
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Parallelization of AES on
Raspberry Pi GPU in Assembly

Paul Pauls

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Parallelization of AES on
Raspberry Pi GPU in Assembly

Paul Pauls

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Dr. Nils gentschen Felde
Tobias Guggemos

Abgabetermin: 10. Juli 2017

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 10. Juli 2017

. .
(Unterschrift des Kandidaten)

Abstract

This thesis will conduct research upon the parallelization potential of the Raspberry Pi 1
GPU and if possible speed-up can be achieved through said parallelization. It answers
this question by documenting the parallelization of the Advanced Encryption block cipher
algorithm. Based on the byte manipulating complexity of AES, which GPU supported APIs
like OpenGL-ES can not offer, is a GPU specific assembly language chosen as the tool of
parallelization, which was created in the course of this thesis. The usability of the created
AES implementation and by extension the performance potential of the GPU is determined
by performing multiple benchmark tests comparing the GPU implementation as well as
OpenSSL, Rijndael, tiny-AES and a FIPS 197 reference implementation. The conducted
research shows the excellent speed-up potential provided by the GPU, even though the GPU
implementation is in its current form significantly lacking in efficiency. Despite problems
with the memory of the GPU, due to which the actually usable GPU memory is decreased
from 48 KB to 192 byte does the GPU implementation by far outperform tiny-AES and
the FIPS 197 reference. The GPU even performes the certainly improvable implementation
of AES on par with the highly optimized Rijndael CPU implementation once the data has
been transmitted to GPU memory. Though as of yet does the GPU performance of AES
lag behind AES performed by OpenSSL on the CPU. On the other hand does the created
GPU interface allow for an easier speed-up through parallelization on the GPU than high
optimiziation on the CPU.

v

Contents

1. Introduction 1

2. Background 3
2.1. The Advanced Encryption Standard . 3

2.1.1. The AES Block Algorithm . 4
2.1.2. Block Cipher Modes of Operation . 9

2.2. The Raspberry Pi . 13
2.2.1. The Raspberry Pi System-on-Chip . 13
2.2.2. The Raspberry Pi GPU Architecture 15

2.3. Related Work and Summary of AES on the GPU 17

3. QPU Assembly Language and Assembler 21
3.1. QASM - The RPi QPU Assembly Language 21

3.1.1. ALU Instructions . 21
3.1.2. Non-ALU Instructions . 25
3.1.3. QPU Register Map . 28
3.1.4. The Vertex Pipe Memory . 28
3.1.5. The Texture Memory Units . 34
3.1.6. QPU Termination . 35

3.2. Implementation of Assembler . 35
3.2.1. ALU Instruction Encoding . 36
3.2.2. Load Immediate Instruction Encoding 38
3.2.3. Branch Instruction Encoding . 38
3.2.4. Semaphore Instruction Encoding . 39

3.3. The GPU Kernel Driver . 39
3.3.1. Example Use of Kernel Driver . 43
3.3.2. Transmitting and Receiving Data through Kernel Driver 43

4. Implementation of AES 45
4.1. Implementation of AES on the CPU side . 45
4.2. Implementation of AES on the GPU side . 46
4.3. Summary and Problems of AES Implementation 51

5. Evaluation 53
5.1. Testsetup . 53
5.2. Experimental Results . 54
5.3. Discussion . 57

6. Summary and Future Work 61

A. Appendix 65

vii

Contents

List of Figures 69

List of Tables 71

Listings 73

Bibliography 75

viii

1. Introduction

In June 2013 the newspaper The Guardian published classified documents from the United
States National Security Agency (NSA) leaked to them by the disputed whistleblower Ed-
ward Snowden [Gua13]. The leaked documents outlined the digital surveillance undertakings
of tremendous scale conducted by the Five Eyes intelligence alliance consisting of the USA,
the UK, Canada, Australia and New Zealand. The use of the surveillance tools crafted in
the process was diverse and the Five Eyes alliance used them in ways ranging from observing
the citizens of their own countries via access to smartphone messengers and social networks,
to wiretapping the phone of German chancellor Angela Merkel [Reu13].

The resulting scandal caused a significant change in the mindset of companies, online-
communities and security-minded individuals making them realize not just the importance
but the necessity of encryption in the digital age. According to the network equipment
company Sandvine, the use of encryption in the Internet has risen to 70% in 2016 with many
networks exceeding 80% [San16]. Mobile network communication had at least 60% of their
traffic encrypted. The need for optimized encryption is therefore obvious, even more so on
mobile and Internet-of-Things (abbr. IoT) devices which lack the processing power of a
traditional computer and are dependent upon optimization to keep pace.

One of the most popular of such IoT devices is the Raspberry Pi - a Single-Board Com-
puting Platform released in February 2012. Being the first credit-card sized computing
platform it grew to be to most popular choice with over 10 million units sold up to Au-
gust 2016 [Ltd16]. In February 2016 the Raspberry Pi was released in its third iteration,
each improving on CPU-Power, RAM and available peripherals. Nevertheless features every
version the same powerful but largely unused Graphics Processing Unit (abbr. GPU) with
a theoretical maximum processing power of 24GFLOPs distributed over 12 compute units.
However even though every Raspberry Pi iteration features the same GPU, its manufac-
turer only released the GPU kernel driver for the System-on-Chip of the first Raspberry Pi
iteration - making it an aspect of this thesis to study the accessibility of later iterations.

All in all can be said that the Raspberry Pi - foremost its first iteration - represents a
class of IoT devices with a weak embedded processor but powerful parallelized GPU. On
the other hand are the encryption algorithms which are required to protect from illegitimate
access very resource-intensive, especially for those weak embedded processors of IoT devices,
though a variety of the most popular encryption algorithms are well parallelizable. Therefore
does the Raspberry Pi also represent a class of IoT devices upon which the contradiction of a
resource-intensive encryption and a weak embedded processor can be solved by parallelizing
the encryption on the GPU.

This thesis will address the potential of speeding up one of the most widespread, secure and
parallelizable encryption algorithms - the Advanced Encryption Standard (abbr. AES) - on
the Raspberry Pi 1 Single-Board Computing Platform. The Advanced Encryption Standard
was choosen as it is trusted by the U.S. goverment and numerous private organizations as
the standard for encrypting even highly confidential information of their own, to protect
it even from members of their own Five Eyes alliance. The AES algorithm arised as the

1

1. Introduction

most secure encryption algorithm proposed in the selection process for the next encryption
standard held in 2001. It competed against rivaling encryption algorithms such as Twofish
and Serpent [NIS97], was examined by numerous cryptography experts and is still considered
to be unbroken and deemed secure despite the efforts of the Five Eyes alliance [Sch12].
Furthermore does AES provide a high potential for speedup by parallelization. Because of
AES being a block cipher can the encryption of multiple blocks be parallelized trivially by
distributing the task of single block encryption to single computation units of a parallel
system. The Raspberry Pi 1 offers 12 of those parallelizable compute units on its GPU,
promising a significant speedup of encryption on an IoT device and an interesting study.

Approach of this Thesis

The approach undertaken in this thesis plays out as following: First of all is the necessary
background knowledge established in chapter 2, which will outline the exact specifications
of the Advanced Encryption Standard and how it can be parallelized on multiple compute
units. Furthermore will the second chapter touch upon the Raspberry Pi GPU Architecture,
as understanding its design and interaction with the CPU is crucial for a well implemented
parallelization. Chapter 2 will close with a short summary of the established background
while shortly introducing related research, which is limited.

Chapter 3 will provide a detailed look into how exactly general purpose computation can
be realized on the Raspberry Pi GPU. The chapter accomplishes this by detailing on the
created programming language that can generally be described as GPU specific assembly,
how this programming language is assembled to GPU usable binaries and finally how the
assembled binaries and possible additional data are transferred to the GPU for execution.

With this information about the programming of the GPU in mind will chapter 4 exten-
sively introduce the implementation of AES on the GPU, which was created in the course
of this thesis. The implementation is detailed by mirroring the specifications of the sin-
gle components of the AES algorithm which were introduced in the background chapter.
This chapter will close by outlining the significant problems encountered during the imple-
mentation of the AES algorithm on the GPU, which significantly affect the results of the
experiments conducted in the final research chapter.

Chapter 5 will explain and showcase the conducted experiments, trying to give an answer to
the initial question of this thesis about the GPU’s possible parallelization potential. The last
section of this chapter will provide the important discussion of those conducted experiments,
drawing some optimistic conclusions. After all tests and measurements have been thoroughly
examined will the final chapter 6 recapitulate on the undertaken creation and improvement
of code, conducted research and achieved testresults. This thesis will end with a drawn
conclusion to the question about the GPU’s potential and listing of various ideas for future
research based on the achieved results.

2

2. Background

In order to parallelize any algorithm it is first necessary to know the exact specifictions of
this algorithm, which is why the first section will extensively outline the AES block cipher
algorithm. In the case of AES more specifically is also a firm understanding of the possible
block cipher modes of operation required to determine how AES can be parallelized best on
the GPU. Following in the second chapter will be an extensive documentation of the hardware
and especially the GPU of Raspberry Pi 1 Model B. A final summary of this chapter and
short outlook to related work in section three, will specify how the AES algorithm is best
implemented on the GPU and will therefore bridge to chapter 3, providing the information
to access the hardware outlined in this chapter.

2.1. The Advanced Encryption Standard

The Advanced Encryption Standard is a symmetric block cipher algorithm that was first
proposed in 1998 as a subset of the Rijndael cipher and standardized in 2002 by the Na-
tional Institute of Standards and Technology (abbr. NIST). According to NIST it is the
only symmetric encryption algorithm secure enough to encrypt top secret government docu-
ments [NIS01]. To this day there are no known software attacks that significantly lower the
complexity of decrypting AES without any information about the used key [Ou06], however
there are very successful side-channel attacks involving access to hardware [Sah09].

A block cipher algorithm like AES is a deterministic encryption algorithm operating on a
fixed-length group of bits, called blocks, which in the case of AES is 128 bits, which translate
to 16 bytes. The encryption algorithm furthermore only needs a key and the text one
would like to encrypt, called plaintext, to create an unreadable text, called ciphertext. This
ciphertext can only be decrypted and therefore read if one is in possession of the decryption
key. AES is a symmetric block cipher, because it uses the same key for encryption as it does
for decryption.

Calling an encryption algorithm an AES algorithm does however only partially specify
the encryption, as a block cipher encryption algorithm consists of two concepts. The AES
algorithm determines the first one of these two concepts, that is: AES determines how to
encrypt a single block (16 bytes in AES) of data. AES does not determine how to handle
the data if the input into the encryption algorithm is larger than one block, which is the
second of the two concepts. This is determined by the block cipher mode of operation, e.g.
the ECB mode, the CBC mode or the CTR mode to name the most popular ones. Basically,
a block cipher mode of operation determines if each block of data is treated in reclusion, or
if the input blocks influence each other during en-/decryption and if so, in which way.

Therefore, to correctly specify the encryption method when using AES, one has to specify
the block cipher mode of operation as well. Hence is the first section dedicated to explaining
the AES algorithm and how it encrypts and decrypts a single block of data. The second sec-
tion addresses how AES works in combination with different block cipher modes of operation,
namely AES-ECB, AES-CBC and AES-CTR.

3

2. Background

2.1.1. The AES Block Algorithm

The AES algorithm requires a 16-byte block of plaintext and a key of either 128-bit, 192-bit
or 256-bit length as input. A bigger sized key results in a better protection for the resulting
ciphertext by making brute force attacks more ineffective [Axa08]. The block of plaintext is
best looked upon as a 4x4 matrix, termed state throughout the algorithm, as a lot of AES
functions perform matrix-like operations on the state. Initially the 16 bytes of the plaintext
have the corresponding positions as shown in illustration 2.1, which is displaying a 16-byte
block in memory.

...

byte0

byte2

byte1

byte3

byte14
byte15

byte0

byte8

byte4

byte12

byte1

byte5

byte9

byte13

byte2

byte6

byte10

byte14

byte3

byte7

byte11

byte15

16-byte Block
 in Memory

 Seen as 4x4 Matrix
throughout Algorithm

Illustration 2.1.: 16-byte Block in Memory seen as State-Matrix

After the supplied key is then applied to the plaintext according to the AES encryption
algorithm, the state-matrix then represents the 16-byte block of ciphertext. This ciphertext
can in turn be decrypted again by using the same key and the slightly different AES de-
cryption algorithm. Both algorithms of AES - encryption and decryption - consist of four
major parts and can be reduced to the operations depicted in illustration 2.2. The inverse
functions used in decryption differ only slightly from the regular functions, nonetheless will
each function be explained in detail in the paragraphs following.

First of all is the initially supplied key determinstically expanded in key expansion()

in order to provide a sufficient amount of different round-keys for every application of the
add round key() function, which is called a total of 11 to 15 times throughout the algo-
rithm. The key takeaway with round-keys is that they need to be different for every call of
the add round key() function while also being deterministically dependent on the initially
supplied key.

Following the add round key() function which is making up the whole Initial-Encryption-
Round, is the start of the Cycling-Encryption-Rounds. The Cycling-Encryption-Rounds
consist of sub bytes(), shift rows(), mix columns() and add round key() in that order
or the corresponding inverse functions when decrypting. The functions in the Cycling-
Encryption-Rounds unit are repeated multiple times depending on the different key-sizes,
meaning dependent on the intended strength of the encryption. These total cycling numbers
are the same for encryption and for decryption and depend on the size of the initially supplied
key (9 total cycles for 128-bit keys, 11 total cycles for 196-bit keys, 13 total cycles for 256-bit
keys).

4

2.1. The Advanced Encryption Standard

key_expansion()

inv_shift_rows()

inv_sub_bytes()

inv_add_round_key()

inv_mix_columns()

inv_shift_rows()

inv_sub_bytes()

inv_add_round_key()

inv_add_round_key()

Repeat for a total number of
• 9 times for 128 bit key
• 11 times for 192 bit key
• 13 times for 256 bit key

Key Expansion

Initial
Decryption
Round

Cycling
Decryption
Rounds

Final
Decryption
Round

Cipher-
text

Plain-
text

Key

key_expansion()

sub_bytes()

shift_rows()

mix_columns()

add_round_key()

sub_bytes()

shift_rows()

add_round_key()

add_round_key()

Repeat for a total number of
• 9 times for 128 bit key
• 11 times for 192 bit key
• 13 times for 256 bit key

Key Expansion

Initial
Encryption
Round

Cycling
Encryption
Rounds

Final
Encryption
Round

Plain-
text

Cipher-
text

Key

E
n

c
ry

p
ti

o
n

D
e
c
ry

p
tio

n

Illustration 2.2.: AES Encryption (left) and AES Decryption (right) Algorithm

The different encryption strengths of the AES algorithm differ only in the quantity of rep-
etition cycles for the Cycling-En-/Decryption-Rounds and the therefore necessary different
keysize (128-bit, 192-bit or 256-bit) and corresponding slightly different key expansion().
Finally the algorithm closes with a Final-En-/Decryption-Round, which is basically the same
as the Cycling-En-/Decryption-Round except for leaving out the mix columns() function or
inv mix columns() function respectively.

The 16-byte matrix-state after the Final-Encryption-Round is the resulting ciphertext.
When decrypting the matrix-state represents the plaintext after the Final-Decryption-Round.

The add round key() and inv add round key() functions

The add round key() function XORs the 16-byte matrix-state with the current round-key.
A round-key is a 16-byte part of the expanded-key, which in turn is the result of the deter-
ministically expanded initial key from the key expansion(). It is called round-key because
every round-key is only used once in the 11 to 15 total calls of the add round key() func-
tion, therefore making each call effectively a round. Being as the function only XORs two
16-byte values, the implementation is trivial and listed as A.1 in the appendix. The inverse
function differs from the regular function in the aspect that the inverse function applies the
round-keys in reversed order - so it applies the last 16-byte round-key of the expanded-key
first. The way it applies those round-keys however is identical.

5

2. Background

The sub bytes() and inv sub bytes() functions

Sub bytes() aims to bring non-linear diffusion into the encryption by substituting all bytes
of the state-matrix with their multiplicative inverse value in the Galois Field (28) (abbr. GF
(28)). This is achieved by considering the byte that is supposed to be substituted as the
index of a 256-byte lookup table, which holds exactly that multiplicative inverse value in
the GF (28) that corresponds to the index. This 256-byte lookup table, that accelerates the
calculation of the multiplicative inverse of value x by simply precomputing it and saving it at
the index x, is termed Substitution Box (abbr. S-box). The details of computation in the GF
(28) are further outlined in the section covering mix columns(), as acutal multiplications in
the GF (28) is a regular part of the AES algorithm.

