more devices.

Chapter 7

Summary and Future Work

In this thesis we conceptualized and implemented the emulation frameworkESKEm. A researcher may
use it to explore various implementations of the real service discovery protocols in an environment with
the specific characteristics.

In short, theESKEm is designed as follows. We take an existing real service discovery protocol imple-
mentation and place it into theESKEm framework. The emulation framework proposes various emulated
services and clients which may generate the load on the explored protocol. The framework has a net-
work simulator which proposes the transport layer functionality for the service discovery protocol under
consideration. Additionally, the emulation framework provides the means for the emulated services to be
discoverable by the real clients.

The rest of this chapter compares the characteristics of theESKEm to the requirements formulated in
Section 2.3 and highlight the most important design choices of our emulation framework. We also provide
the suggestions for future development of theESKEm.

7.1 Summary

In the following table we provide the summary of theESKEm features as a comparison to the requirement
for the framework formulated at the beginning of the diploma thesis in Section 2.3. Please, refer to the list
requirements while reading this section. The number of the requirements can be found in the first column
of the table.

Require-
ment

Summary

B.1 As was already mentioned, a real implementation of the service discovery protocol can
be explored with theESKEm. It is also possible to adapt the already existing implemen-
tation of services for generation of load for the protocol under consideration.
Current design of the framework assumes that both the protocol and the service imple-
mentations need to be slightly modified in order to run in theESKEm. Suggestions how
the adoption can be accomplished automatically were given.

89

90 CHAPTER 7. SUMMARY AND FUTURE WORK

B.6,
B.5

Service discovery operates over the network with specific characteristics. We consid-
ered different approaches which could be used to recreate a heterogenouse network
environment (Requirement B.5). Different reasons motivated us to adopt the network
simulation approach. We adopted theJiST/SWANS network simulator for the purpose
of simulation the characteristics of the transport and lower network layers. As a con-
sequence, the messages sent from the device A to B are passed through the simulated
network.

Nevertheless, the communication with the external real devices is ensured with our
framework too (Requirement B.6). The messages are pushed to the real network in-
terface of the emulation framework host after the effect of the simulated network is
calculated for the message transfer characteristics.

B.8 A researcher may wish to emulate an environment with an arbitrary large number of
services. This results in the scalability requirement for theESKEm. We addressed the
problem of scalability by using several design choices. The most important of them are
mentioned here.

First, the scalability requirement was taken into account when selecting an approach
to imitate the network system used by the service discovery protocol. We selected
the simulation approach. Our expectation is to gain imitation of significantly larger
networks than with other approaches like network emulators assumed that the same
amount of computing resources is available.

Second, the number of emulated services in a real subnet can be increased by starting an
additionalESKEm instance on a separate host.
Third, used for the metrics calculationannouncementsare only accumulated during
the emulation phase. The metrics calculation is resources consuming task and it is
accomplishedafter the emulation is finished.

Fourth, the visualization module can be started on a separate from theESKEm host.
The visualization consumes a significant amount of resources.

The statements aboutESKEm performance are done in Section 6.8. According to our
experiments, current version of the emulation framework can execute scenarios with
about 80 various emulated services and clients without undesirable side effects. The
maximal interval between two successive emulation commands should be in average
not lower than 500ms. The mentioned constraints apply to hardware and software envi-
ronment with characteristics as described in Section 6.7. Further, we considered only the
UPnP Cybergarage version of the service discovery protocol in our experiments.

C.2,
C.4

We considered anoffice environmentas an example of an environment which theES-
KEm can reproduce. The network environment used in ”typical” office is reproduced
with the network simulator. We have selected theJiST/SWANS network simulator and
extended it with a primitive simulation of the LAN. This simulation takes into account
the topology of the network and the network links characteristics. Our simulation is
rather simple but it was not the focus of this work to develop an accurate simulation of
the network transport layers.

B.3 Emulation scenarios are described with theemulation scripts. These ensure the repro-
ducibility of the emulation scenarios. The emulation script consists of various com-
mands which results in the service discovery related activity. For example, the start of
the service usually results in a number ofservice announcementmessages .

7.2. FUTURE WORK 91

B.2 We provided a flexible measurement infrastructure in our emulation framework. Various
gauges and announcements make up the core of the infrastructure. The announcements
can be instantiated in virtually any part of theESKEm. A specific gauge listen for the
set of specific announcements. The gauge decides which metrics should be calculated
from the received announcements.
The announcements are accumulated in the gauges during the emulation. Various met-
rics are calculated by the gauges after the emulation is finished. Thus the calculation of
the metrics does not consume valuable resources during the emulation.
Researchers will usually needs to implement custom gauges and announcements in order
to measure specific metrics.

B.4 The visualization for theESKEm is conceptualized and implemented as a separate
EmulGUI module. Such design gives additional advantages in terms of the framework
scalability.

The EmulGUI is based on thePrefuse framework specialized on the visualization of
the graph-based structures. The simulated network topology, start/stop of service or
clients and communication among them is visualized as the result of processing the
visualization commands sent from theESKEm to the EmulGUI as text in the UDP
packets. The visualization is accomplished in real time. Both emulated services/clients
and real clients are visualized with theEmulGUI.

C.3 One of the requirements was to implement the framework in the Java programming
language. Further, for the purpose of the framework validation the Java-based imple-
mentation of theUPnPprotocol was used. All this together with the java-based network
simulator allowed us to make specific to theESKEm design choices. For example, the
service discovery messages are captured at thetransportnetwork layer before they are
fed into the simulated network.

As a consequence, it is easy to adopt an existing java-based service discovery protocol in
theESKEm. The adoption of the protocols implemented in other programming languages
may be a technically challenging task.

B.7 We have validated our approach with theUPnP Cybergarage version of the UPnP service
discovery protocol. This implementation is used to demonstrated in practice how our
approach works. The statement about validation were already done when considering
previous requirements from current table.
Table 7.1: Summary: comparison of the requirements with the features
of theESKEm.

7.2 Future Work

The future development of theESKEmis likely to be motivated by the needs of researchers which will use
the framework. Nevertheless, there are still general suggestions which we want to introduce in this section.
We concentrate on those of them which are related to design of the emulation framework. Only the most
significant of our suggestions will be introduced.

Scripts generation Manual creation of the emulation scripts becomes complicated very fast with the
number of emulated services. Currently, we have wrote a primitive script generatorScriptGenerator
to create emulation scenario scripts. The automatic generation of scripts is much more convenient. But this
approach can be improved significantly. For example, different probability distributions could be used to
describe the duration of a service being available. The idea is to provide anabstractdescription language

92 CHAPTER 7. SUMMARY AND FUTURE WORK

to describe the emulation scenarios. The descriptions in this language could be further used to generate the
emulation scripts in their current form.

Connection-oriented transport Used for the framework validation version of the UPnP protocol is built
over the UDP transport. But there are other protocols which implementation is based on the connection-
oriented transport. TheESKEm must be extended and validated for the protocols using such type of the
network transport.

Distributed mode TheESKEm can run on the separate hosts. In this way an arbitrarily large number of
services can be emulated. But the scripts executed on the separate hosts are independent from each other.
We assume that aScript Managershould be developed for the coordinated execution of a single emulation
script in the various instances of theESKEm. The real time scheduler of theESKEm was developed to
facilitate development of such manager. Actually, the challenge is to provide the algorithms which would
split the original emulation script so that the load on theESKEm instances is minimized.

Appendix A

Emulation scenario example.

In this Appendix the output for scenario 3 is provides. We provide here both commented textual output and
graphical output.

Emulation script for scenario 3:

start dev1 device 10.150.61.21 1000
start dev2 device 10.150.62.22 5000
start dev3 device 10.150.62.23 9000
start clnt1 client 10.150.63.23 11000

Commented output generated by theESKEm for the Scenario 3. The output is produced by the
MessagesGauge described earlier. The semantic of the columns is as follows.

1 order, in which messages were registered in theMessageGauge

2 IP address of the node, which processed the message. In other words, it contains the IP of the source
if the message is marked as ”sent”. Or it contains the IP of the destination if the message is marked
as ”recv” (see column 4).

3 IP address of the counterpart node (see explanation to the previous column). The IP address here can
be either multicast (like ”239.255.255.250”) or unicast.

4 says, whether the message was ”sent” or ”recv” (received).

5 simulation time of the message processing.

6 number of passed hops/routers if applicable. We defined the number of hops only for the unicast
messages.

7 unicast message delay on the way from the source to the destination node. The difference is calcu-
lated in simulation time. Compare this with our notes about different definitions of time in Section
4.2.1.

8 message size (in bytes)

9 UPnP message type (see UPnP description in Section 3.4.1);

93

94 APPENDIX A. EMULATION SCENARIO EXAMPLE.

=> device dev1 is started, but the other node are unavailable, so nobody receives
 multicast messages. After being started the "byebye" messages (one message
 for root device and for every available services) are sent followed by the
 "announce" messages.
0 |10.150.61.21 |239.255.255.250|sent|1000 |multicast|.|. |152 |byebye
1 |10.150.61.21 |239.255.255.250|sent|1000 |multicast|.|. |179 |byebye
2 |10.150.61.21 |239.255.255.250|sent|1000 |multicast|.|. |181 |byebye
3 |10.150.61.21 |239.255.255.250|sent|1000 |multicast|.|. |287 |announce
4 |10.150.61.21 |239.255.255.250|sent|1000 |multicast|.|. |314 |announce
5 |10.150.61.21 |239.255.255.250|sent|1000 |multicast|.|. |316 |announce

=> device dev2 is started, its byebye and announce messages are received by
 already available dev1
6 |10.150.62.22 |239.255.255.250|sent|5000 |multicast|.|. |152 |byebye
7 |10.150.61.21 |10.150.62.22 |recv|5010 |multicast|0|10|152 |byebye
8 |10.150.62.22 |239.255.255.250|sent|5010 |multicast|.|. |179 |byebye
9 |10.150.61.21 |10.150.62.22 |recv|5020 |multicast|0|10|179 |byebye
10|10.150.62.22 |239.255.255.250|sent|5020 |multicast|.|. |181 |byebye
11|10.150.61.21 |10.150.62.22 |recv|5030 |multicast|0|10|181 |byebye
12|10.150.62.22 |239.255.255.250|sent|5030 |multicast|.|. |287 |announce
13|10.150.61.21 |10.150.62.22 |recv|5040 |multicast|0|10|287 |announce
14|10.150.62.22 |239.255.255.250|sent|5040 |multicast|.|. |314 |announce
15|10.150.61.21 |10.150.62.22 |recv|5050 |multicast|0|10|314 |announce
16|10.150.62.22 |239.255.255.250|sent|5050 |multicast|.|. |316 |announce
17|10.150.61.21 |10.150.62.22 |recv|5060 |multicast|0|10|316 |announce