The inverse S-box for decryption is derived by finding the multiplicative inverse in GF
(28) of each value in the regular S-box. This makes the inverse S-box therefore the regular
S-box run in reverse, meaning that simply the index and the index corresponding value get
switched. Listing 2.1 showcases the regular S-box and the simple byte substition that make
up the sub bytes() function, while the inverse S-box is listed in the appendix as listing A.2.

1 void sub_bytes(uint8_t *state)
2 {
3 static const uint8_t sbox[] = {
4 0x63 , 0x7C , 0x77 , 0x7B , 0xF2 , 0x6B , 0x6F , 0xC5 , 0x30 , 0x01 , 0x67 , 0x2B , 0xFE , 0xD7 , 0xAB , 0x76 ,
5 0xCA , 0x82 , 0xC9 , 0x7D , 0xFA , 0x59 , 0x47 , 0xF0 , 0xAD , 0xD4 , 0xA2 , 0xAF , 0x9C , 0xA4 , 0x72 , 0xC0 ,
6 0xB7 , 0xFD , 0x93 , 0x26 , 0x36 , 0x3F , 0xF7 , 0xCC , 0x34 , 0xA5 , 0xE5 , 0xF1 , 0x71 , 0xD8 , 0x31 , 0x15 ,
7 0x04 , 0xC7 , 0x23 , 0xC3 , 0x18 , 0x96 , 0x05 , 0x9A , 0x07 , 0x12 , 0x80 , 0xE2 , 0xEB , 0x27 , 0xB2 , 0x75 ,
8 0x09 , 0x83 , 0x2C , 0x1A , 0x1B , 0x6E , 0x5A , 0xA0 , 0x52 , 0x3B , 0xD6 , 0xB3 , 0x29 , 0xE3 , 0x2F , 0x84 ,
9 0x53 , 0xD1 , 0x00 , 0xED , 0x20 , 0xFC , 0xB1 , 0x5B , 0x6A , 0xCB , 0xBE , 0x39 , 0x4A , 0x4C , 0x58 , 0xCF ,

10 0xD0 , 0xEF , 0xAA , 0xFB , 0x43 , 0x4D , 0x33 , 0x85 , 0x45 , 0xF9 , 0x02 , 0x7F , 0x50 , 0x3C , 0x9F , 0xA8 ,
11 0x51 , 0xA3 , 0x40 , 0x8F , 0x92 , 0x9D , 0x38 , 0xF5 , 0xBC , 0xB6 , 0xDA , 0x21 , 0x10 , 0xFF , 0xF3 , 0xD2 ,
12 0xCD , 0x0C , 0x13 , 0xEC , 0x5F , 0x97 , 0x44 , 0x17 , 0xC4 , 0xA7 , 0x7E , 0x3D , 0x64 , 0x5D , 0x19 , 0x73 ,
13 0x60 , 0x81 , 0x4F , 0xDC , 0x22 , 0x2A , 0x90 , 0x88 , 0x46 , 0xEE , 0xB8 , 0x14 , 0xDE , 0x5E , 0x0B , 0xDB ,
14 0xE0 , 0x32 , 0x3A , 0x0A , 0x49 , 0x06 , 0x24 , 0x5C , 0xC2 , 0xD3 , 0xAC , 0x62 , 0x91 , 0x95 , 0xE4 , 0x79 ,
15 0xE7 , 0xC8 , 0x37 , 0x6D , 0x8D , 0xD5 , 0x4E , 0xA9 , 0x6C , 0x56 , 0xF4 , 0xEA , 0x65 , 0x7A , 0xAE , 0x08 ,
16 0xBA , 0x78 , 0x25 , 0x2E , 0x1C , 0xA6 , 0xB4 , 0xC6 , 0xE8 , 0xDD , 0x74 , 0x1F , 0x4B , 0xBD , 0x8B , 0x8A ,
17 0x70 , 0x3E , 0xB5 , 0x66 , 0x48 , 0x03 , 0xF6 , 0x0E , 0x61 , 0x35 , 0x57 , 0xB9 , 0x86 , 0xC1 , 0x1D , 0x9E ,
18 0xE1 , 0xF8 , 0x98 , 0x11 , 0x69 , 0xD9 , 0x8E , 0x94 , 0x9B , 0x1E , 0x87 , 0xE9 , 0xCE , 0x55 , 0x28 , 0xDF ,
19 0x8C , 0xA1 , 0x89 , 0x0D , 0xBF , 0xE6 , 0x42 , 0x68 , 0x41 , 0x99 , 0x2D , 0x0F , 0xB0 , 0x54 , 0xBB , 0x16}
20
21 for (int i = 0; i < 16; i++) {
22 state[i] = sbox[state[i]];
23 }
24 }

Listing 2.1: Implementation of sub bytes() in C

The shift rows() and inv shift rows() functions

As the state throughout the encryption should be considered a matrix as outlined in il-
lustration 2.1, will shift rows() perform a circular left shift on the bytes of each row,
with each row shifting left differently. Inv shift rows() performs the shifts analogue to
the right as the regular function performs them to the left. Note that shift rows() and
inv shift rows() do not perform a bitwise shift but rather a bytewise shift on the positions
of the bytes in the matrix-state. In accordance to illustration 2.3, which displays both func-
tions, will shift row() leave the first row untouched, shifts the bytes of the second row one
to the left, shifts the bytes of the third row two to the left and shifts the bytes of the fourth
row three to the left. Inv shift rows() works analogue shifting the bytes to the right.

6

2.1. The Advanced Encryption Standard

s0 s4 s8 s12

s13s9s5s1

s2

s3

s6

s7

s10

s11

s14

s15

s0 s4 s8 s12

s1s13s9s5

s10

s15

s14

s3

s2

s7

s6

s11

shift_rows()

s0 s4 s8 s12

s13s9s5s1

s2

s3

s6

s7

s10

s11

s14

s15

s0 s4 s8 s12

s9s5s1s13

s10

s7

s14

s11

s2

s15

s6

s3

inv_shift_rows()

no change

Right shift by 1

Right shift by 2

Right shift by 3

no change

Left shift by 1

Left shift by 2

Left shift by 3

Illustration 2.3.: Functionality of shift rows() and inv shift rows()

The mix columns() and inv mix columns() functions

Mix columns() is the primary source of diffusion in the matrix-state during the encryption,
as sub bytes() is primarily used as a nonlinear function to harden the encryption against
parallelization in brute-force attacks [Pre98]. Both mix columns() and inv mix columns()

perform simply a matrix multiplication in the Galois Field (28) of the state-matrix and a
special mixing matrix. When multiplying both matrices in the GF (28) does the multiplica-
tion of single elements follow a special algorithm, while the addition is performed by simply
XORing both byte values. The regular mix columns() and its inverse function differ only
in the used special mixing matrix, both displayed in illustration 2.4, but are identical aside
from that.

0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

0x0e 0x0b 0x0d 0x09

0x09 0x0e 0x0b 0x0d

0x0d 0x09 0x0e 0x0b

0x0b 0x0d 0x09 0x0e

Illustration 2.4.: Mixing Matrices of the Encryption (left) and Decryption (right)

The special algorithm used most often for the multiplication of single elements in the
GF (28) is the Russian Peasant Multiplication Algorithm shown in listing [Wik17d]. If the
intricacy of performing the addition and multiplication in the GF (28) is considered, can the
mix columns() and inv mix columns() functions otherwise be regarded as regular matrix
multiplications. A listing showcasing the actual reference implementation of mix columns(),
which also utilizes the galois mul() function shown below can be found in the appendix as
listing A.3.

7

2. Background

1 uint8_t galois_mul(uint8_t a, uint8_t b)
2 {
3 uint8_t p = 0; // p as the product of the multiplication
4
5 while (b) {
6 if (b & 1) { // If b odd , then add corresponding a to p
7 p = p ^ a; // In GF (2^8) , addition is XOR
8 }
9 if(a & 0x80) { // If a >= 128 it will overflow when shifted left , so reduce

10 a = (a << 1) ^ 0x11b; // XOR with primitive polynomial x^8 + x^4 + x^3 + x + 1
11 } else {
12 a <<= 1; // Multiply a by 2
13 }
14 b >>= 1; // Divide b by 2
15 }
16 return p;
17 }

Listing 2.2: Implementation of galois mul() in C

The key expansion() function

The AES key expansion serves to expand the initially provided key of 128-bit, 192-bit or
256-bit to a larger expanded-key in order for every call of the add round key() function to
have its own round-key. Different round-keys rather than the same initially provided key
are used to increases the security of AES. Though because it would mean an impractically
large initial key if all round-keys would have to be supplied to the AES algorithm, does
the key expansion deterministically compute all 11 to 15 required round-keys from a single
128-bit to 256-bit initial key. This single initially provided key therefore also serves as the
first round-key. As the add round key() function is called 11 times for a 128-bit key, 13
times for a 192-bit key and 15 times for a 256-bit key, does the expanded-key have to store
176 bytes for the 128-bit key, 208 bytes for the 192-bit key and 240 bytes for the 256-bit key.

All three key expansion algorithms differ but are deterministic and solely based on the
initially provided key. Therefore, if more than one block has to be encrypted or decrypted
with the same key, the key only has to be expanded once. The same applies in regards
to Encryption and Decryption, as both use the same key expansion algorithm is it only
necessary to expand the key once.

Furthermore do the key expansion algorithms coincide in their basic procedure. First of all
is the initially supplied key copied into the expanded key as the first round key. Iteratively,
until all required round-keys are derived, is then the following round-key computated from
the previous one. The three key expansion algorithms differ only in this step in the regard
that each algorithm chooses a different 32-bit excerpt to be computed with a special equation.
The remaining parts of a round-key is simply calculated by XORing different parts of the
previous round-key. All the while is the calculation of the specially computed excerpts done
by applying special functions such as sub word(), rot word() and rcon word() as displayed
in the example expansion of a 128-bit key in listing 2.3 and detailed in the paragraphs below.
Listings of the remaining two key expansion algorithms can again be found in the appendix.

A very important remark is the assessment that the key expansion is barely parallelizable
because the next iteration of a round-key is very dependent on the previous round-key.
However is it only necessary to perform the key expansion once, suggesting a key expansion
on the fastest processing core before passing the trivially parallelizable blocks together with
the expanded key to the parallel hardware.

8

2.1. The Advanced Encryption Standard

1 key_128_expansion(uint8_t key [16])
2 {
3 uint8_t expandedKey = new expandedKey [176]; // Create expandedKey of 176 bytes
4
5 memcpy(expandedKey , key , 16); // Initial key is basis to expand upon
6
7 for (int round = 4; round < 44; round ++) { // 44 rnds of 32-bit value computation
8 if (round % 4 == 0) { // Special computation every fourth rnd
9 expandedKey[round * 4] = sub_word(rot_word(expandedKey [(round - 1) * 4]))

10 ^ rcon_word ((round / 4) - 1)
11 ^ expandedKey [(round - 4) * 4];
12 } else {
13 expandedKey[round * 4] = expandedKey [(round - 1) * 4]
14 ^ expandedKey [(round - 4) * 4];
15 }
16 }
17 }

Listing 2.3: Key Expansion Algorithm for 128-bit Key in C

sub word() is very similar to the previously explained sub bytes() function of the block
algorithm. While sub bytes() has an input of one byte, does the sub word() function take
four bytes as input and replace these four bytes with the corresponding bytes of the S-box.
It is important to emphasize that because the encryption and decryption use the same key
expansion algorithms, the sub word() function only ever uses the regular S-box, never the
inverse S-box.

rot word() takes four bytes as input and performs a one byte circular left shift, very sim-
ilar to the shift rows() function. Illustration 2.5 provides a visualization of the simple
functionality of rot word().

a1a4a3a2
rot_word()a4a3a2a1

Left shift by 1

Illustration 2.5.: Visualization of the rot word() Functionality

rcon word() receives an input integer in the range of 0 to 9 while returning four bytes.
The function will return the exponentiation of 2 to the given input in Rijndael’s finite field
[Ben12] as the first byte, while zeroing out the remaining three bytes. Listing 2.4 exhaustively
illustrates this simple function.

1 uint32_t rcon_word(uint32_t input)
2 {
3 rcon [10] = {0x01000000 , 0x02000000 , 0x04000000 , 0x08000000 , 0x10000000 ,
4 0x20000000 , 0x40000000 , 0x80000000 , 0x1B000000 , 0x36000000}
5
6 return rcon[input];
7 }

Listing 2.4: Implementation of rcon word() in C

2.1.2. Block Cipher Modes of Operation

In cryptography, a mode of operation states the algorithm according to which a symmetric
block cipher (like AES) is securely applied onto multiple blocks of input. These modes of
operation can differ significantly, ranging from applying the block cipher on each input block
separately - as done in the ECB mode - to needing an initialization vector (abbr. IV) as
a third input and enmeshing the encryption of every input block with the preceding input

9

2. Background

block - as dictated by the CBC mode. The CTR mode is a recent and very original mode of
operation, in that it turns a block cipher encryption into a stream cipher that encrypts the
plaintext one bit at a time instead of operating on blocks of fixed size.

ECB Mode - Electronic Codebook Mode

The Electronic Codebook mode of operation is the most straighforward block cipher mode of
operation, in that it treats the encryption of every block in reclusion. The plaintext is divided
into block-sized chunks, which in the case of AES is always 16 bytes as the only supported
blocksize. Onto each block is then the encryption block algorithm applied in reclusion,
without the influence of any other factor. Therefore the ECB mode is basically the vanilla
version of the used block encryption algorithm - AES in this context. If the plaintext is
not a multiple of 16 bytes - or more generally speaking a multiple of the block-size - then
the last block needs to be padded. The simplest way to pad a block is to add null bytes
until the block consists of the required 16 bytes, though more sophisticated padding schemes
exist. However as padding has no significant influence on the speed of the encryption is it
not relevant when determining achievable speed-up of an encryption through parallelization.
Illustration 2.6 showcases the encryption and decryption scheme of the Electronic Codebook
mode, summarzing the simplicity of this scheme.

Illustration 2.6.: ECB Encryption Mode (Top) and ECB Decryption Mode (Bottom)
[Wik17c]

Unfortunately though does the simplicity of ECB also create its biggest disadvantage.
Identical plaintext blocks are encrypted into identical ciphertext blocks and because ECB
does not further mix up the created ciphertext but rather retains the ciphertext blocks in
the same order as the plaintext blocks, can single blocks easily be identified and checked for
alikeness. Thus, ECB does not hide data patterns well and is generally not recommended
because of it. This flaw of ECB is most visible when encrypting monotonous pictures as
visualized in illustration 2.7. The monotonous white background and uniformly coloured
form of tux makes for a very obvious data pattern and is therefore very susceptible to ECB’s
flaw. The CBC mode comes to the rescue in this regard as it creates sufficient pseudo

10

2.1. The Advanced Encryption Standard

randomness to effectively encrypt plaintext with data patterns.

Illustration 2.7.: Illustration of the ECB Data Pattern Flaw [Wik17e]

Nonetheless does ECB provide excellent potential for GPU parallelization, as AES-ECB
is trivially parallelizable by simply passing the job of encrypting different blocks to different
compute units. Doing so creates no interdependence between the compute units at all,
allowing the speed-up to scale in unison with the number of available compute units.

CBC Mode - Cipher Block Chaining Mode

The Cipher Block Chaining mode of operation is together with the CTR mode one of the
two block cipher modes of operation considered most secure and recommended by such
renowned cryptologists as Bruce Schneier or Nils Ferguson [Lip00]. The basic principle of
CBC mode is to process each block one after another by first XORing the ciphertext of the
preceding block with the plaintext of the block that is about to be encrypted before regularly
encrypting it with the block cipher algorithm. This way is each ciphertext block dependent
on all plaintext blocks processed up to that point, which in return adds enough pseudo-
randomness to effectively encrypt plaintexts with a high rate of data patterns. Despite this
dependence and pseudo-randomness however is at least the decryption parallelizable, as in
decryption each block only has to be XORed with the easily identifiable ciphertext of the
preceding block - see illustration 2.8.

As of course the first block to encrypt does not have a preceding ciphertext with which the
first block can be XORed, a so-called initialization vector is used instead. This initialization
vector is of regular block-size and must vary for different keys as it would otherwise provide
side-channel information enabling an easier reverse-engineering of the used key. However the
IV does not need to be secret, but rather needs to be shared with the communication partner
to enable him to successfully decrypt the first ciphertext. Not sharing the IV expresses
itself in not being able to decrypt the first block of ciphertext, nonetheless can subsequent
ciphertext-blocks be correctly decrypted as the necessary preceding ciphertexts are obviously
present.

Due to CBC being a block cipher mode of operation, it operates on full block-sizes and can
therefore require padding in the last block. CBC’s main drawback is the necessary sequen-
tiality in its encryption, making the encryption impossible to parallelize. The decryption
however is parallelizable as outlined, though it is significantly more elaborate and resource

11

2. Background

Illustration 2.8.: CBC Encryption Mode (Top) and CBC Decryption Mode (Bottom)
[Wik17a]

intensive as the trivially parallelizable decryption of the ECB mode. Even though AES-CBC
is therefore only partially parallelizable, due to its good security properties and the resulting
popularity should its potential of parallelizability on IoT devices be further explored.

CTR Mode - Counter Mode

The Counter mode of operation is unconventional in that it turns a block cipher encryption
into a stream cipher encryption. A stream cipher encryption typically combines every bit
with a bit of the keystream. A keystream is a source of pseudorandom bits that is necessary
for a stream cipher. Pseudorandomness in the keystream means that it seems to be a
random sequence of bits but actually isn’t, as the same pseudorandom keystream needs
to be generated again in decryption. Therefore is the keystream generation necessarily
deterministic.

In the CTR mode, the keystream results from block cipher encrypting a 16-byte initializa-
tion vector combined with a counter - a simple value that is incremented for each consecutive
block the input is applied to. Because the counter is incremented by one (sufficient and most
popular) and then added to the IV, the input for each block encryption is slightly different.
As it is a property of a good block cipher encryption algorithm like AES to have high diffu-
sion in the ciphertext on even minutely different inputs, the results of this first encryption
of the IV plus counter serve as an endless pseudorandom keystream. This pseudorandom
keystream is therefore deterministic and easily replicable knowing the IV and key - a nec-
essary requirement for the keystream. Though unlike in CBC mode will the ignorance of
the IV render the recipient of the ciphertext unable to decrypt it. In accordance with CBC
however is it necessary to have different IVs for different keys, as it would otherwise provide
side channel information.

The ciphertext in CTR mode is eventually generated by XORing the keystream with
the plaintext bit for bit. As the XOR operation is reversible by repeated application, is

12

2.2. The Raspberry Pi

decryption done by simply generating the same keystream but then XORing it with the
ciphertext - resulting in the original plaintext. This scheme makes padding of the original
plaintext unnecessary as each bit is XORed independently of any surrounding bits, enabling
the stream cipher to securely stop whenever it runs out of plaintext. It is important to note
that both encryption and decryption use the encryption block algorithm when generating
the keystream. Illustration 2.9 will give a good overview and recap of the CTR mode.

Illustration 2.9.: CTR Encryption Mode (Top) and CTR Decryption Mode (Bottom)
[Wik17b]

Although unconventional, the CTR mode of operation is highly secure and more impor-
tantly parallelizable in encryption and decryption, making it suitable for acceleration tests
on GPUs of mobile devices. The parallelization is possible because the deterministic prop-
erty of the keystream generation enables random-reads and therefore compartmentalisation,
which in turn enables the distribution of the encryption to different compute units.

2.2. The Raspberry Pi

The Raspberry Pi 1 model B used in this thesis (see illustration 2.10) is a credit card-sized
single-board computer. Its GPU is far outperforming its CPU according to their specified
theoretical maximum performance, making the Raspberry Pi well suited for the attempt of
AES acceleration by GPU on an IoT device. Developed in the United Kingdom and released
in mid 2012, it quickly grew to being the most popular single-board computer [Ltd16]. When
both follow up models, the Raspberry Pi 2 and the Raspberry Pi 3, are included, the sales
total to over 11 million units up to November 2016 [Mag17].

2.2.1. The Raspberry Pi System-on-Chip

The Raspberry Pi 1 has a Broadcom manufactured System-on-a-Chip - the BCM2835 - that
accomodates the CPU, the GPU and 512 MB of SDRAM on a single die on the center

13

2. Background

Illustration 2.10.: Raspberry Pi 1 model B [ELi17]

of the board. The featured CPU is a 32-bit RISC ARM Processor based on the ARMv6
architecture, namely the ARM1176JZF-S. The standard clock frequency is set at 700 MHz
although it is possible to overclock it to a frequency of up to 1 GHz at the cost of serious
instability [Mol15]. The CPU also has access to two caches - the first level one having 16
KB and the second level one having 128 KB, although the second level one is shared with
the GPU. Equipping the SoC with 512 MB of SDRAM was standard for all Raspberry Pis
that have been produced following the 15. Oct of 2012 as the previous 256 MB of SDRAM
were insufficient [Far16]. The Raspberry Pi used in this thesis is equipped with 512 MB of
SDRAM. All in all does the theoretical maximum performance of the CPU add up to 1.4
Single Precision GFLOPS - calculated by multiplying the number of cores (1), the provided
clock frequency (0.7 GHz) and the number of operations per cycle (2) according to ARM’s
specifiction of the chip [ARM17a].

The GPU on the other hand is theoretically far more potent than the CPU. The GPU
is a VideoCore IV model that was developed by Alphamosaic Ltd and is featured in all
three Raspberry Pi models. It provides a clock frequency of 250 MHz on each of its 12
parallelized processing units and features a basic pipeline functionality, which brings its
theoretical maximum performance to an impressive 24 Single Precision GFLOPS according
to its hardware specifications [Bro12].

Given the enormous difference in theoretical maximum performance between the CPU
and the GPU by a factor greater than 17, does the use of the GPU promise a great potential
for speed-up. This however can only be achieved under the assumption of sufficient and well
used access to the GPU as well as an effectively parallelizable algorithm - which is given for
AES when used in combination with the trivially parrallelizable block cipher mode ECB. A
sufficient - although in many aspects still lacking - access and documentation of the GPU
has been made possible in early 2014. In March 2014 did Broadcom and the Raspberry Pi
foundation release the Architecture Reference Guide (abbr. ARG) of the VideoCore IV GPU
in conjunction with the GPU kernel driver for the BCM2835 architecture. Though each of the
three Raspberry Pi iterations feature the VideoCore IV GPU for which the ARG is intended,
did the GPU kernel driver only allow access to the Raspberry Pi 1 as the Raspberry Pi 2 and
3 feature slightly different SoCs (BCM 2836 and BCM 2837 respectively). The sourcecode
of the VideoCore IV GPU firmware or of the supported graphics programming interfaces
(OpenGL-ES, OpenVG, OpenMAX) or schematics of the bare-metal GPU architecture are

14

2.2. The Raspberry Pi

however still undisclosed.

2.2.2. The Raspberry Pi GPU Architecture

The VideoCore IV is the fourth generation of the VideoCore series GPUs developed by
Alphamosaic and the second generation providing a 3D system architecture. At its heart
it provides 12 Quad Processing Units (abbr. QPUs) intended for floating-point shading of
which each is based on a 32-bit big endian architecture that is clocked at 250 MHz [ARM17b].

Four QPUs are organized into one group termed a slice of which there are a total of 3 slices
- see illustration 2.11. This organization of the QPUs is intended as a compromise between
flexibility and cost, as each of the three slices has access to resources that are independent
from the other slices, do however have to be shared by all four QPUs within the slice.
Each slice is fitted with its own instruction cache (abbr. icache) enabling three completely
independently parallelized algorithms within the GPU. Furthermore has each slice acess to
two Texture Memory Lookup Units (abbr. TMUs), one Uniforms Cache, a Special Function
Unit (abbr. SFU) and hardware specifically intended for OpenGL use such as attribute
and coefficient caches. The TMU and Uniform Cache are both similar in that both of them
utilize the L2 cache that is shared with the CPU and is also used to transmit the instructions
to the slices. However while the Uniforms Cache is a strict FiFo queue intended only for
small 32-bit messages - such as the VPM or TMU memory address assigned to each QPU -
does the TMU allow random reads of large amounts of L2 memory, only limited by the L2
cache size of 128 KB. Yet it is not possible for the QPUs to write into the L2 cache. Lastly
is there the Special Function Unit, intended for mathematical functions such as the square
operations, logarithmic operations or exponentiations.

Illustration 2.11.: VideoCore IV 3D System Block Diagram [Bro13]

Shared by all QPUs is also the access to the Vertex Pipe Memory (abbr. VPM), the 48
KB large cache intended for saving and retrieving intermediate values or providing a cache
from which data can be read back to the CPU. The VPM is controlled through the Vertex

15

2. Background

Cache Manager (abbr. VCM), which assigns 4 KB of VPM to each QPU by default. Further
influence on the VPM is exerted by the QPU Scheduler (abbr. QPS), which manages the
acquisition and release of the shared global VPM-mutex - a necessity because the hardware
used to access the VPM is shared in between slices. Should the mutex be acquired will it
stall all access by other QPUs until the mutex is released after which the QPU scheduler will
decide for the next QPU that is granted access. For further inter-process synchronisation
such as signaling a completed calculation are 16 4-bit counting semaphores available.

Furthermore is the QPU Scheduler responsible for the automatic scheduling of the QPUs
and for possible multithreading - two threads are possible within each QPU. The QPU sched-
uler itself is part of the closed source firmware blob though its behaviour can be influenced
through Control Lists detailed beginning in section 8 of the ARG (source). Control lists
and multithreading however were not needed for the implementation of the general purpose
assembler or the implementation of AES in GPU specific assembly.

The QPU Core Pipeline

A single QPU is a 32-bit architecture that provides two Arithmetic Logical Units (abbr.
ALUs) operating on 32-bit registers, one branching unit, one load unit allowing to write
arbitrary 32-bit values directly to registers and multiple I/O registers to access memory,
special function units or interprocess communication. The two ALUs are referred to as
the add pipeline (or add unit) on the one hand and the mul pipeline (or mul unit) on the
other hand, although the add unit is more of a non-multiply unit as it is also capable of
performing shifts, rotates or the counting of leading zeros. Both ALUs can operate on
integer and floating point data of 32-bit but are also capable of performing dedicated 8-bit
vector operations such as vector-add, vector-sub, vector-max or vector-mul. Because each
ALU still can only read from two input registers and write to one output register, it is
necessary that the 8-bit values on which the vector operation should be performed on are
encoded within the same 32-bit register. This functionally is in accordance to the QPU’s
internals, as each QPU consists of a 4-way Single-Instruction-Multiple-Data processor that
is multiplexed four times - justifying the term Quad processing unit. The QPU therefore
processes a 32-bit register by working on 8-bit quantities. This enables the QPU through
the pack & unpack functionality to perform all pipeline operations on the 32-bit registers as
if the registers contain two independent 16-bit values or four independent 8-bit values.

In addition is each QPU outfitted with 64 physical 32-bit registers that are divided into
register files A and B and can be used by both ALUs as read and write registers with
little restriction. Further 64 virtual registers are provided for access to I/O operations.
Additionally is each QPU fitted with four general-purpose accumulators and two special-
purpose accumulators. The general-purpose accumulators are intended to be heavily used
for the bulk of the operations, as they do not suffer from certain signficant restrictions of the
physical registers outlined in chapter 3. The special-purpose accumulators on the other hand
are designed to hold the results of calls to the TMU or SFU and are only used infrequently.

A good summary of the dual ALU architecture, the complete QPU core pipeline and the
presence of physical register files and accumulators is given by illustration 2.12. Evident by
the relatively simple design is the absence of features found on regular CPU cores such as
register forwarding or branch prediction.

A very important hardware constraint partly deductable by inspection of the upper illus-
tration is the interdependence of the add and mul units in regard to their input registers.

16

2.2. The Raspberry Pi

Illustration 2.12.: VideoCore IV QPU Core Pipeline [Bro13]

The first of the two read-input registers for each ALU has to always be from register file A or
has to be an accumulator. However if register file A is read in the first read-input register by
one of the ALUs, the identical register has to be used as the first read-input register in the
other ALU. The same holds true for the second-input register, except that the second input
register has to be from register file B, an accumulator or a small immediate. Though this
whole constraint regarding the ALU instruction grammar will be extensively explained in
the upcoming chapter 3.1, is it important to retrace those constraints to the QPU hardware.
Therefore does chapter 3.1 often reference illustration 2.12. However just given the fact that
both ALUs can not address different registers from register file A in the same instruction is
putting an enormous strain on the flexibility of the ALUs resulting in a major damper on
the actually achievable maximum performance as this is not considered when calculating the
theoretical maximum performance of 24 SP GFLOPS. The constraint itself though is due
to the QPU only having one registerbank A, which can only be read once at a time - well
visualized by the QPU core pipeline illustration.

Worth mentioning when talking about the QPU core pipeline, though more relevant when
going into detail about the assembler, is the presence of the NCZ bit-flags in each ALU.
NCZ bit-flags are three bits representing the events of a negative (N) result, a carry-over
(C) event or a result equaling zero (Z) in the ALU instruction executed last. Depending
on these flags can the following ALU operation or branch be made conditional, which most
importanly can lead to genuine conditional branches that make complex algorithms possible.

17

2. Background

2.3. Related Work and Summary of AES on the GPU

Given that block ciphers are relatively straightforward to parallelize and GPUs have long
been recognized as an instrument to perform highly parallel general-purpose computing
upon, there already exists a lot of research regarding the parallelization of AES on the
GPU. Most AES parallelization on the GPU is done with high-level graphics programming
interfaces such as CUDA, Direct3D, OpenGL and OpenCL, which can yield excellent results
[Iwa10]. The GPU of the Raspberry Pi however does support non of those APIs, as outlined
in the preceding chapter. The graphics programming interfaces supported by the Raspberry
Pi are very high level, tailored highly to graphics programming and are therefore not very
flexible, most importantly don’t serve as the basis of any general-purpose parallelization
research. The AES block cipher algorithm on the other hand is highly byte oriented, as all
of the four different funtions that make up AES operate on single bytes.

The Architecture Reference Guide published by Broadcom alongside a basic kernel driver
for the Raspberry Pi 1 model B in 2014 enables the creation of a GPU specific assembly
language, which in turn seems well suited for the parallelization of the byte oriented AES
algorithm. Though because of the inavailability of sourcecode for the supported graphic
APIs, the GPU’s firmware, an existing assembler or even for simple bare-metal schematics
is the use of the published documents tremendously cumbersome. Therefore is existing
research very limited and only exists in form of blogposts published by Eric Lorimer and
Pete Warden [Lor14a] [War14].

Eric Lorimer started working on an inital assembler and driver access for the GPU in 2014
by utilizing only Broadcom’s published hardware ARG. His intention was to speed up the
computation of SHA-256 on the Raspberry Pi GPU and by his own statement was able to
accelerate the computation of SHA-256 by 1430% compared to his own CPU implementation
of SHA-256 in C++ [Lor14b]. Unfortunately though is the speed-up stated by him not
reproducible, as the results of his implementation using all 12 compute units deviate from
the correct results of SHA-256. However addressing only 1 of the 12 compute units lead
the GPU implementation to work as intended and the resulting time measurements show
promise.

Pete Warden based his work upon Eric Lorimer and realized the parallelization of a ma-
trix multiplication on the GPU. The deployment of this parallelized implementation into a
Tensorflow application yields a reproducible speed-up of a 660%. Likewise show his results
promise as the obtainable speed-up is achieved by utilizing only 8 of the 12 compute units
since according to him the bottleneck of accessing shared memory prevents an effective use
of all 12 compute units.

The byte-oriented AES algorithm therefore shows promise to be effectively implemented on
the GPU with the same GPU specific assembly language made possible by the ARG. Possible
implementations of AES however include a statement about the utilized block cipher mode
of operation. The important properties of the block cipher modes of operation introduced in
section 2.1.2 are summarized in table 2.1. Although all three introduced block cipher modes
differ significantly is the potential speed difference for aspects listed in the table not simply
binary.