=> device dev3 is started, its byebye and announce messages are
 received by already available dev2 and dev1
18|10.150.62.23 |239.255.255.250|sent|9000 |multicast|.|. |152 |byebye
19|10.150.62.22 |10.150.62.23 |recv|9010 |multicast|0|10|152 |byebye
20|10.150.61.21 |10.150.62.23 |recv|9020 |unicast |0|20|152 |byebye
21|10.150.62.23 |239.255.255.250|sent|9020 |multicast|.|. |179 |byebye
22|10.150.62.22 |10.150.62.23 |recv|9030 |multicast|0|10|179 |byebye
23|10.150.61.21 |10.150.62.23 |recv|9040 |unicast |0|20|179 |byebye
24|10.150.62.23 |239.255.255.250|sent|9040 |multicast|.|. |181 |byebye
25|10.150.62.22 |10.150.62.23 |recv|9050 |multicast|0|10|181 |byebye
26|10.150.61.21 |10.150.62.23 |recv|9060 |unicast |0|20|181 |byebye
27|10.150.62.23 |239.255.255.250|sent|9060 |multicast|.|. |287 |announce
28|10.150.62.22 |10.150.62.23 |recv|9070 |multicast|0|10|287 |announce
29|10.150.61.21 |10.150.62.23 |recv|9080 |unicast |0|20|287 |announce
30|10.150.62.23 |239.255.255.250|sent|9080 |multicast|.|. |314 |announce
31|10.150.62.22 |10.150.62.23 |recv|9090 |multicast|0|10|314 |announce
32|10.150.61.21 |10.150.62.23 |recv|9100 |unicast |0|20|314 |announce
33|10.150.62.23 |239.255.255.250|sent|9100 |multicast|.|. |316 |announce
34|10.150.62.22 |10.150.62.23 |recv|9110 |multicast|0|10|316 |announce
35|10.150.61.21 |10.150.62.23 |recv|9120 |unicast |0|20|316 |announce

=> client clnt1 is started. It sends the search request message of type
 "search" to discover available devices and services.
 The search request is received by the dev1, dev2 and dev3
36|10.150.63.23 |239.255.255.250|sent|11000|multicast|.|. |101 |search
37|10.150.61.21 |10.150.63.23 |recv|11010|multicast|0|10|101 |search
38|10.150.62.23 |10.150.63.23 |recv|11020|unicast |0|20|101 |search
39|10.150.62.22 |10.150.63.23 |recv|11030|unicast |0|30|101 |search

 the devices response with appropriate messages
40|10.150.63.23 |10.150.62.22 |recv|11050|unicast |2|20|379 |response
41|10.150.63.23 |10.150.61.21 |recv|11080|unicast |3|30|379 |response
42|10.150.63.23 |10.150.62.23 |recv|11100|unicast |2|20|379 |response

=> a search message from an external real client is received.
43|10.150.62.23 |10.150.61.34 |recv|11120|unicast |2|20|1024|search
44|10.150.61.21 |10.150.61.34 |recv|11130|unicast |1|10|1024|search
45|10.150.62.22 |10.150.61.34 |recv|11150|unicast |2|50|1024|search

=> the emulated dev1, dev2 and dev3 send their reponces to the real client
46|10.150.61.34 |10.150.62.22 |recv|11170|unicast |2|20|379 |response
47|10.150.61.34 |10.150.62.23 |recv|11190|unicast |2|20|379 |response
48|10.150.61.34 |10.150.61.21 |recv|11200|unicast |1|10|379 |response

95

Figure A.1: The graphical representation of the emulation scenario with theEmulGUI .

Figure A.2: The client started on the separate WinXP-based host. The client is marked with the arrow on
Figure A.1.

96 APPENDIX A. EMULATION SCENARIO EXAMPLE.

Short form of the output, printed by theSearchingGauge :

=> statistics for the emulated clients.
 Note: we can't calculate the metric
 for a real client, because not
 all information about available
 knowledge of the client is available

found statistics: [10.150.63.23 = 3]

=> distribution of messages
 after the emulation

announce, sent => 9
announce, recv => 9
response, recv => 6
byebye, sent => 9
search, sent => 1
search, recv => 6
byebye, recv => 9

Appendix B

ESKEm performance measurements.

(a) overview over different performance characteris-
tics

(b) memory monitoring

(c) monitoring of the threads

Table B.1: The Java Management Extensions (JMX) and thejconsole tool to monitor performance of the
Java Virtual Machine (JVM).

97

98 APPENDIX B. ESKEM PERFORMANCE MEASUREMENTS.

(a)

(b)

Table B.2: Summary table of experiments conducted for theUPnP Cybergarage with the ESKEm. See
also Figure 6.14.