Even though the decryption is parallelizable in all three modes of operation is the ECB
mode by far the fastest as the memory management - a significant aspect when using the
GPU for general-purpose computing - is as simple as possible. But at the same time does
the CTR mode despite its necessarily more sophisticated management of assigned memory

18

2.3. Related Work and Summary of AES on the GPU

Aspect ECB CBC CTR

Secure against data-patterns No Yes Yes

Encryption parallelizable Yes No Yes

Decryption parallelizable Yes Yes Yes

Random-Read access Yes Yes Yes

Initialization vector necessary No Yes Yes

Table 2.1.: Comparison of Introduced Block Cipher Modes of Operation

promise a higher performance than CBC, even in decryption. This is due to the trivial
parallelizability of the CTR mode but also because of the smaller required amount of memory
than required by the CBC mode. All in all though is the ECB mode the best choice to study
the GPU’s potential and it is also the mode of operation used most common in the related
work of general AES parallelization. Moreover is the ECB mode of operation, as the most
simple and most easily parallelizable mode, the best choice in showcasing the parallelization
potential of mobile GPUs.

19

3. QPU Assembly Language and Assembler

The language intended for programming single QPUs - in earlier chapters called GPU specific
assembly - was named QASM, short for QPU ASM. It is realized by an assembler which
signficantly improved upon the earlier draft by Eric Lorimer and is introduced in section
3.2. All of those assembled instructions and buffers are brought onto the GPU by the kernel
driver. The complicated but now well documented addressing of this kernel driver and how
it can possibly be improved is addressed in the last section of this chapter.

3.1. QASM - The RPi QPU Assembly Language

The Assembly language for the Raspberry Pi QPUs - termed QASM - is designed to be as
closely implemented in accordance to the QPU’s architecture and instruction-encoding as
possible. Each seperate QPU instruction is written into a seperate line of an instruction
file specified by the file ending .qasm. An instruction line can either specify an Arithmetic
Logical Unit instruction, a Load Immediate instruction, a Branch instruction, a Semaphore
instruction or simply a comment. While comments are simply invoked by a single #, are the
remaining instructions complex and the following sections are dedicated to them. Though
to give a general overview it can be said that the ALU instructions perform calculations on
the QPU’s 128 different registers, while branching instructions can conditionally determine
the control flow. Load immediate instructions simply allow for a direct assignemnt of certain
values to certain registers while semaphore instructions enable inter-process communication.
The language is interpreted by its dedicated assembler and send to the GPU via the kernel
driver - of which the usage of both is explained in their respective sections within this chapter.

3.1.1. ALU Instructions

The dual pipeline architecture, is enabling the execution of one add operation and one mul
operation in each cycle. Therefore do instructions for this Arithmetic Logical Unit all follow
certain patterns, consisting first of the statement of operation for the add pipeline, then the
statement of operation for the mul pipeline. Both operations are seperated by a semicolon,
first state their exact operation type, then state the write-register and finally state the two
read-registers, which represent the arguments to the specified operation type. Illustration
3.1 and 3.2 portray the elements of such a general description of a single ALU instruction
line.

Left: One of 24 possible operations for the add pipeline
Right: One of 08 possible operations for the mul pipeline

Illustration 3.1.: Structure of a Single ALU Instruction - The Pipeline Operations

21

3. QPU Assembly Language and Assembler

Add pipeline instruction ends with semi-
colon and an arbitrary number of blanks

Mul pipeline instruction ends after second read-
register. No input read after that by Assembler

Illustration 3.2.: Structure of a Single ALU Instruction - Non-encoded Elements

ALU instructions also need to follow a set of necessary grammar rules, which stem from
hardware constraints of the QPU pipeline and the special instruction encoding of ALU
instructions - detailed in the upcoming chapter about the assembler. The type and order
of operations executed by the pipelines does not underlie any restrictions, while the write-
registers do have to follow a minor constraint regarding the grammar. Both pipelines have
to write the result of their respective operation into a different register file. As outlined in
chapter 2.2.2 does each QPU have two register files termed register file A and register file B,
with each providing 64 registers. Register file A is addressed by using ra#, with # ranging
from 0 to 63 and representing the number of the register intended to address. Analogue
addressing with register file B, except the register is specified using rb#. To recapitulate is
it therefore necessary to state a ra# register as the write-register for one pipeline, and a rb#

register as the write-register for the other pipeline - visually summed up in illustration 3.3.

Write-register, allowed to adress register file A or B
Not allowed to adress same register file - one has to adress register file A, the other register file B

Illustration 3.3.: Structure of a Single ALU Instruction - The Write-registers

The read-registers on the other hand follow a very strict set of rules. First of all though
is it necessary to establish a basic understanding of possible read-registers. In general are
accumulators, small immediates and registers from register file A or B allowed to serve as
possible read-registers. Accumulators exist as a seperate small registerbank in the QPU core
pipeline, are addressed by using r# and serve to be used in the bulk of QPU operations
for reasons listed in the paragraph below. Although there exist a total of 6 accumulators,
are only the accumulators ranging from r0 to r3 intended for general-purpose use while the
accumulators r4 and r5 serve only as read-registers to fetch results from calls to special
function units. Small immediates in turn are only allowed to be used in the second read-
register and allow for a small integer value ranging from 0 to 63 to be the second argument
of an operation. The small immediate itself is denoted as a decimal or hexadecimal number,
with 0x3f16 being the largest small immediate. By allowing small immediates in the ALU
instruction encoding is it unnecessary to go through the additional effort of invoking a
seperate load immediate instruction just for a simple integer value as the second argument
of an operation.

To return to the significant constraints of the read-registers is it first necessary to state that
the constraints limit themselves to the respective first read-registers and to the respective
second read-registers. So the contents of the first read-registers of the add and mul pipelines
exert absolutely no influence over the contents of the second read-registers and vice versa.
Instead is the first read-register of the add pipeline exerting constraints over the possible
content of the first read-register of the mul pipeline. Analoguesly do the second read-registers

22

3.1. QASM - The RPi QPU Assembly Language

exert constraints over each other.
Possible contents for the first read-registers are registers from register file A or accumula-

tors. Small immediates or registers from register file B are not allowed as content for the first
read-register. If both first read-registers address register file A, then the addressed register
must be identical in its adressed number. If however one or even both first read-registers
use an accumulator, all constraints of the first read-registers are dropped.

First read-register, allowed to be register file A or accumulator
If both first read-registers adress register file A, they have to address the identical register
No restrictions if accumulators are used

Illustration 3.4.: Structure of a Single ALU Instruction - The First Read-registers

Possible contents for the second read-registers are registers from register file B, accumu-
lators or small immediates. Registers from register file A are not allowed as content for
the second read-registers. When one second read-register addresses register file B or uses
a small immediate, then the other second read-register has to have the identical content.
In other words, when one second read-register addresses register file B, the other second
read-register has to address the identical register. When one second read-register uses a
small immediate, the other second read-register has to encode the same small immediate.
Though a shared characteristic with the first read-registers is that when one or even both
second read-registers use an accumulator, all constraints of the second read-registers are
dropped. As illustration 3.4 visually summarizes the constraints on the first read-registers,
does illustration 3.5 summarize them for the second read-registers.

Second read-register, allowed adress register file B, accumulator or small immediate
Not allowed for one to adress register file B while the other uses a small immediate
If both second read-registers are of register file B, they have to address the identical register
If both second read-registers are small immediates, they have to encode the same small immediate
There are no restrictions if accumulators are used.

Illustration 3.5.: Structure of a Single ALU Instruction - The Second Read-registers

Yet another very important constraint on the QPU Assembly Language and a main con-
tributor to the importance of accumulators is the fact that values written into regular physical
registers (the first 32 registers of each register file) are not available to be read in the im-
mediately following instruction. In other words can a register not be used as a read-register
if it was used as a write-register in the previous instruction. The accumulator registers do
not suffer from this restriction and can be used in the immediately following instruction - an
architecture constraint that is also visually supported by illustration 2.12 of the QPU Core
Pipeline. The illustration of the QPU pipeline shows that accumulator registers are updated
independently and faster than physical registers.

Furthermore do the accumulators allow much more flexibility when encoding ALU in-
structions, as extensively explained in upper paragraphs detailing the restrictions on the
read-registers. Those two powerful advantages of accumulators over regular physical regis-
ters makes them ideally suited for executing the bulk of fast short-termed operations and in

23

3. QPU Assembly Language and Assembler

return makes the physical registers well suited for saving medium-termed values.

Lastly it is important to note that although the QPU is a dual-pipeline architecture the
language features a simple abbreviation of the mul pipeline instruction in case it should
perform no operation. Instead of writing out a whole dummy operation for the mul pipeline
to perform, a simple nop stated as the mul operation is sufficient for dummy write- and read-
registers to be inserted by the assembler. This simple abbreviation is used extensively for
the mul pipeline to have no effect in the instruction cycle, as most algorithms are intended
for single-pipeline CPU usage.

Add and Mul Pipeline Operations

The add pipeline of the QPU is rather a referential nickname, as this pipeline is capable
of many non-adding operations and can therefore also be referred to as the non-multiply-
pipeline. Still, the add pipeline is capable of 24 different operations of which 7 serve floating
point values and 9 serve integer values. The last 2 listed operations are suited for 8-bit vector
data and the rest will perform bitwise operations. All of these operations are executable
within 1 cycle and can be invoked by their exact name as the add-op in an ALU instruction.

Illustration 3.6.: Operations Executable by the Add Pipeline [Bro13]

The mul pipeline on the other hand is capable of 8 different operations of which 5 serve
8-bit vector data, the rest being a simple nop, a floating point multiply and an integer
multiply. All of these operations are also executable within 1 cycle and can be invoked by
their exact name as the mul-op in an ALU instruction.

24

3.1. QASM - The RPi QPU Assembly Language

Illustration 3.7.: Operations Executable by the Mul Pipeline [Bro13]

3.1.2. Non-ALU Instructions

Load Immediates

The Load Immediate instruction is one of the most important Non-ALU instructions. It is
a necessary instruction when loading 32-bit configuration values for memory setup, when
loading loop counter values or simply when the parallelized algorithm requires an integer
larger than the maximum small immediate value of 6310. The instruction is invoked by its
abbreviation ldi, followed by one or two write-registers and a final statement of the integer
that is supposed to be written into the specified registers. The integer itself can either be
stated as a hexadecimal or a decimal number, but can not exceed 32-bit in size.

As the Load Immediate instruction is not an ALU instruction it is not associated with any
of the two pipelines, but takes instead the whole line of instruction. Though the constraint of
the ALU instruction applies in that if the integer is saved to two write-registers, the register
files of both write-registers have to be different. If the write-registers are physical registers
then the constraint of unavailability of the written value in the next instruction also applies.
In listing 3.1 below are three examples with short descriptions that showcase the simple use
of the instruction.

1 ## Load value 0x12345678 to register ra1
2 ldi ra1 , 0x12345678;
3
4 ## Load value 0x00401200 to VPMVCD_WR_SETUP register rb49 and register ra2
5 ldi ra2 , rb49 , 0x00401200;
6
7 ## Load value 0x0000f0f0 to TMU0_s register rb56 and register ra3
8 ldi rb56 , ra3 , 0x0000f0f0;

Listing 3.1: Examples for the Load Immediate Instruction

Branches

Branches are invoked by the abbreviation brr followed by different arguments depending on
which of the possible types of branches is intended. The unconditional branch displayed in
listing 3.2 will always be executed and can be identified by a simple missing of a conditional
specifier. A conditional specifier subjects the execution of the branch to the fullfilling of
the stated condition, which in turn is dependent upon the previous ALU instruction. This
again leads to the convention that the conditioning ALU instruction is placed right above
the associated conditional branch. An example for the conditional branch can be seen in
listing 3.3, while all possible conditions and their corresponding conditional specifiers are
displayed in table 3.1.

25

3. QPU Assembly Language and Assembler

1 ## Load ra0 with 0
2 ldi ra0 , 0x00000000
3
4 ## Always branch to example_label
5 brr ra39 , rb39 , example_label
6 nop ra39 , ra39 , rb39; nop
7 nop ra39 , ra39 , rb39; nop
8 nop ra39 , ra39 , rb39; nop
9

10 add ra0 , ra0 , 1; nop
11
12 example_label:
13
14 add ra0 , ra0 , 1; nop
15
16 ## Eventual value of ra0: 1

Listing 3.2: Example of an Unconditional Branch

The conditional specifiers encode the branching condition in accordance to the current
state of the NCZ bit flags. Those bit flags are updated by the last executed ALU instruction
of the add pipeline and represent the NCZ events on the four 8-bit segments of the 32-bit
result seperately. Chapter 2.2.2 about the QPU’s core pipeline goes into detail about how
the quad processing unit handles 32-bit values by processing four 8-bit segments. For each
8-bit segment exist three flags that are set in the event of a negative value (N) in the segment,
in the event of a carry over (C) in the segment or in the event of a result equaling zero (Z)
in the segment. A conditional specifier consists of two letters, of which the first one states
the flag (N, C or Z) that should be considered while the second one states how the flags in
the single segments should be set in order to fulfill the branching condition. Table 3.1 gives
a detailed description on how the second letter in the conditional specifier corresponds to
how the NCZ flags should be set in the single segments.

Conditional Specifier Branch Condition

brr — brr.* — bra Always

brr.zf If all 8-bit segments equal 0

brr.ze If no 8-bit segment equals 0

brr.zs If any 8-bit segment equals 0

brr.zc If any 8-bit segment does not equal 0

brr.nf If all 8-bit segments represent a negative

brr.ne If no 8-bit segment represents a negative

brr.ns If any 8-bit segment represents a negative

brr.nc If any 8-bit segment does not represent a negative

brr.cf If a carry-over took place on all 8-bit segments

brr.ce If no carry-over took place on all 8-bit segments

brr.cs If a carry-over took place on any 8-bit segment

brr.cc If no carry-over took place on any 8-bit segment

Table 3.1.: Overview of Conditional Specifiers for Branches

Both types of branches have in common that they are usually followed by three nop
instructions as the QPU hardware needs three instruction cycles to figure out the branching
target and to actually branch there. All the while though does the hardware still fetch
instructions and sequentially execute them. Although calls to special I/O registers invoking
the VPM, TMU or SFU are not permitted within those three instructions following a branch,

26

3.1. QASM - The RPi QPU Assembly Language

operations involving physical registers that are not used in the branching instruction are
allowed.

1 ## Load ra0 with 2
2 ldi ra0 , 0x00000002
3
4 ## Branch if ra0 != 0 to example_label
5 sub ra0 , ra0 , 1; nop
6 brr.ze ra39 , rb39 , example_label
7 nop ra39 , ra39 , rb39; nop
8 nop ra39 , ra39 , rb39; nop
9 nop ra39 , ra39 , rb39; nop

10
11 add ra0 , ra0 , 10; nop
12
13 example_label:
14 add ra0 , ra0 , 10; nop
15
16 ## Eventual value of ra0: 11

Listing 3.3: Example of a Conditional Branch

Part of every branch instruction is, despite the specification of the branching target label,
the naming of two arbitrary registers. Those registers serve as write-registers and get passed
a 32-bit value that represents the current program counter value (abbr. pc) at the time of
the branch. The program counter value holds the information about how far along the chain
of instructions the QPU has already gotten, meaning at which instruction QPU is at the
moment. The program counter value saved in those write-registers represents the address of
the instruction that would follow right after the branch is actually executed, so the saved
value equals pc+4, with pc representing the address at which the branch is invoked.

This information about the pc is crucial for a Branchback functionality that enables regular
function-calling within the QPU assembler code. It works by first regularly invoking a
branching instruction but substituting one of the nop write-registers with a physical register
into which the branchback address is stored for a later return. After the execution of the
code at the target label (during which it is important not to overwrite the branchback
address) an unconditional branching instruction needs to be made with the target label
stated as BRANCHBACK and a fourth argument being the register from register file A into
which the branchback address was previously saved. It is an important language constraint
that although the branchback address can be written in either register file (or both for the
matter), when supplementing the fourth register with the branchback register it needs to be
from register file A - not an accumulator or register from register file B. After this special
branch will the execution of programcode continue from the point of the original branch that
saved the branchback address.

1 ## Load ra0 with 2
2 ldi ra0 , 0x00000002
3
4 ## Branch if ra0 != 0 to example_function
5 sub ra0 , ra0 , 1; nop
6 brr.ze ra1 , rb39 , example_function
7 nop ra39 , ra39 , rb39; nop
8 nop ra39 , ra39 , rb39; nop
9 nop ra39 , ra39 , rb39; nop

10
11 add ra0 , ra0 , 10; nop
12
13 ## Eventual value of ra0: 14
14
15 ## Function that multiplies register ra0 by 4 and branches back according to ra1
16 example_function:
17 nop rb39 , ra0 , 4; mul24 ra0 , ra0 , 4
18
19 brr ra39 , rb39 , BRANCHBACK , ra1
20 nop ra39 , ra39 , rb39; nop
21 nop ra39 , ra39 , rb39; nop
22 nop ra39 , ra39 , rb39; nop

Listing 3.4: Example of the Branchback Functionality

27

3. QPU Assembly Language and Assembler

Semaphores

Semaphores are intended for interprocess communication between QPUs in case of inter-
dependencies of results or similar reliance. All semaphores - the GPU makes a total of 16
semaphores available to all QPUs - are initiated with the value 0 and will stall the QPU
if the value of the addressed semaphore is unlike 0. A stalled QPU will continue once the
addressed semaphore is brought back to 0 again by another QPU. As all semaphores are
internally 4-bit counting registers, is it possible to stall all (or preferably all but one) QPUs
at once. Calls to the semaphores are invoked by stating sema, the intention to increase (up)
or decrease (down) it and the specification of the addressed semaphore (0 to 15).

1 ## Increase semaphore 0
2 sema up, 0
3
4 ## Decrease semaphore 4
5 sema down , 4

Listing 3.5: Examples for the Use of Semaphores

3.1.3. QPU Register Map

Each QPU has a total of 128 registers at its disposal. Those 128 registers are primarily
divided into two register files - 64 registers of register file A and 64 registers of register file B.
Both of those 64 registers are then again divided by the lower numbered 32 registers being
physical registers and the higher numbererd 32 registers being virtual I/O registers.

Therefore does each QPU have 32 physical registers of register file A, 32 physical registers
of register file B, 32 virtual registers of register file A and 32 virtual registers of register
file B. An exhaustive listing of all registers is stated in illustration 3.8, showing the register
address map. While the 64 physical registers are simply intended for writing and reading
medium-termed values, do the 64 virtual registers differ in their functionality depending
upon if they are read from or written into.

The accumulator registers ra32-ra35 and rb32-rb35 are special in the sense that in order
to write into the according accumulator one has to write to the named virtual registers.
However in order to read from accumulators one has to read from the registers r0-r5. As
there is no virtual register to read from the accumulators the functionality to read from
them was implemented in the Assembler. Noteworthy is also that one can only write into
the first 4 general-purpose accumulators r0-r3 by writing into ra32-ra35 or rb32-rb35. The
accumulators r4 and r5 only serve to hold the results of special purpose I/O functions such
as a call to the SFU or TMU, as mentioned in the previous section.

3.1.4. The Vertex Pipe Memory

The Vertex Pipe Memory (abbr. VPM) is a 48 KB large cache accessible by all QPUs that is
intended for storing results of calculations and to serve as the memory gateway to the CPU,
as the CPU can only fetch results from the GPU that are stored in the VPM. Though access
to the VPM cache is bidirectional, meaning the VPM serves as a read and write cache for
the QPUs and can also be written into by the CPU. The VPM itself is by default divided
equally into 12 VPM segments of 4 KB each, whereby each segment is assigned to one of
the 12 QPUs.

Each of those 12 VPM segments can be considered as a two-dimensional byte array of 32-
bit words that is 16 words wide with a maximum height of 64 words. The VPM segments can

28

3.1. QASM - The RPi QPU Assembly Language

Illustration 3.8.: The QPU Register Address Map Including Virtual Registers [Bro13]

be setup and accessed in different layout modes, termed VPM orientations, that determine
the way of how the addressing corresponds to single bytes within the array. There are two
basic orientations possible - either a horizontal or a vertical orientation. Illustration 3.9
demonstrates a 4 KB VPM segment set up in the horizontal orientation, as it is the more
intuitive one. The illustration also displays several buffers of data saved with different VPM
load configurations.

Setup and Access to the Vertex Pipe Memory

Access of individual QPUs to the VPM is automated by the Vertex Cache Manager (abbr.
VCM), which among other things arranges the default division of the VPM and assignment
of the VPM segments. Due to this default segmentation of the VPM does each QPU execute
the same set of instructions in order to access its assigned segment of the VPM. Though
QPU access to other segments than the assigned one is possible with an extended VPM
setup. However does this require distinct instruction sets to execute for each QPU in order
for them to not write on the same VPM segment.

When accessing the VPM regularly though, is it first necessary for a QPU to acquire the
shared VPM hardware mutex. The acquisition of the VPM mutex will stall the attempts of

29

3. QPU Assembly Language and Assembler

Illustration 3.9.: VideoCore IV VPM Horizontal Access Mode Examples [Bro13]

other QPUs to acquire the mutex until the mutex is released and the QPU scheduler decides
for the next QPU that is granted mutex acquisition. The mutex is necessary because the
hardware to access the VPM is shared by all 4 QPUs within a single slice. Overwriting the
VPM access configuration while another QPU is still reading from or writing to the VPM
therefore results in random reads and writes.

The VPM mutex is acquired by reading from register ra51 or rb51 with an arbitrary
operation. The execution of the instructions is stalled until the mutex is free to acquire by
the QPU. By writing into register ra51 or rb51 is the VPM mutex released again.

Listing 3.6 shows an exemplary load of 16 bytes from the CPU to the VPM and a subse-
quent read of those values from the VPM to the QPU. The VPM load is done by writing the
immediate representing the VPM load configuration to register ra49, passing the address of
the intended VPM buffer to register ra50 and then waiting for the VPM load to complete by
reading from register ra50, which stalls the QPU’s instruction until the VPM load finished.
In similar fashion is the VPM read initiated as first of all the 32-bit configuration is written
to register ra49 - though with a different ID field this time representing a VPM read instead
of a VPM load. The VPM values are then read according to configuration simply by reading
from register ra48.

The 32-bit VPM configuration hexadecimals are conceived according to illustration 3.10,
which showcase how different bit segments within a 32-bit configuration correspond to a
single VPM configuration field. Those and further tables presenting the configuration fields
for further VPM access modes can be found in the ARG on page 57 and following.

While most configuration fields are sufficiently - though certainly not exhaustively - ex-
plained is it important to comment on configuration fields whose explanation is lacking. The
configuration fields MPITCH and ROWLEN of the VPM load setup basically both state the
length of a single row in the VPM array, once in bytes and once in units of chosen width.
The configuration field VPITCH is best set to 0 for an intuitive addressing, allowing for the
lowest 4 bits in ADDR to correspond to the X coordinate of the two-dimensional byte array

30

3.1. QASM - The RPi QPU Assembly Language

1 ## Receive VPM buffer address via uniform
2 or ra31 , ra32 , 0; nop
3
4 ## Acquire VPM mutex
5 or ra39 , ra51 , rb39; nop
6
7 ## VPM DMA load setup
8 ## ID=1, MODEW=0, MPITCH=1, ROWLEN=4, NROWS=1, VPITCH=0, VERT=0, ADDRXY =0
9 ldi ra49 , 0x81410000

10 or ra50 , ra31 , 0; nop
11 or ra39 , ra50 , rb39; nop
12
13 ## VPM read setup
14 ## ID=0, NUM=4, STRIDE=1, HORIZ=0, LANED=0, SIZE=2, ADDR=0
15 ldi ra49 , 0x00401200
16 or ra0 , ra48 , 0; nop # ra0 = data [0]
17 or ra1 , ra48 , 0; nop # ra1 = data [1]
18 or ra2 , ra48 , 0; nop # ra2 = data [2]
19 or ra3 , ra48 , 0; nop # ra3 = data [3]
20
21 ## Release VPM mutex
22 or ra51 , ra39 , rb39; nop

Listing 3.6: Implementation of Transmitting 16 byte from CPU to QPU via VPM

while the remaining bits correspond to the Y coordinate (see illustration 3.9). Lastly is it
important to state opposing VPM setup orientations in the VERT and HORIZ configura-
tion fields. While the orientation stated in the VPM load setup determines the actual VPM
orientation, is an opposing orientation required in the VPM read setup in order for the QPU
to read as intended.

Illustration 3.10.: Configuration Fields for VPM Load & Read [Bro13]

For the reason of thoroughness does listing 3.7 show an exemplary store of 16 bytes from
the QPU to the CPU via the VPM. Write & store configuration hexadecimals are written to
register rb49 instead of register ra49 and the adress where the written values are intended
to be stored is passed to register rb50, not ra50. Aside from those details can the write &
store process be seen as the mirror of the load & read process in regards to the sequence of
instructions.

Though despite the write & store and the load & read processes being mirror operations to
each other, do the VPM configurations and configuration fields differ significantly. Details
to the write & store configuration fields are listed in illustration 3.11. Though while the
necessity of opposing VPM orientation still applies in the VPM write & store process, does
now the configuration field UNITS state the number of allocated rows in the VPM array
and the configuration field DEPTH alone states the length of those rows in units of chosen

31

3. QPU Assembly Language and Assembler

1 ## Receive VPM buffer address via uniform
2 or ra31 , ra32 , 0; nop
3
4 ## Acquire VPM mutex
5 or ra39 , ra51 , rb39; nop
6
7 ## VPM write setup
8 ## ID=0, STRIDE=1, HORIZ=0, LANED=0, SIZE=2, ADDR=0
9 ldi rb49 , 0x00001200

10
11 or ra48 , ra0 , 0; nop # write data [0]
12 or ra48 , ra1 , 0; nop # write data [1]
13 or ra48 , ra2 , 0; nop # write data [2]
14 or ra48 , ra3 , 0; nop # write data [3]
15
16 ## VPM DMA store setup
17 ## ID=2, UNITS=1, DEPTH=4, LANED=0, HORIZ=1, VPMBASE=0, MODEW =0
18 ldi rb49 , 0x80844000
19 or rb50 , ra31 , 0; nop
20 or ra39 , ra39 , rb50; nop
21
22 ## Release VPM mutex
23 or ra51 , ra39 , rb39; nop

Listing 3.7: Implementation of Transmitting 16 byte from QPU to CPU via VPM

width. As with the VPM load & read process does the VPM store setup determine the
actual VPM orientation. Though the configuration field VPITCH does not exist in the cor-
responding VPM store configuration, does the addressing resulting from the chosen value in
ADDR correspond to the intuitive addressing in the load & read process when the VPITCH
configuration field is set to 0.

Illustration 3.11.: Configuration Fields for VPM Write & Store [Bro13]

Problems with the Vertex Pipe Memory

Summarizing the Vertex Pipe Memory, one can hardly overestimate the importance of this
memory cache. For a start does it provide the only possibility to save medium-termed data
larger than the memory provided by the QPU registers as it poses the only writeable cache
of GPU. On the other hand does the VPM serve as the memory gateway to the CPU and
proper control of the VPM is therefore necessary to exchange data between the CPU and
GPU. Problems with the setup and control of the VPM therefore weigh gravely on the
possible achievable performance of the GPU.

However one severe problem with the proper control of the VPM exist and expresses itself
in partially random reads and writes from and to the VPM. The problem of random reads
from the VPM occurs when between multiple VPM reads the hardware mutex is released
and reacquired without also performing a VPM load within the same timespan in which the

32

3.1. QASM - The RPi QPU Assembly Language

VPM mutex is held. Is this the case are the reads of the QPU partially random in that
the VPM segments of neighboring QPUs within the same slice are read instead of the VPM
segment that is actually assigned to the currently reading QPU. Listing 3.8 provides a very
simple example showing how to cause such a partially random read.

1 ## Receive VPM buffer address via uniform
2 or ra31 , ra32 , 0; nop
3
4 ## Acquire VPM mutex
5 or ra39 , ra51 , rb39; nop
6
7 ## VPM DMA load setup
8 ## ID=1, MODEW=0, MPITCH=1, ROWLEN=4, NROWS=1, VPITCH=0, VERT=0, ADDRXY =0
9 ldi ra49 , 0x81410000

10 or ra50 , ra31 , 0; nop
11 or ra39 , ra50 , rb39; nop
12
13 ## VPM read setup
14 ## ID=0, NUM=2, STRIDE=1, HORIZ=0, LANED=0, SIZE=2, ADDR=0
15 ldi ra49 , 0x00201200
16 or ra0 , ra48 , 0; nop # ra0 = data [0]
17 or ra1 , ra48 , 0; nop # ra1 = data [1]
18
19 ## Release VPM mutex
20 or ra51 , ra39 , rb39; nop
21
22 ...
23
24 ## Reacquire VPM mutex
25 or ra39 , ra51 , rb39; nop
26
27 ## VPM read setup
28 ## ID=0, NUM=2, STRIDE=1, HORIZ=0, LANED=0, SIZE=2, ADDR=0
29 ldi ra49 , 0x00201200
30 or ra2 , ra48 , 0; nop # ra2 = random data
31 or ra3 , ra48 , 0; nop # ra3 = random data
32
33 ## Release VPM mutex
34 or ra51 , ra39 , rb39; nop

Listing 3.8: Example on How to Cause Partially Random VPM Read

The impact of this problem is enormous. Not only does it effectively limit the instructions
to merely one VPM load and one VPM read per transmitted set of QPU instructions; because
multiple VPM reads lead to partially random reads and multiple VPM loads unnecessarily
stall the QPU and overwrite possibly already processed data. It therefore also limits the
maximum of usable VPM memory to the maximum amount of memory the QPUs can provide
with their physical registers, since there is only one instance during which the QPU registers
can be provided with the data to be processed. In the best case scenario and under the
assumption that a parallelized algorithm utilizes all 64 physical registers for data that needs
to be processed while requiring no further physical register for algorithm control, is each
QPU able to hold 256 byte of data. Therefore would all QPUs only be able to utilize 3KB
out of a total 48KB VPM memory and the persisting VPM random read problem would
diminish the VPM’s utilization to only 6.25% of its potential.

Additionally though is there also the problem of random writes to the VPM memory,
which occur analogously when multiple VPM writes are performed in between the release
and reacquisition of the VPM mutex.

The problem itself is likely caused by the common use of the hardware with which to
access the VPM memory. Four QPUs within a slice share the access to the VPM and as
demonstrated in illustration 3.12 does the randomly chosen last QPU within a slice determine
which VPM segment is addressed when only a VPM read operation is executed without a
preceding VPM load operation. This most likely procedure of operation is concluded by
the significant behaviour of random reads limiting themself to neighboring QPUs within
the same slice. However the problem also arises because of missing bare metal hardware
schematics and closed source firmware, as the problem seems solvable and most likely has

33

3. QPU Assembly Language and Assembler

Slice 3
Slice 2

Slice 1

QPU 0 QPU 1

QPU 2 QPU 3

Problem:

Vertex Pipe
Memory
(VPM) VPM

Load & Store
Setup

VPM Read & Write Utility

QPU 0
Load config

QPU 0 Reading

QPU 3
Load config

QPU 0 Reading

Illustration 3.12.: Visualization of VPM Mutex Problem

an existing solution which however is withheld due to undisclosed detailed documentation.

3.1.5. The Texture Memory Units

The Texture Memory Unit (abbr. TMU) is originally intended to provide streams of textures
to the GPU as necessary for the OpenGL ES graphic programming interface. Internally
though is the TMU a segment of the 128 KB level 2 cache of the CPU that is shared with
the GPU and serves the GPU as a read-only memory. The TMU is available to each QPU
as two units or a single unit, depending upon the need of two or one stream of textures. The
textures provided by the TMU are simply a stream of 32-bit values accessed via a simple
register I/O instruction on the QPU and passed to QPU via a special configuration of the
data sent in the kernel driver. The TMU can preload 8 textures in single unit mode (4
textures each in two unit mode) via 8 single I/O instructions without the necessity of a
mutex and therefore works best to serve read-only buffers with irregular access to the QPU.

The read-only buffers provided by the TMU allow for random reads, which are achieved
by multiplying the intended index of the 32-bit buffer by 4 and adding it to the TMU buffer
base address. The result is then written to register ra56 or rb56. The TMU buffer base
address has to be received first by simply passing it via a uniform value from the driver.
This way up to 8 TMU values can be preloaded and later retrieved by simply outfitting a
regular ALU instruction with the conditional specifier .tmu. The TMU value can be read
from accumulator r4 in the following instruction.

Should the TMU be used in two unit mode is it necessary to first load a value unequal 0
to register ra36 or rb36 to enable the manual control of both TMU units. The first TMU
is then accessed by preloading to register ra56 or rb56 and the conditional specifier .tmu0.
The second TMU is accessed by preloading to register ra60 or rb60 and the conditional
specifier .tmu1. Listing 3.9 will show the TMU used in both modes.