(a) (b)

Table B.3: Comparison of the simulator message queues size (a) and simulation events queue size (b) for
the emulation script 16.

99

Figure B.1: Dynamic of theNoDropMessagesQueue size for different levels of the”burstness of the
emulation” factor.

100 APPENDIX B. ESKEM PERFORMANCE MEASUREMENTS.

Figure B.2: Dynamic of the simulation events queue size for different levels of the”burstness of the
emulation” factor.

101

Figure B.3: Dynamic of the simulation events queue size for different levels of the factor”number of
emulated devices”.

Figure B.4: Dynamic of theNoDropMessagesQueue size for the factor”number of emulated devices”
in the script 14.

102 APPENDIX B. ESKEM PERFORMANCE MEASUREMENTS.

(a)

(b)

Table B.4: JMX: java heap size (a) and the number of threads (b) for the emulation scripts with different
number of devices.

(a) (b)

(c)

Table B.5: TheUPnP Cybergarage messages distribution for the scripts from 15 to 16 (b) and from 7 to 10
(b).

Appendix C

The OSI reference model.

103

104 APPENDIX C. THE OSI REFERENCE MODEL.

Figure C.1: OSI Layers

Appendix D

The Floyd-Warshall algorithm.

The pseudo-algorithm of the Floyd-Warshall algorithm:

1 f u n c t i o n fw (i n t [0 . . n , 0 . . n] g raph){
2 / / I n i t i a l i z a t i o n
3 va r i n t [0 . . n , 0 . . n] d i s t : = graph
4 va r i n t [0 . . n , 0 . . n] p red
5 f o r i f rom 0 t o n
6 f o r j f rom 0 t o n
7 i f d i s t [i , j] > 0
8 pred [i , j] : = i
9 / / Main loop o f t h e a l g o r i t h m

10 f o r k from 0 t o n
11 f o r i f rom 0 t o n
12 f o r j f rom 0 t o n
13 i f d i s t [i , j] > d i s t [i , k] + d i s t [k , j]
14 d i s t [i , j] = d i s t [i , k] + d i s t [k , j]
15 pred [i , j] = p red [k , j]
16 re turn d i s t
17 }

105

106 APPENDIX D. THE FLOYD-WARSHALL ALGORITHM.

Glossary

ALS application level simulation

DHCP Dynamic Host Configuration Protocol

GUI Graphical User Interface

ISP internet service provider

JFC Java Foundation Classes

JiST Java in Simulation Time

JVM java virtual machine, see http://java.sun.com

NDP node discovery protocol

NIC network interface card

P2P peer-to-peer network

PDA Personal Digital Assistant

SD Service Discovery

SLP Service Location Protocol

SSDP Simple Service Discovery Protocol

SWANS Scalable Wireless Ad hoc Network Simulator

107

108 APPENDIX D. THE FLOYD-WARSHALL ALGORITHM.

Bibliography

[Abow 99] ABOWD, GREGORY D.: Software engineering issues for ubiquitous computing. In
ICSE ’99: Proceedings of the 21st international conference on Software engineering,
pages 75–84, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[ACM] The ACM (Association for Computing Machinery) Digital Library, http://
portal.acm.org/ .

[AES] Advanced Environmental Systems, http://www.aesinc.com/revamp/inf/
got_p_rv.htm .

[AlJi 03] EITAN ALTMAN AND TANIA JIMENEZ: NS Simulator for beginners, December
2003, ”http://www-sop.inria.fr/maestro/personnel/Eitan.Altman/COURS-NS/n3.pdf”
. Lecture notes, 2003-2004.

[Bajaj et al. 99a] SANDEEP BAJAJ, LEE BRESLAU, DEBORAH ESTIN, KEVIN FALL , SALLY FLOYD ,
PADMA HUANG, SATISH KUMAR , STEVEN MCCANNE, REZA REJAIE, PUNEET

SHARMA , KANNAN VARADHAN , YA XU, HAOBO YU, DANIEL ZAPPALA: Im-
proving Simulation for Network Research. 2003.

[Barb 00] BARBEAU, M ICHEL: Bandwidth Usage Analysis of Service Location Protocol.
School of Computer Science, Carleton University.

[BCEL] BCEL: The Byte Code Engineering Library, http://jakarta.apache.org/bcel/ .

[Bett 00] CHRISTIAN BETTSTETTER AND CHRISTOPH RENNER: A Comparison of Service
Discovery Protocols and Implementation of the Service Location Protocol, 2000.

[BiHe et al. 04] HANNES BIRCK, OLIBER HECKMANN , ANDREAS MAUTHE, RALF STEINMETZ:
Analysis of Overlay Networks at Message- and Packet-Level, March 2004.

[Bjoe 05] SCHILLING , BJÖRN: Modeling and Simulation of Computer Systems: Qualitative
Comparison of Network Simulation Tools. Institute of Parallel and Distributed Sys-
tems, University of Stuttgart.