34

3.2. Implementation of Assembler

1 ## Receive TMU buffer base addresses via uniform
2 or ra30 , ra32 , 0; nop
3 or ra31 , ra32 , 0; nop
4
5 ## Preload the first 64 bit to TMU
6 add ra56 , ra30 , 0; nop
7 add ra56 , ra30 , 4; nop
8
9 ## Save preloaded 64 bit from TMU to ra1 and ra2

10 nop.tmu ra39 , ra39 , rb39; nop
11 or ra1 , r4, 0; nop
12 nop.tmu ra39 , ra39 , rb39; nop
13 or ra2 , r4, 0; nop
14
15 ## Set TMU to two unit mode
16 ldi ra36 , 1
17
18 ## Preload 32 bit from buffer 1 and 32 bit from buffer 2
19 add ra56 , ra30 , 8; nop
20 add ra56 , ra31 , 0; nop
21
22 ## Save both preloaded 62 bit from TMU0 and TMU1 to ra3 and ra4
23 nop.tmu0 ra39 , ra39 , rb39; nop
24 or ra3 , r4, 0; nop
25 nop.tmu1 ra39 , ra39 , rb39; nop
26 or ra4 , r4, 0; nop

Listing 3.9: Examples for Both Usage Modes of TMU Access

3.1.6. QPU Termination

A QPU is correctly terminated by first sending an interrupt signal to the host and secondly
initiating the QPU termination. The interrupt signal to the host serves to let the driver know
about how many QPUs are still left computing so the driver can initate the memory transfer
if all QPUs are done. The QPU termination following is initiated through the conditional
specifier .tend and requires 2 following nop instructions so the QPU may correctly clean up
and not get stuck in a state of expecting further instructions. This erroneous state will lead
to the unavailability of the QPU for further calls and makes a reboot of the Raspberry Pi
necessary. Listing 3.10 shows the correct termination instructions.

1 ## Trigger interrupt to finish the program and signal host
2 or ra38 , ra39 , rb39; nop
3 nop.tend ra39 , ra39 , rb39; nop
4 nop ra39 , ra39 , rb39; nop
5 nop ra39 , ra39 , rb39; nop

Listing 3.10: Termination of QPU

3.2. Implementation of Assembler

The assembler for the QASM programming language is in its basic form taken from Eric
Lorimer, however it was greatly enhanced in its capabilities and severe bugs have been fixed
for this thesis. The compiled assembler can be used with the first argument being the input
file containing the QASM instruction code and preferably ending with the postfix .qasm.
The input file ending of however is not enforced. The optional second argument being the
-o option followed by the intended output file, though if no second argument is stated will
the assembler write the binary output to the file out.bin.

When the assembler binary is executed it will then go through each line of the input file,
determine if the line represents a single and valid instruction and then call the appropriate
function that will convert the line into a 64-bit binary encoding a single instruction. The
encoding of each of the different instructions that were introduced in chapter 3.1 will be

35

3. QPU Assembly Language and Assembler

examined in the upcoming sections. Furthermore is it important to establish that as the
general-purpose assembler is still being considered to be in an early stage of development, it
will only catch the most common errors that are in violation with the QASM programming
language.

3.2.1. ALU Instruction Encoding

ALU instructions are the most common instructions in the QASM language and come in two
different variants. The regular variant called alu instruction and the variant in which one or
both of the second read-registers are replaced with a 6-bit small immediate, called alu small
imm instruction. The instruction encoding of both is displayed in illustration 3.13 while the
single instruction fields are outlined in illustration 3.14. The respective variant is indicated
by the replacement of the sig instruction field with a distinctive instruction header.

Although some explanatory chapters are referenced along this walkthrough of the ALU
instruction encoding, can further references to the ARG for certain instruction fields also be
found in their respective descriptions in illustration 3.14. The references and descriptions
for those instruction fields are also applicable for the encoding of the additional Non-ALU
instructions, as the instruction encoding of the QPU architecture is highly uniform and
shares many instruction-fields throughout different instructions.

Illustration 3.13.: Instruction Encoding of ALU and ALU Small Imm [Bro13]

The assembler handles both ALU variants within the same function assembleALUInstr()
and changes the sig instruction field to the alu small imm header if a small immediate is
read in the currently processed line. Otherwise will the value for the sig instruction field -
which encodes special conditional specifiers like .tend or .tmu - be read only via conditional
specifiers from the add pipeline, not the mul pipeline. The following unpack, pm and pack
instruction fields encode the pack vector operations outlined in chapter 2.2.2 about the
QPU Core Pipeline and can be invoked by a conditional specifier either stating a pack or
unpack operation combined with the desired vector, as outlined in the ARG on p.31 (e.g.
.pack16a). The cond add and cond mul fields encode conditions in case the add operation or
mul operation should only by executed if the respective condition is fulfilled - much like the
conditionals of branches. However this functionality is not yet implemented in the current
assembler and both instruction fields are set to always perform the operation. As the last
of the instruction configurations are the sf and ws bits set automatically by the assembler.
Those instruction fields do only represent functionality that is a regular component of the
QASM language, like the statement if the add pipeline should write to a register of register
file A or register file B.

While the op mul and op add fields are encoding the respective operation according to

36

3.2. Implementation of Assembler

Illustration 3.14.: ALU Instruction Fields [Bro13]

the opcodes found in illustrations 3.6 and 3.7, are the rest of the instruction fields intended
to encode the addressed registers of the current line. The fields waddr add and waddr mul

encode the respective specific register number of the addressed write-registers of the add
and mul pipeline. Though because those instruction fields only encode the register number
- not the register file - is the information about the respective register file of each write-
register saved in the previously set ws bit. Further along are the raddr, add and mul register
encoded, which interplay in an intricated way that results in the complicated ALU grammar
regarding the read-registers. The add a and add b instruction fields encode if accumulators
are used in the first read-register and second read-register of the add pipeline and if so,
which accumulators exactly. The mul a and mul b instruction fields do the same for the
mul pipeline. Whereas the raddr a and raadr b instruction fields encode the addressed
register of register file A and addressed register of register file B respectively in case of
no accumulators being used. In the case of one of the second read-registers containing a
small immediate is the 6-bit segment for the raadr b replaced with 6-bit segment for the
small immed, which encodes the used small immediate instead of a register.

The early draft of the assembler by Eric Lorimer was especially lacking in the regard
of encoding this intricated interplay, which often resulted in incomprehensible instruction
behaviour of technically correct QASM code. The causing bugs however have been fixed in
the current version of the assembler and an extensive check for errors vioalting the grammar
of the ALU instructions has instead been implemented.

At last is it important to note that the feature of the QASM language regarding a simple
skipping of the mul pipeline instruction by solely stating nop, is realized within the assembler

37

3. QPU Assembly Language and Assembler

by merely encoding the NOP registers ra39 or rb39 as the write-register. While doing so
are the read-registers copied from the add pipeline to allow for greatest simplicity of the
encoding. The formed instruction has the effect of performing a nop operation on the chosen
read-registers and then disregarding the result as it is written to a NOP register.

3.2.2. Load Immediate Instruction Encoding

The Load immediate is in its functionality as well as in its encoding in many aspects very
similar to the regular ALU instruction. Therefore does the intended uniform encoding of
instructions in turn ensure a maximum reuse of existing instruction fields. The encoding
entails a significantly bigger instruction header for clear identification and simply replaces
the instruction fields stating the operation and read registers - as both make no sense in
this instruction - with the intended 32-bit immediate. This immediate is then written to
the registers encoded through waddr add, waddr mul and ws, with all the conditionals and
restrictions of the regular ALU instruction still applying. Although the QPU supports two
further load immediate intructions which would load 16 individual 2-bit values on each
element of the SIMD array, is the binary encoding of those instructions not implemented by
the assembler.

3.2.3. Branch Instruction Encoding

The encoding of the branch instruction, although similar to that of the load immediate, has
some new instruction fields and also uses the immediate represented by the less significant
32 bit in a different way. First of all is the new instruction field cond br encoding one of the
conditional specifiers listed in table 3.1, that will make the branch dependent on the current
values of the NCZ flags set by the assembler. The reg bit will be set if the branch instruction
is outfitted with an additional register from the register file A, which indicates a branchback
branch. The register of register file A holding the branchback address is encoded in the
instruction field raddr a. Herein lies the reason for the language constraint that although
the branchback address can be saved in either regfile, if it is supplied as a fourth argument
to the branch then it needs to be from register file A.

The immediate instruction field represting the less significant 32 bit of the instruction
encoding is not directly supplied but rather calculated by the assembler out of the third
branch instruction argument - the supplied target label. The assembler saves all target

38

3.3. The GPU Kernel Driver

labels with their corresponding program counter value within an array of structs and sets
the immediate instruction field to this corresponding program counter value if the target
label is referenced. Therefore does the branching instruction enable the branch by stating
the new absolute program counter value at which point processing is supposed to continue.
However, the immediate instruction field can also encode a relative change to the current
program counter value if the rel bit is set and the branch is therefore made relative.

3.2.4. Semaphore Instruction Encoding

The encoding of Semaphores is nearly identical to that of load immediates due to them
using the same instruction decoding hardware. However does the semaphore not only replace
the immediate with a large field of don’t cares, but rather are all instruction fields of the
most significant 32 bit basically dummies without any effect and are accordingly set by the
assembler. The presence of these instructions fields is only due to the mentioned sharing of
decoding hardware. The remaining instruction fields will encode if the semaphore should be
increased (sa set) or decreased (sa not set) and which semaphore should be addressed by
encoding it in the 4-bit semaphore instruction field.

3.3. The GPU Kernel Driver

The kernel driver for the Rapsberry Pi GPU was released along with the Architecture Ref-
erence Guide in 2014 under a 3-clause BSD license [Bro14]. It provides an access point -
although an undocumented one - to the GPU of the Raspberry Pi and was used by the
graphics programming interfaces that the Raspberry Pi officially supports, whose source
code nevertheless was never disclosed. Unfortunately though is the Kernel driver optimized
for the use by those graphic programming interfaces [Wik17f] and rewriting it to enable an
optimized general use is intended for the future. Illustration 3.15 describes well the current
state of accesibility to documentation and source code regarding the RPi GPU.

The kernel driver provides 12 functions for the preparation and transmission of the data
to the GPU. All functions including their arguments are displayed in listing 3.11, which
recites the contents of the mailbox.h - the header of the kernel driver. Following this listing
is a detailed description of usage of each function and the order in which those functions are
supposed to be called. Though not all functions listed in the header of the kernel driver are
also described in detail, as some functions are not necessary for a successful full access to
the GPU and furthermore lack all documentation about their functionality.

39

3. QPU Assembly Language and Assembler

Application

OpenGL ES

Application Application
Media

OpenMax OpenVG

EGL

Kernel driver

Videocore IV GPU

Open
Source

Closed
Source

Binary
Blob

ARM

3D 2D

Illustration 3.15.: RaspberryPi GPU Open Source Status [Wik17f]

1 #include <linux/ioctl.h>
2
3 #define MAJOR_NUM 100
4 #define IOCTL_MBOX_PROPERTY _IOWR(MAJOR_NUM , 0, char *)
5 #define DEVICE_FILE_NAME /dev/vcio
6
7 int mbox_open ();
8 void mbox_close(int file_desc);
9

10 unsigned get_version(int file_desc);
11 unsigned mem_alloc(int file_desc , unsigned size , unsigned align , unsigned flags);
12 unsigned mem_free(int file_desc , unsigned handle);
13 unsigned mem_lock(int file_desc , unsigned handle);
14 unsigned mem_unlock(int file_desc , unsigned handle);
15 void *mapmem(unsigned base , unsigned size);
16 void unmapmem(void *addr , unsigned size);
17
18 unsigned execute_code(int file_desc , unsigned code , unsigned r0, unsigned r1 , unsigned r2,

unsigned r3, unsigned r4, unsigned r5);
19 unsigned execute_qpu(int file_desc , unsigned num_qpus , unsigned control , unsigned noflush ,

unsigned timeout);
20 unsigned qpu_enable(int file_desc , unsigned enable);

Listing 3.11: mailbox.h - Kernel Driver Header

mbox open

The mbox open() function is the first to be called and it gets no arguments at all. Its purpose
is to return a file descriptor that will serve as the mailbox through which data will be send
and received in future functions and it will therefore be referred to as such. Internally will
the function open up a pipe to /dev/vcio to communicate with the GPU.

qpu enable

qpu enable() will be called at least twice during every use of the kernel driver. Its first
argument is the mailbox descriptor to enable communication with the GPU. The second
argument is either the value 1 to start up the GPU - being the mandatory first use of this
function - or the value 0 in case the GPU is supposed to shut down - being the second use
of this function. The function then internally encodes the corresponding instruction for the

40

3.3. The GPU Kernel Driver

GPU’s control and sends it.

mem alloc

The function mem alloc() takes four arguments and returns the very important handle to
the GPU memory, termed gpu handle. The first argument is again the mailbox. The second
argument is the total amount of data in bytes that is intended to be transmitted to the GPU
either by VPM or TMU in the next upcoming transmission. The third argument represents
the amount of VPM memory allocated for every QPU in bytes and maxes out at 4096 as
the VPM has only enough memory to allocate 4 KB for each QPU. The fourth argument
is a configuration flag for the GPU in case of a direct or cached memory access. As direct
memory access (GPU flag 0x0) has not yet been sufficiently put to the test it is recommended
to use cached memory access (GPU flag 0xc).

mem lock

mem lock() will actually allocate the memory according to the configuration set forth in the
mem alloc() function. The function will return the GPU memory base address, referred to
as gpu mem base. The first argument being passed is the mailbox, while the second argument
is the handle returned by the mem alloc() function, namely the gpu handle.

mapmem

mapmem() fullfills the function of returning a base address of CPU memory that is intended
to mirror the allocated memory on the GPU. This CPU memory is then filled with the data
intended for transmission using the memory base address mapmem() will return. The first
argument of mapmem() is the base address of the GPU memory the function is supposed
to mirror, which was referred to as gpu mem base. The second argument is the same total
bytecount that was used in mem alloc() to allocate the appropriate amount of memory.

execute qpu

The execute qpu() function will start the transmission of the data and kick of the process-
ing on the QPUs. It has five arguments, the first one being the mailbox and the second one
being the amount of QPUs that are supposed to be run, possibly ranging from 1 to 12. The
fourth argument states if during instruction execution the GPU memory should occassion-
ally be flushed back to CPU memory, which is useful when debugging but vastly decreases
performance. The fifth argument will simply give a time limit in miliseconds after which
the GPU call should return so the CPU execution won’t stall in case of an inadvertantly
erroneous GPU calculation.

The third argument is very important in that it will be the base address of a buffer, which
will hold important addresses for each QPU. This buffer holds the base address of the code
each QPU is supposed to execute and will hold the base address of the uniforms each QPU
can obtain. The base address of the uniforms is very important as the QPUs will receive the
base addresses of VPM and TMU buffers through the retrieval of uniform values.

41

3. QPU Assembly Language and Assembler

unmapmem

First function of the four closing functions that will free the allocated memory and close
pipes. unmapmem() will free the memory allocated on the CPU side that is supposed to
mirror the memory allocated on the GPU side. The first argument is the base address of
the CPU memory and the second argument the total bytecount of transmitted data, which
was also used in mapmem().

mem unlock

This function will unlock the memory allocated on the GPU, which is necessary before the
memory can be freed by mem free(). The first argument is the mailbox, while the second
argument is supposed to be the handle (not the base address) of the GPU memory, referred
to as gpu handle.

mem free

mem free() will actually free the just unlocked memory on the GPU. The arguments are
identical to those of the mem unlock() function.

mbox close

The mbox close() function merely closes the pipe to the GPU through which information
was sent, which was referred to as mailbox. Therefore is the mailbox filedescriptor the only
argument.

42

3.3. The GPU Kernel Driver

3.3.1. Example Use of Kernel Driver

As the use of the kernel driver is obviously complex, as demonstrated in the descriptions of
the used functions, will the following listing 3.12 demonstrate a generic and easy example
of how to use the kernel driver in the most simplest of cases. The actual implementation
used to access the GPU for the implementation of AES in the QASM language, showcasing
a vastly more complex and complete example, can be found in the attached source code as
the file aes128 ecb gpu.c in the directory aes128 ecb gpu.