[Bres 00a] LEE BRESLAU AND DEBORAH ESTRIN AND KEVIN FALL AND SALLY FLOYD

AND JOHN HEIDEMANN AND AHMED HELMY AND POLLY HUANG AND

STEVEN MCCANNE AND KANNAN VARADHAN AND YA XU AND HAOBO YU:
Advances in Network Simulation. IEEE Computer, 33(5):59–67, May 2000,
http://www.isi.edu/ johnh/PAPERS/Breslau00a.html . Expanded version available as
USC TR 99-702b athttp://www.isi.edu/˜johnh/PAPERS/Bajaj99a.
html .

[Brey 03] BREYER, TOBIAS: Modellierung der Bewegung und des Verhaltens von Dienst-
nutzern in mobilen Ad-hoc-Netzen, 2003. Diplomarbeit.

[CaSa] MARK CARSON, DARRIN SANTAY : NIST Net - A Linux-based Network Emulation
Tool. Washington, DC, USA. .

109

http://portal.acm.org/
http://portal.acm.org/
http://www.aesinc.com/revamp/inf/got_p_rv.htm
http://www.aesinc.com/revamp/inf/got_p_rv.htm
"http://www-sop.inria.fr/maestro/personnel/Eitan.Altman/COURS-NS/n3.pdf"
http://jakarta.apache.org/bcel/
http://www.isi.edu/~johnh/PAPERS/Breslau00a.html
http://www.isi.edu/~johnh/PAPERS/Bajaj99a.html
http://www.isi.edu/~johnh/PAPERS/Bajaj99a.html

110 BIBLIOGRAPHY

[CaSaSch 02] D. CAVIN , Y. SASSON, A. SCHIPER: On the Accuracy of MANET Simulators.2002.

[Chak 02] D. CHAKRABORTY AND A. JOSHI AND T. FININ AND Y. Y ESHA: GSD:A
novel groupbased service discovery protocol for MANETS, 2002, cite-
seer.ist.psu.edu/chakraborty02gsd.html .

[Chun 04] CHUNG, CHRISTOPHERA.: Simulation Modeling Handbook: A Practical Approach.
CRC Press LLC, ISBN 0-8493-1241-8, 2004, http://... . 2nd Edition.

[Citeseer] Citeseer, http://sherry.ifi.unizh.ch .

[DaMi 01] Analyzing Properties and Behavior of Service Discovery Protocols Using and
Architecture-Based Approach, 2001. Proceedings of Working Conference on Com-
plex and Dynamic Systems Architecture.

[DBCF 95] DAVIES, NIGEL, GORDON S. BLAIR , KEITH CHEVERST and ADRIAN FRIDAY : A
Network Emulator to Support the Development of Adaptive Applications. In MLICS
’95: Proceedings of the 2nd Symposium on Mobile and Location-Independent Com-
puting, pages 47–56, Berkeley, CA, USA, 1995. USENIX Association.

[Deer] DEERING, STEVE: The Internet Group Management Protocol (IGMP), http://
www.cis.ohio-state.edu/htbin/rfc/rfc1112.html .

[DHCP] Dynamic Host Configuration Protocol (DHCP), http://www.dhcp.org/ .

[DIANEmu] DIANEmu - Dienste in Ad-hoc-Netzen, http://www.ipd.uka.de/ kleinm/diane/ .

[DIANEmu 04] MICHAEL KLEIN , DANIEL MATHEIS, MARKUS HOFFMAN, M ICHAEL M ÜSSIG:
DIANEmu Manual: A High-level Ad hoc Network Simulator, 2004.

[DME 02] DABROWSKI, CHRISTOPHER, KEVIN M ILLS and JESSE ELDER: Understanding
consistency maintenance in service discovery architectures during communication
failure. In WOSP ’02: Proceedings of the third international workshop on Software
and performance, pages 168–178, New York, NY, USA, 2002. ACM Press.

[EHAB 99] ESLER, M IKE, JEFFREY HIGHTOWER, TOM ANDERSON and GAETANO BOR-
RIELLO: Next century challenges: data-centric networking for invisible computing:
the Portolano project at the University of Washington. In MobiCom ’99: Proceed-
ings of the 5th annual ACM/IEEE international conference on Mobile computing and
networking, pages 256–262, New York, NY, USA, 1999. ACM Press.

[EnBuMa 05] A Survey of Software Infrastructures and Frameworks for Ubiquitous Computing, Jan-
uary 2005.

[Ethereal] Ethereal: A Network Protocol Analyzer, http://www.ethereal.com/ .

[Floyd-Warshall] Floyd-Warshall algorithm, http://www.aesinc.com/revamp/inf/got_
p_rv.htm .

[GloMoSim] GloMoSim Manual, v1.2, http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html
.

[GoBa 00] JAVIER GOVEA, M ICHEL BARBEAU: Comparison of Bandwidth Usage: Service
Location Protocol and Jini, 2000, citeseer.ist.psu.edu/govea00comparison.html .

[Goet 02] GOETZ, BRIAN: Java theory and practice: Thread pools and work queues,
http://www-106.ibm.com/developerworks/java/library/j-jtp0730.html .

[GoF 95] ERICH GAMMA , RICHARD HELM , RALPH JOHNSON, JOHN VLISSIDES: Design
Patterns. Addison-Wesley Professional; 1st edition, ISBN 0-201-63361-2, 1995. 395
p.

file:citeseer.ist.psu.edu/chakraborty02gsd.html
file:citeseer.ist.psu.edu/chakraborty02gsd.html
http://...
http://sherry.ifi.unizh.ch
http://www.cis.ohio-state.edu/htbin/rfc/rfc1112.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1112.html
http://www.dhcp.org/
http://www.ipd.uka.de/~kleinm/diane/
http://www.ethereal.com/
http://www.aesinc.com/revamp/inf/got_p_rv.htm
http://www.aesinc.com/revamp/inf/got_p_rv.htm
http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html
file:citeseer.ist.psu.edu/govea00comparison.html
http://www-106.ibm.com/developerworks/java/library/j-jtp0730.html

BIBLIOGRAPHY 111

[Gold 02] GOLDEN R. RICHARD III: Service Advertisement and Discovery: Enabling Univer-
sal Device Cooperation. University of New Orleans, 2002. IEEE Internet Computing.

[Google Scholar] Google Scholar, http://scholar.google.com .

[HaDe 03] EMIR HALEPOVIC, RALPH DETERS: The Costs of Using JXTA.

[HeAbNe 99] HEGERING, H.-G., ABECK, S.: Integrated Management of Networked Systems –
Concepts, Architectures and their Operational Application. Morgan Kaufmann Pub-
lishers, ISBN 1-55860-571-1, 1999. 651 p.

[Heid 00d] USC/INFORMATION SCIENCES INSTITUTE: Effects of Detail in Wireless Net-
work Simulation, September 2000, http://www.isi.edu/ johnh/PAPERS/Heide-
mann00d.html . Submitted to SCS Communication Networks and Distributed Sys-
tems Modeling and Simulation Conference.

[HeRo 02] DANIEL HERRSCHER, KURT ROTHERMEL: A Dynamic Network Scenario Emula-
tion Tool. IPVR, University of Stuttgart.

[Herr 02] Modeling Computer Networks for Emulation., 2002.

[Hong 04] HONGHUI LUO AND M ICHEL BARBEAU: Performance Evaluation of Service Dis-
covery Strategies in Ad Hoc Networks. In CNSR ’04: Proceedings of the Second
Annual Conference on Communication Networks and Services Research (CNSR’04),
pages 61–68, Washington, DC, USA, 2004. IEEE Computer Society.

[Jain 91] JAIN , R.: The Art of Computer Systems Performance Analysis: Techniques for Exper-
imental Design, Measurement, Simulation, and Modeling. Wiley- Interscience, New
York, NY, 1991, http://www.cse.ohio-state.edu/ jain/books/perfbook.htm .

[JDO] JDO: Java Data Objects, http://java.sun.com/products/jdo/index.jsp .

[Jini] Jini Reference Implementation, http://www.sun.com/jini .

[JIST] BARR, RIMON: JiST - Java in Simulation Time (User Guide), 2003-2004,
http://jist.ece.cornell.edu/docs.html .

[JMeter] Apache JMeter - load test functional behavior and performance measurement.,
http://jakarta.apache.org/jmeter/ .

[JMX] Java Management Extensions (JMX), http://java.sun.com/products/
JavaManagement/ .

[JoFa 99] ”MOHAMED E. FAYAD , RALPH E. JOHNSON”: Building Application Frameworks:
Object-Oriented Foundations of Framework Design. John Wiley & Sons; 1 edition;
ISBN: 0471248754, 1999, http://www.wiley.com/legacy/compbooks/catalog/24875-
4.htm .

[JSim 03] Evaluation of J-Sim, http://www.j-sim.org/comparison.html .

[Junw 01] JUNWEI CAO, DARREN J. KERBYSON ANDGRAHAM R. NUDD: High Performance
Service Discovery in Large-scale Multi-agent and Mobile-agent Systems. Software
Engineering and Knowledge Engineering, International Journal of, 2001.

[JXTA a] Project JXTA v2.3: Java Programmer’s Guide, May 2003,http://www.jxta.
org/docs/JxtaProgGuide_v2.3.pdf .

[JXTA b] JXTA - Java-based peer-to-peer platform, http://www.jxta.org/ .

[JXTA c] JXTA Benchmark Project, http://bench.jxta.org/ .

[JXTA d] JXTA Monitoring Tool Project, http://jxta-monitor.jxta.org/ .

http://scholar.google.com
http://www.isi.edu/~johnh/PAPERS/Heidemann00d.html
http://www.isi.edu/~johnh/PAPERS/Heidemann00d.html
http://www.cse.ohio-state.edu/~jain/books/perfbook.htm
http://java.sun.com/products/jdo/index.jsp
http://www.sun.com/jini
http://jist.ece.cornell.edu/docs.html
http://jakarta.apache.org/jmeter/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/JavaManagement/
http://www.wiley.com/legacy/compbooks/catalog/24875-4.htm
http://www.wiley.com/legacy/compbooks/catalog/24875-4.htm
http://www.j-sim.org/comparison.html
http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf
http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf
http://www.jxta.org/
http://bench.jxta.org/
http://jxta-monitor.jxta.org/

112 BIBLIOGRAPHY

[Konn 04] KONNO, SATOSHI: CyberLink: Development Package for UPnP devices,
http://www.cybergarage.org/net/upnp/java/ .