1 unsigned mailbox = mbox_open (); // Open pipe for GPU communication
2
3 qpu_enable(mailbox , 1); // Enable QPUs
4
5 unsigned totalBytecount = qpuCodeBytecount + // Bytecount of QPU code
6 dataBytecount + // Bytecount of data
7 uniformsBytecount + // Bytecount of uniforms
8 messagesBytecount; // Bytecount of messages
9

10 // Allocate and lock memory on GPU , then create a mirror memory on CPU
11 unsigned gpu_handle = mem_alloc(mailbox , totalBytecount , 4096, 0xc);
12 unsigned gpu_mem_base = mem_lock(mailbox , gpu_handle);
13 void* cpu_mem_base = mapmem(gpu_mem_base , totalBytecount);
14
15 struct GPUMemoryMap *cpu_map = (struct GPUMemoryMap *) cpu_mem_base;
16
17 // Map buffers to be transmitted to allocated GPU memory
18 memset(cpu_map , 0x0, sizeof(struct GPUMemoryMap));
19 unsigned vc_code = gpu_mem_base + offsetof(struct GPUMemoryMap , qpuCode);
20 unsigned vc_data = gpu_mem_base + offsetof(struct GPUMemoryMap , data);
21 unsigned vc_uni = gpu_mem_base + offsetof(struct GPUMemoryMap , uniforms);
22 unsigned vc_msg = gpu_mem_base + offsetof(struct GPUMemoryMap , messages);
23
24 memcpy(cpu_map ->qpuCode , qpuCode , qpuCodeBytecount);
25 memcpy(cpu_map ->data , data , totalBytecount);
26
27 for (int i=0; i < 12; i++) { // For each QPU (12)
28 cpu_map ->uniforms[i] = vc_data; // Address of data
29
30 cpu_map ->messages[i*2 + 0] = vc_uni + (i * sizeof(unsigned)); // Address uniforms
31 cpu_map ->messages[i*2 + 1] = vc_code; // Address qpuCode
32 }
33
34 execute_qpu(mailbox , 12, vc_msg , 1, 10000); // Start execution
35
36 memcpy(data , cpu_map ->data , totalBytecount); // Fetch the results
37
38 unmapmem(cpu_mem_base , totalBytecount); // Free CPU memory
39 mem_unlock(mailbox , gpu_handle); // Unlock memory
40 mem_free(mailbox , gpu_handle); // Free GPU memory
41 qpu_enable(mailbox , 0); // Disable QPUs
42 mbox_close(mailbox); // Close mailbox pipe

Listing 3.12: Example Use of Kernel Driver

3.3.2. Transmitting and Receiving Data through Kernel Driver

Although not shown in the upper simplified example of accessing the GPU, is the segmenta-
tion of different buffers of data which are to be sent to the GPU a considerable issue. Listing
3.12 however only shows an example in which there is merely one buffer intended that is to
be accessed via the VPM and which is supposed to be fully fetched back.

Buffers which are to be accessed via the VPM need to be sectionend and seperately
assigned for each QPU, while for buffers that are accessed via the TMU a single declaration
and transmission of the buffer is sufficient in order for every QPU to receive access. The
separation and assignment of differing VPM segments is however not performed by the
declaration of entirely different buffers - though this would be possible - but is rather handled
more straightforward by passing a different buffer offset value to each QPU. The transmission
of different buffer segments to different VPM memory segments is then handled by the kernel
driver and GPU firmware. in the exemplary listing 3.13 below are the buffers intended

43

3. QPU Assembly Language and Assembler

for VPM usage sectioned into 12 segments (for each QPU one segment) and are therefore
assigned in offset steps of 40 bytes for vpmBuffer 1 and 10 bytes for vpmBuffer 2. The
shown tmuBuffer is not segmented as TMU buffers are accessible by all QPUs as a whole.

1 ...
2
3 memcpy(cpu_map ->qpuCode , qpuCode , qpuCodeBytecount);
4 memcpy(cpu_map ->data , tmuBuffer , 60); // 60 byte of TMU data for all QPU
5 memcpy(cpu_map ->data , vpmBuffer_1 , 480); // 40 byte of VPM data for each QPU
6 memcpy(cpu_map ->data , vpmBuffer_2 , 120); // 10 byte of VPM data for each QPU
7
8 for (int i=0; i < 12; i++) { // For each QPU (12)
9 cpu_map ->uniforms[i*3 + 0] = vc_data; // Address tmuBuffer

10 cpu_map ->uniforms[i*3 + 1] = vc_data + 60 + (480/12)*i; // Assigned vpmBuffer_1
11 cpu_map ->uniforms[i*3 + 2] = vc_data + 60+480 + (120/12)*i; // Assigned vpmBuffer_2
12
13 cpu_map ->messages[i*2 + 0] = vc_uni + (i*3* sizeof(unsigned)); // Address uniforms
14 cpu_map ->messages[i*2 + 1] = vc_code; // Address qpuCode
15 }
16
17 execute_qpu(mailbox , 12, vc_msg , 1, 10000); // Start execution
18
19 memcpy(vpmBuffer_2 , cpu_map ->data + 60+480 , 120); // Fetch vpmBuffer_2
20
21 ...

Listing 3.13: Data Setup for 1 TMU and 2 VPM Buffers

The base address of each seperate buffer - VPM and TMU buffer alike - has to be trans-
mitted to the QPU via a uniform, which is done in a straightforward sequential fashion
referencing vc data which again represents the base address of the CPU memory map -
termed cpu map - mirroring the GPU memory. The base addresses of each separate buffer
is stated in relation to vc data as it points to the only buffer of the CPU memory map into
which all data intended to transmit has to be copied into. At last is an eventual memory
fetch shown in line 19, fetching 120 GPU processed bytes into vpmBuffer 2.

——————————————————————————

44

4. Implementation of AES

The first section of this chapter will outline the exact manner of how the data required by
AES is made available to the GPU and therefore how excatly the kernel driver was accessed.
Section 4.2 describes the single components of the the AES GPU implementation while the
last section will outline occured problems, which mostly stem from problems with the VPM.

The block cipher mode of operation for the AES algorithm was chosen to be the ECB
mode, since its simplicity and property of trivial parallelizability allow for the most promising
showcase of the GPU’s potential. Because the ECB mode treats every block in reclusion is
parallelization achievable by simply assigning each block that is supposed to be encrypted or
decrypted to a different QPU, which then applies the chosen algorithm. Regarding the AES
block cipher algorithm are the AES variants utilizing a 128-bit key and a 256-bit key realized
in this thesis, as they make up both sides in regards to the security vs speed tradeoff.

4.1. Implementation of AES on the CPU side

To access the GPU it first of all has to be set up correctly as outlined in chapter 3.3.1.
Data that is passed to the GPU is made up of the assembled instructions, a 1024-byte S-
box, 176-240 bytes for the expandedKey and 192 bytes of plain- or ciphertext that is to be
processed. The assembled instructions total to 5304 bytes when transmitting the encryption
algorithm and to 12680 bytes when transmitting the decryption algorithm. The S-box and
expandedKey are supplied to the QPUs via the TMU, as only read access to those buffers is
required. Because the plain- or ciphertext will be processed and therefore modified on the
QPUs, are those texts transmitted via the VPM as it is the only read and write memory
available allowing for a later fetch of the processed results. The plain- or ciphertext is
therefore divided into equal parts that will correspond to the VPM segments. Because the
GPU implementation of AES utilizes all 12 QPUs is the data transmitted via VPM therefore
divided into 12 segments each making up 16 bytes, which is exactly the size of one block for
the AES block cipher algorithm. The whole process of data transmission from the CPU to
the GPU is visualized in illustration 4.1.

The S-box is transmitted as a 1024-byte buffer even though the S-box actually holds no
more than 256 bytes of unique data and is therefore implemented as only a 256-byte buffer in
regular CPU implementations. Though for the GPU implementation of AES was the S-box
expanded by seperating each byte of the 256-byte S-box with 3 nulled bytes. This way does
the S-box correspond naturally to the returned 32-bit of the TMU, which in turn saves 752
bytes of additional instruction code while adding 768 byte of S-box buffer. The resulting
1024-byte S-box implementation - as again outlined in the QASM implemention of sub bytes

and inv sub bytes - comes significantly ahead of the 256-byte S-box implementation.
The necessary key expansion for the 176-240 byte buffer of the expandedKey is performed

first on the CPU and not parallelized on the 12 QPUs because the key expansion is barely
parallelizable, but certainly not on the Raspberry Pi GPU. As outlined in chapter 2.1.1 is
the calculation of each round-key highly dependent on the previous round-key, making the

45

4. Implementation of AES

QPU 0 QPU 1 QPU 2 QPU 10 QPU 11

...
GPU

Buffer
S-Box

Buffer
exp. Key

Buffer
Code

V
P
MSegment

1
Segment

2
Segment

10
Segment

11

...
Segment

0

L2
Cache

TMU

192 bytes

16
bytes6696 bytes

1024 bytes

176 bytes

5304 bytes

16
bytes

16
bytes

16
bytes

16
bytes

CPU

Illustration 4.1.: Visualization of the Transmissision of every Buffer to the GPU

calculation of different round-keys necessarily sequential. Parallelizing the calculation of a
single round-key however barely makes sense, as a single-round key consists of only 16 byte.
Meaningful parallelization on 4 processing units would require immensely faster inter process
communication than ALU processing capabilities on all processing units, which simply is not
given on the Raspberry Pi. Therefore is the key expansion for the AES algorithm performed
on the CPU.

Noteworthy, especially in regards to the occured problems with the AES implementation,
is the total amount of data transmitted from the CPU to the GPU every time the GPU
receives 192 byte to process. For each encryption does the CPU transmit 6696-6760 bytes,
while for the each decryption 14072-14136 bytes are transmitted.

4.2. Implementation of AES on the GPU side

Besides the key expansion does AES consist of four further functions according to the algo-
rithm’s illustration 2.2 in chapter 2.1. As each QPU receives one block via the VPM it has
to perform the listed four functions in stated order. The upcoming sections will detail how
each QPU receives its block and stores it back, how the control flow is realised and how each
of the four functions was translated to QASM. All upcoming instructions are executed iden-
tically on each QPU and differ only in the assigned VPM memory, which is automatically
differently assigned by the VCM Hardware though the encoded instructions are identical.

AES Preparations in QASM

The QPUs start by loading the address of the S-box buffer, expandedKey buffer and block
buffer via uniform read into the registers ra29-ra31. Following are multiple load immediate
instructions, which load constants into the registers rb0-rb8 as well as a counter value to
ra28. The constants are necessary values throughout the AES algorithm and contain imme-
diates larger than 6 bits or immediates for instruction with special conditional specifier as

46

4.2. Implementation of AES on the GPU side

those instructions can’t load small immediates. Register ra28 specifies the required num-
ber of Cycling-Rounds according to illustration 2.2 and contains the value 9 in the AES128
implementation and the value 13 in the AES256 implementation. Both AES variants differ
only the set value of this register when it comes to the QASM implementation.

Following up is the VPM load and read of the assigned block that is surrounded by VPM
mutex acquire and release. Which block is assigned to which QPU is determined by the
GPU driver. The QPU is set up to load 16 bytes to the VPM and then read those 16 bytes
into registers ra20-ra23. Because AES is an algorithm that operates on single bytes and
not 32-bit words which are stored in registers ra20-ra23, is a split of those 4-byte words
necessary. Listing 4.1 showcase this necessary splitting at least for register ra20, which then
has to be repeated for registers ra21-ra23. Eventually will registers ra0-ra15 correspond
to the 16 bytes that make up the state (see illustration 2.1) of the AES algorithm and on
which the upcoming four QASM functions are performed.

1 ## Receive S-box , expandedKey , block buffer address via uniform
2 or ra31 , ra32 , 0; nop # ra31 = TMU address of S-box
3 or ra30 , ra32 , 0; nop # ra30 = TMU address of expandedKey
4 or ra29 , ra32 , 0; nop # ra29 = VPM address of block
5
6
7 ## Load Cycling -Rounds counter and constants
8 ldi ra28 , 9 # Cycling -Rounds counter
9 ldi rb0 , 0x000000ff # Word splitting immediates

10 ldi rb1 , 0x0000ff00
11 ldi rb2 , 0x00ff0000
12 ldi rb3 , 0xff000000
13 ldi rb4 , 0x00000100 # Galois mask immediates
14 ldi rb5 , 0x0000011b
15 ldi rb6 , 16 # TMU round -key load immediates
16 ldi rb7 , 0
17 ldi rb8 , 4 # TMU S-box load immediate
18
19
20 ## Acquire VPM mutex
21 or ra39 , ra51 , rb39; nop
22
23 ## VPM DMA load setup , ID=1, MODEW=0, MPITCH=1, ROWLEN=4, NROWS=1, VPITCH=0, VERT=0,
24 ldi ra49 , 0x81410000
25 or ra50 , ra29 , 0; nop
26 or ra39 , ra50 , rb39; nop
27
28 ## VPM read setup , ID=0, NUM=4, STRIDE=1, HORIZ=0, LANED=0, SIZE=2, ADDR=0
29 ldi ra49 , 0x00401200
30 or ra20 , ra48 , 0; nop # ra20 = block [0 -3]
31 or ra21 , ra48 , 0; nop # ra21 = block [4 -7]
32 or ra22 , ra48 , 0; nop # ra22 = block [8 -11]
33 or ra23 , ra48 , 0; nop # ra23 = block [12 -15]
34
35 ## Release VPM mutex
36 or ra51 , ra39 , rb39; nop
37
38
39 ## Word splitting of 32-bit words in ra20 -ra23 to bytes in ra0 -ra15
40 and ra0 , ra20 , rb0; nop # ra0 = block [0]
41 and ra32 , ra20 , rb1; nop
42 shr ra1 , r0, 0x8; nop # ra1 = block [1]
43 and ra32 , ra20 , rb2; nop
44 shr ra2 , r0, 0x10; nop # ra2 = block [2]
45 and ra32 , ra20 , rb3; nop
46 shr ra3 , r0, 0x18; nop # ra3 = block [3]
47
48 ...

Listing 4.1: QASM Preparations for AES

AES Control Flow in QASM

Control flow within the QASM implementation of AES is very straightforward as most
functions are implemented inline for performance reasons. Merely a branch to repeat the
Cycling-Rounds is undertaken after the second add round key() function. Using placehold-
ers for functions does listing 4.2 outline the sequence of functions each QPU is undergoing.

47

4. Implementation of AES

1 <<AES Preparations >>
2
3 <<add_round_key ()>>
4
5 cycle:
6
7 <<sub_bytes >>
8 <<shift_rows >>
9 <<mix_columns >>

10 <<add_round_key >>
11
12 ## Branch to repeat Cycling -Rounds
13 sub ra28 , ra28 , 1; nop
14 brr.ze ra39 , rb39 , cycle # branch if ra28 != 0 to cycle
15 nop ra39 , ra39 , rb39; nop
16 nop ra39 , ra39 , rb39; nop
17 nop ra39 , ra39 , rb39; nop
18
19 <<sub_bytes >>
20 <<shift_rows >>
21 <<add_round_key >>
22
23 <<AES Postprocessing >>

Listing 4.2: Control Flow in QASM AES

add round key() and inv add round key() in QASM

For the add round key() and inv add round key() function do the QPUs first of all fetch
the current round-key from the TMU and load it to the registers ra16-ra19. The 4 round-
key bytes in each register are then simultaneously split and added to the corresponding byte
of state, as shown in listing 4.3. After the current round-key is fetched from the TMU is
the expandedKey pointer increased to the the next round-key or decreased to the preced-
ing round-key in case of decryption, during which the round-keys are applied backwards.
Performing a complete add round key() function requires 53 instruction cycles.