[Lin et al. 05] LIN , SHIDING: WiDS: an Integrated Toolkit for Distributed System Development.
June 2005, http://research.microsoft.com/research/pubs/view.aspx?pubid=1398 .

[LoadRunner] Mercurry LoadRunner - performance and load testing tool,
http://www.mercury.com/us/products/performance-center/loadrunner/ .

[Lucio 03] G.F.LUCIO, M.PAREDES-FARRERA, E.JAMMELN , M.FEURY, M.J.REED: OPNET
Modeler and NS-2: Comparing the Accuracy of Network Simulators for Packet-Level
Analysis using a Network Testbed. 2003.

[Maie 00] MAIER, STEFFEN: Emulationskonzepte für Netze mit gemeinsamem Medium. Diplo-
marbeit.

[Mari 98] GOYENECHE, JUAN-MARIANO DE: Multicast-HOWTO,
http://www.linuxrx.com/HOWTO/sunsite-sources/Multicast-HOWTO.html .

[Milojicic et al. 02] Peer-to-Peer Computing, March 2002, http://www.hpl.hp.com/techreports/2002/HPL-
2002-57.html .

[NISTNet] NIST Net Home Page, http://www-x.antd.nist.gov/nistnet/ .

[NS2] NS2: The network simulator, http://www.isi.edo/nsnam/ns .

[NS2Emu] Network Emulation with the NS Simulator, http://www.isi.edu/nsnam/ns/ns-
emulation.html .

[NS2Nam] Nam: Network Animator, http://www.isi.edu/nsnam/nam/ .

[ObDu 03] JOHANN OBERLEITNER, SCHAHRAM DUSTDAR: Constructing Web Services out of
generic Component Compositions, 2003, citeseer.ist.psu.edu/708795.html .

[OPNET] OPNET Modeler, http://www.opnet.com/products/modeler/home.html . OPNET:
Making Networks and Applications Perform.

[PaFl 01] ”S. FLOYD , V. PAXSON”: Difficulties in simulating the Internet,
http://www.aciri.org/floyd/papers.html . IEEE/ACM Transactions on Network-
ing, Vol.9, No.4, pp.392-403, August, 2001.

[PaFl 97] Why We Don’t Know How To Simulate the Internet, 1997.

[Pidd 97] PIDD , M ICHAEL: Computer Simulation in Management Science. John Wiley and
Sons Ltd, ISBN: 0471979317, 1997, http://www.cse.ohio-state.edu/ jain/books/perf-
book.htm .

[Prefuse] Prefuse - toolkit for building visualizations of data, http://prefuse.sourceforge.net/ .

[RaGr 02] RAKOTONIRAINY, ANDRY and GREG GROVES: Resource Discovery for Perva-
sive Environments. In On the Move to Meaningful Internet Systems, 2002 - DOA/-
CoopIS/ODBASE 2002 Confederated International Conferences DOA, CoopIS and
ODBASE 2002, pages 866–883, London, UK, 2002. Springer-Verlag.

[RFC 1058] RFC 1058 - Routing Information Protocol, http://www.faqs.org/rfcs/rfc1058.html .

[RFC 2608] RFC 2608 - Service Location Protocol, Version 2,
http://www.faqs.org/rfcs/rfc2608.html .

[RFC 2614] RFC 2614 - An API for Service Location, http://www.faqs.org/rfcs/rfc2614.html .

[RFC 791] RFC 791 - Internet Protocol, http://www.faqs.org/rfcs/rfc791.html .

[RiAm 03] G. RILEY AND M. A MMAR : A generic framework for parallelization of network
simulations., 2002. In MASCOTS, Mar. 1999.

http://www.cybergarage.org/net/upnp/java/
http://research.microsoft.com/research/pubs/view.aspx?pubid=1398
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www.linuxrx.com/HOWTO/sunsite-sources/Multicast-HOWTO.html
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html
http://www-x.antd.nist.gov/nistnet/
http://www.isi.edo/nsnam/ns
http://www.isi.edu/nsnam/ns/ns-emulation.html
http://www.isi.edu/nsnam/ns/ns-emulation.html
http://www.isi.edu/nsnam/nam/
file:citeseer.ist.psu.edu/708795.html
http://www.opnet.com/products/modeler/home.html
http://www.aciri.org/floyd/papers.html
http://www.cse.ohio-state.edu/~jain/books/perfbook.htm
http://www.cse.ohio-state.edu/~jain/books/perfbook.htm
http://prefuse.sourceforge.net/
http://www.faqs.org/rfcs/rfc1058.html
http://www.faqs.org/rfcs/rfc2608.html
http://www.faqs.org/rfcs/rfc2614.html
http://www.faqs.org/rfcs/rfc791.html

BIBLIOGRAPHY 113

[Rizz 97] RIZZO, LUIGI: Dummynet: a simple approach to the evaluation of network
protocols. ACM Computer Communication Review, 27(1):31–41, 1997, cite-
seer.ist.psu.edu/rizzo97dummynet.html .

[Robi 03] ROBINSON, STEWART: Simulation: The Practice of Model Development
and Use. Wiley- Interscience, New York, NY, ISBN 0-470-84772-7, 2003,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470847727.html .

[Russ 00] RUSSELL BRADFORD, ROB SIMMONDS, BRIAN UNGER: A Parallel Dis-
crete Event IP Network Emulator. In MASCOTS, pages 315–, 2000, cite-
seer.ist.psu.edu/bradford00parallel.html .

[Salutation] The Salutation Consortium, Inc., http://www.salutation.org/ .

[Sato 03] SATOH, ICHIRO: Software Testing for Ubiquitous Computing Devices, 2003, cite-
seer.ist.psu.edu/576758.html . National Institute of Informatics.

[Scharioth et al. 04] DR. JOACHIM SCHARIOTH, DR. MARGIT HUBER, KATINKA SCHULZ, MARTINA

PALLAS : Horizons2020: Ein Szenario als Denkanstoss für die Zukunft. Eine Unter-
suchungsbericht der TNS Infratest Wirtschaftsforschung, München.

[Schi 04] SCHIELE, G. AND BECKER, C. AND ROTHERMEL, K.: Energy-Efficient Cluster-
based Service Discovery for Ubiquitous Computing. .

[SiBrUn 00] Applying parallel discrete event simulation to network emulation. IEEE Computer
Society, 2000. Washington, DC, USA.

[SiUn] Towards Scalable Network Emulation, 2001.

[SLP] An Introduction to the Service Location Protocol (SLP),
http://www.openslp.org/doc/html/IntroductionToSLP/ .

[SWANS] BARR, RIMON: SWANS - Scalable Wireless Ad hoc Network Simulator (User Guide),
2004, http://jist.ece.cornell.edu/docs.html .

[Timm 01] TIMMERMANS , HARRY: Models of activity scheduling behaviour. Stadt Region
Lang - Heft 71.

[UPnP Forum] The UPnP Forum, http://www.upnp.org .

[ViBa 02] V IKRAM V IJAYRAGHAVAN , JOHN J. BARTON: WISE – A Simulator Toolkit for
Ubiquitous Computing Scenarios, 2002, http://citeseer.ist.psu.edu/473651.html .

[VMWare] VMware Workstation: Powerful Virtual Machine Software,
http://www.vmware.com/products/desktop/wsfeatures.html .

[W3C] World Wide Web Consortium (W3C), http://www.w3.org/ .

[Wang 04] WANG, JUE: A Thesis: Performance Evaluation of a Resource Discovery Service,
2004. A Master Thesis.

[Weis 93] WEISER, MARK: Some computer science issues in ubiquitous computing. Commun.
ACM, 36(7):75–84, 1993.

[Wikipedia] Wikipedia - the free encyclopedia, http://en.wikipedia.org .

[Zhen 02] Expriences in Building a Scalable Distributed Network Emulation Systemn, Septem-
ber 2002.

[ZhMuNi 02] FENG ZHU AND MATT MUTKA AND L IONEL NI: Classification
of Service Discovery in Pervasive Computing Environments, 2002,
http://www.cse.msu.edu/ zhufeng/ServiceDiscoverySurvey.pdf . Michigan State
University, EastLansing.

file:citeseer.ist.psu.edu/rizzo97dummynet.html
file:citeseer.ist.psu.edu/rizzo97dummynet.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470847727.html
file:citeseer.ist.psu.edu/bradford00parallel.html
file:citeseer.ist.psu.edu/bradford00parallel.html
http://www.salutation.org/
file:citeseer.ist.psu.edu/576758.html
file:citeseer.ist.psu.edu/576758.html
http://www.openslp.org/doc/html/IntroductionToSLP/
http://jist.ece.cornell.edu/docs.html
http://www.upnp.org
http://citeseer.ist.psu.edu/473651.html
http://www.vmware.com/products/desktop/ws_features.html
http://www.w3.org/
http://en.wikipedia.org
http://www.cse.msu.edu/~zhufeng/ServiceDiscoverySurvey.pdf

114 BIBLIOGRAPHY

[ZhNi 02] P. ZHENG, L. M. N I: EMPOWER: A scalable framework for network emulation. In
Proceedings of the 2002., 2002.

[ZhNi 03] P. ZHENG, L. M. N I: EMPOWER: A Network Emulator for Wireline and Wireless
Networks. In Proceedings of the 2003., 2003.

	Titel
	Contents
	Introduction
	Motivation
	Structure of the Current Work

	Emulation Framework Requirements
	Use Cases
	Office Environment
	Requirements to the Emulation Framework

	Service Discovery
	Technical Background
	Service Discovery definition
	SD protocols popularity
	Service Discovery Protocol Examples
	Service Discovery Comparison
	Summary

	Related Work
	Overview
	Network Layers Simulation
	Measurement
	Visualization
	Summary

	Design of the ESKEm framework
	Design Overview
	Workload Components
	Network Simulation Component
	Measurement Component
	Visualization

	Implementation
	Installation and Execution
	Implementation Overview
	Emulation Scenario
	EskUnit
	Communication over the Simulated Network
	Simulated Network and JiST/SWANS
	Validation
	Summary

	Summary and Future Work
	Summary
	Future Work

	Emulation scenario example.
	ESKEm performance measurements.
	The OSI reference model.
	The Floyd-Warshall algorithm.
	Glossary
	Bibliography