1 ## Preload round -key to be fetched
2 add ra56 , ra30 , 0; nop
3 add ra56 , ra30 , 4; nop
4 add ra56 , ra30 , 8; nop
5 add ra56 , ra30 , 12; nop
6
7 ## Advance TMU expandedKey address to next round -key
8 add.tmu ra30 , ra30 , rb6; nop
9

10 ## Fetch round -key from TMU
11 or.tmu ra16 , r4 , rb7; nop
12 or.tmu ra17 , r4 , rb7; nop
13 or.tmu ra18 , r4 , rb7; nop
14 or ra19 , r4, rb7; nop
15
16 ## Split round -key word and xor with corresponding state bytes
17 and ra32 , ra16 , rb3; nop # r0 = round -key [0 -3] & 0 xff000000
18 shr ra32 , r0 , 0x18; nop # r0 = round -key [0]
19 xor ra0 , ra0 , r0; nop # block [0] = block [0] ^ round -key [0]
20
21 and ra32 , ra16 , rb2; nop # r0 = round -key [0 -3] & 0 x00ff0000
22 shr ra32 , r0 , 0x10; nop # r0 = round -key [1]
23 xor ra1 , ra1 , r0; nop # block [1] = block [1] ^ round -key [1]
24
25 and ra32 , ra16 , rb1; nop # r0 = round -key [0 -3] & 0 x0000ff00
26 shr ra32 , r0 , 0x8; nop # r0 = key [2]
27 xor ra2 , ra2 , r0; nop # block [2] = block [2] ^ round -key [2]
28
29 and ra32 , ra16 , rb0; nop # r0 = round -key [0 -3] & 0 x000000ff
30 xor ra3 , ra3 , r0; nop # block [3] = block [3] ^ round -key [3]
31
32 ...

Listing 4.3: Implementation of add round key() in QASM

48

4.2. Implementation of AES on the GPU side

sub bytes() and inv sub bytes() in QASM

The sub bytes() function is simple in that it replaces the state-byte with the corresponding
value the S-box holds at the index being the value of the state-byte. However because the
GPU being a 32-bit architecture is the S-box not implemented as a 256-byte buffer but rather
as a 1024-byte buffers for reasons outlined in the preceding chapter 4.1. This enables the
sub bytes() function and its inverse counterpart to execute a single byte substition within
3 instead of 6 instruction cycles and saves the mentioned 752 bytes of instruction code. The
increase in total size of the instruction code by 16 bytes is by far redeemed by halving the
required time for a single sub bytes() execution, which in its optimized form takes a total
of 49 instruction cycles to complete.

1 nop ra39 , ra0 , rb8; mul24 rb33 , ra0 , rb8;
2
3 add ra56 , ra31 , r1; nop # TMU_load (& sbox + block [0]*4)
4 nop.tmu ra39 , ra1 , rb8; mul24 rb33 , ra1 , rb8;
5 or ra0 , r4, 0; nop # block [0] = sbox[block [0]]
6
7 add ra56 , ra31 , r1; nop # TMU_load (& sbox + block [1]*4)
8 nop.tmu ra39 , ra2 , rb8; mul24 rb33 , ra2 , rb8;
9 or ra1 , r4, 0; nop # block [1] = sbox[block [1]]

10
11 ...

Listing 4.4: Implementation of sub bytes() in QASM

shift row() and inv shift row() in QASM

shift row() and inv shift row() are the simplest functions in the reference C implemen-
tation and are equally straightforward in their QASM translation. Both functions assign
each state-byte a different state-byte according to illustration 2.3 in chapter 2.1.1 and are
performed by saving the first state-byte in a temporary accumulator value and then sequen-
tially filling the correct state-byte into the state-byte that is currently backed up. A complete
shift row() function requires only 16 instruction cycles.

mix columns() and inv mix columns() in QASM

There are many examplary implementations of a matrix multiplication in regular Assem-
bly, providing good guidance for a QASM implementation of the matrix multiplications of
mix columns() and inv mix columns() that multiply the current state of the block with the
matrices shown in illustration 2.4. The challenge of the mix columns() functions however
consists in the fact that the matrix multiplication - which is straightforwad in QASM - is
performed in the GF (28). Hence is the realization of the galois multiplication in QASM the
actual difficult aspect of the mix columns() functions.

The most comprehensible way of realizing the galois multiplication is by translating the
Russian Peasant Multiplication algorithm [Wik17d] to QASM and calling it by function.
Listing A.6 in the appendix shows the most direct translation of the algorithm to QASM
requiring many conditional branches and a total of 20 instructions for only a single while
loop - of which there are several necessary for the finished galois multiplication. The function
takes inputs from accumulator r0 and r1 and returns the result in acummulator r2.

However because there are only 7 different values for the second argument of the galois
multiplication - as there are only seven different values in the mix columns() matrices -
can the galois multiplication be fitted to those arguments and conditional branches can be
evaluated beforehand since the second argument is known. Are furthermore the remaining

49

4. Implementation of AES

conditional branches replaced by intricate logic shifts can the galois multiplication in QASM
become highly performant and can be executed in 7 to 18 instruction cycles, depending on
the second argument. Listing 4.5 shows such a highly optimized implementation, which can
perform a complete galois multiplication of arbitrary input with the value 0x03. Listing A.7
in the appendix shows another optimized galois multiplication with the second argument
being a larger number (0x0e) and therefore requiring 18 instruction cycles.

1 ## p = gal_mul(a, 0x03), r2 = p, r0 = a
2 xor ra34 , r0 , 0x00000000; nop # p = p ^ a
3
4 shl ra32 , r0 , 1; nop # a = a << 1
5
6 and ra33 , r0 , 0x100; nop # if (a & 0x100) then a = a xor 0x11b
7 shr ra33 , r1 , 8; nop
8 nop ra39 , r1 , 0x11b; mul24 rb33 , r1 , 0x11b
9 xor ra32 , r0 , r1; nop

10
11 xor ra34 , r0 , r2; nop # p = p ^ a
12
13 ## Result of gal_mul(r0, 0x03) now in r2

Listing 4.5: Implementation of p = gal mul(a, 0x03) in QASM

The mix columns() and inv mix columns() functions can be declared the by far most
expensive function in the QASM implementation of the AES algorithm. A single round of the
mix columns function requires 272 instruction cycles, while the inverse function even requires
1200 instruction cycles due to the inverse function utilizing significantly higher multiplicants
in its matrix and therefore requiring by far more elaborate galois multiplications.

To put this high weight of this function in perspective is it important to state the second
most expensive function - the add round key() function - merely requires a total of 53 in-
struction cycles. Adding all instructions cycles of 11 calls each to the inv add round key(),
inv sub bytes() and inv shift rows() functions required for a single execution of the
AES algorithm, does the total come to merely 1298 instruction cycles. All the while does
a single call to the inv mix columns() require 1200 instruction cycles, which adds up to
10800 instruction cycles over the course of a complete single exeuction of AES. Conse-
quently can be concluded that each QPU will spend 88% of it’s time processing solely the
inv mix columns() function when decrypting. During encryption, the mix columns() func-
tion still demands a share of 47% of the total processing time.

AES Postprocessing in QASM

The postprocessing mirrors the preparations each QPU undergoes before the execution of
the block algorithm. The postprocessing consists of three parts. First of all are the state-
bytes which are saved in the registers ra0-ra15 merged back to 32-bit words and saved
into registers ra20-ra23. Following this is the writing of those values into the VPM and
then initiating a VPM store, which results in the processed block being sent back to the
CPU. All of those VPM operations are necessarily surrounded by VPM mutex acquires and
releases. As in the preparation phase of the AES algorithm, executes each QPU the same
VPM configuration instructions but gets automatically assigned different segments of the
VPM by the VCM. Finally is each QPU triggering a host interrupt and the qpu execute()

call in the driver returns when all QPUs triggered that interrupt.

50

4.3. Summary and Problems of AES Implementation

1 ...
2
3 shl ra33 , ra13 , 0x8; nop
4 or ra32 , ra12 , r1; nop
5 shl ra33 , ra14 , 0x10; nop
6 or ra32 , r0, r1; nop
7 shl ra33 , ra15 , 0x18; nop
8 or ra23 , r0, r1; nop # ra23 = block [12 -15]
9

10
11 ## Acquire VPM mutex
12 or ra39 , ra51 , rb39; nop
13
14 ## VPM write setup , ID=0, STRIDE=1, HORIZ=0, LANED=0, SIZE=2, ADDR=0
15 ldi rb49 , 0x00001200
16 or ra48 , ra20 , 0; nop # block [0 -3]
17 or ra48 , ra21 , 0; nop # block [4 -7]
18 or ra48 , ra22 , 0; nop # block [8 -11]
19 or ra48 , ra23 , 0; nop # block [12 -15]
20
21 ## VPM DMA store setup , ID=2, UNITS=1, DEPTH=4, LANED=0, HORIZ=1, VPMBASE=0, MODEW=0
22 ldi rb49 , 0x80844000
23 or rb50 , ra29 , 0; nop
24 or ra39 , ra39 , rb50; nop
25
26 ## Release VPM mutex
27 or ra51 , ra39 , rb39; nop
28
29 ## Trigger interrupt to finish the program and signal host
30 or ra38 , ra39 , rb39; nop
31 nop.tend ra39 , ra39 , rb39; nop
32 nop ra39 , ra39 , rb39; nop
33 nop ra39 , ra39 , rb39; nop

Listing 4.6: QASM Postprocessing for AES

4.3. Summary and Problems of AES Implementation

Problems regarding the implementation of AES can be attributed to the Problems regarding
VPM access, outlined in chapter 3.1.4. The most suitable implementation of the VPM
management would be to transmit 48 KB at once from the CPU to the VPM by the VPM load
command, filling up each 4 KB segment with blocks that are intended to be processed with
the AES algorithm. The QASM implementation of the AES algorithm would be identical to
the current one - each QPU reading 16 bytes, processing it, then writing it back - except for
branching back to the start of the algorithm for a total of 256 times, each time increasing
the VPM addressing to the next block that is supposed to be processed. After each 16-byte
block in the 4 KB VPM segment is processed would the data be transmitted back to the
CPU via a VPM store command.

However, as detailed in chapter 3.1.4 does the VPM currently not support multiple VPM
reads that are seperated by a VPM mutex release and reacquire, which in turn is an absolute
necessity for an actual parallelization. Therefore is the QASM implementation of AES forced
to load and read the data that is supposed to be processed within a single VPM mutex
acquisition, limiting the implementation to assign each QPU only 16 bytes of ciphertext.
Reading a second 16-byte block to the QPU within a single VPM mutex acquisition would
be possible, though this would cause a serious increase in instruction size making it barely
worthwhile.

Instead was the problem solved in the clearer but unsatisfactory fashion of repeatedly
transmitting 192 byte to and from the GPU, while still keeping the acquired GPU com-
munication pipe and the GPU configuration active. This way is the signifcant overhead of
starting and setting up the GPU unnecessary if more than 192 byte of plain or ciphertext
is intended to be processed. Nevertheless causes this current workaround implementation
massive drawbacks, since it is necessary to transmit the 6504 bytes of overhead (see chapter

51

4. Implementation of AES

4.1) each time 192 bytes of data is to be processed on the GPU. When decrypting does
the overhead even amount to a staggering 13880 bytes, which is 72 times more than the
transmitted data one is actually interested in. The overhead of encryption still outweighs
the actually interesting transmitted data by a factor of 33.

Besides this obvious performance drain of being limited to process only 192 byte at once,
can AES be efficiently implemented in the QASM programming language. Even though the
mix columns() functions require an enormous amount of processing time, are they realized
efficiently if one intents to process the galois multiplication by computing it. On the other
hand can the mix columns() functions be made massively more efficient by realizing the
galois multiplication via multiple lookup tables, as done in the CPU implementations against
which the result of the GPU implementation have been thoroughly tested. Those lookup
tables would require 6 additional buffers of 256 byte each being transmitted to the GPU via
the TMU, though it would bring down the mix columns() and inv mix columns() function
down to the 49 instruction cycles needed for the sub bytes() function.

However the GPU implementation of AES was done according to NIST’s FIPS 197 official
AES description, wherein the galois multiplication is not realized by lookup tables but rather
by computation. Aside from this performance issue does the resulting AES implementation
work out well, scaling to arbitrary input sizes and consistently returning correctly processed
data. During all benchmarks introduced in the subsequent chapter, totaling the encryption
and decryption of multiple megabytes of data, has not one bit that was returned by the GPU
implementation deviated from the industry standard encryption performed by OpenSSL.

——————————————————————————

52

5. Evaluation

The Raspberry Pi GPU has a theoretical maximum performance of 24 SP GFLOPS, allowing
for a potential speed-up of 1714% compared to the 1.4 SP GFLOPS of the CPU. This chapter
is going to evaluate if this speed-up is possible with the use case being data encryption using
the AES block cipher algorithm developed in the course of this thesis and introduced in the
preceding chapters. In order to evaluate the GPU implementation of AES is it compared to
various quasi-standard implementations of AES utilizing the CPU. Section 5.2 will introduce
the conducted experiments, followed by the discussion of them in the last section of this
chapter.

5.1. Testsetup

All tests were executed on a Raspberry Pi Model 1 B that was produced past the 15.
October of 2012 and therefore features 512 MB of SDRAM. The used operating system
was the official Raspbian OS in the jessie lite version. It was used in the release version
2017-04-10, which features a Linux Kernel in version 4.4.50 and a gcc compiler in version
4.9.2. The program testing the GPU and CPU libraries of AES is compiled with the enclosed
makefile, automatically assembles the existing QPU code and is executed with sudo a.out.
The library testing program will then measure the required time of each library’s function
using clock gettime() and write out the results to a .csv file for logging purposes.

The GPU implementation of AES has been tested in 2 slightly different versions in order to
provide more expressivenes in the conducted experiments, while four different CPU libraries
realizing AES have also been tested for comparison.

Both GPU implementations differ in the aspect of setting up the GPU before starting the
benchmark or not. In the version called ’GPU, preloaded Pipe’ is the pipe acquisition to the
GPU as well as most of the GPU memory setups done seperately beforehand, leaving only
the key expansion, memory copy of plaintext and transmission kickoff to the timing function.
This benchmark is intended to represent the actual usage of the GPU implementation in
a real scenario, as the whole GPU setup can simply be done beforehand when the GPU
implementation is loaded as an encryption kernel module or similar. On the other hand
do the benchmarks of the standard GPU implementation, simply called ’GPU’, include the
GPU setup in its timing function.

The four different CPU libraries realizing AES come down as follows: OpenSSL in version
1.01 optimized for the ARMv6 architectur with architecture specific assembly [Deb17]. Ri-
jndael in its original form written in assembly-oriented C as proposed by its creators at the
competition of finding the next Advanced Encryption Standard in 2001 [Rij02]. Tiny-AES
128, one of the most popular AES implementations in C for embedded devices though only
available for AES-128 (github version of the 23. June 2017). A custom reference implemen-
tation of AES, strictly implemented in C according to NIST’s AES explaining document
FIPS 197 [NIS01].

53

5. Evaluation

The testvector examined in this thesis is restricted to the 128-bit key and 256-bit key
variants of AES, utilizing the ECB block cipher mode of encryption and comparing five
reference implementations. Possible input sizes were chosen to be 192 byte, 1536 byte and
10KB. This testvector is visualized in illustration 5.1.

AES Variant

Block Cipher Mode

Tested Algorithms

256-bit key

192-bit key

128-bit key

ECB CBC CTR

OpenSSLRijndael
GPU

FIPS 197 Reftiny AES

Illustration 5.1.: Testvector of Conducted Experiments

5.2. Experimental Results

The benchmark results of the first experiment is shown in illustration 5.2. It depicts the
encryption (red) and decryption (blue) of 192 bytes in a bar chart visualizing the required
time in nanoseconds on the y-axis and listing 5 different implementations of AES in the
128-bit key variant. The showcased timings are made up of the resulting averages of 1000
independent runs of those implementations. The two leftmost AES implementations are
OpenSSL and Rijndael. The two centered AES implementations both depict the GPU AES
implementation created for this thesis, differing in the aspect of preloading the GPU. The two
rightmost AES implementations represent tiny-AES the custom reference implementation of
AES according to FIPS 197.

The table below the bar graph depicting the achieved benchmark results, details further
benchmark statistics in nanoseconds. Topmost is the exact average timing of the 1000 runs
listed, based on which the bars in the graph are visualized. Below is the statement of
encountered standard deviation in nanoseconds. For the GPU implementations - including
all benchmarks listed below - did the standard deviation never exceed a relative value of 3%,
indicating an obviously needed reliable communication with the GPU. The runs requiring the
least and most time are also listed at the bottom of the table to provide further interesting
statistical information, especially when combined with the standard deviation.

54

5.2. Experimental Results

encr decr encr decr encr decr encr decr encr decr encr decr

OpenSSL Rijndael GPU, pre-
loaded Pipe GPU tiny-AES Reference

avg [ns] 29 33 98 122 235 492 1566 1960 1036 6072 1472 2510

std. dev. [ns] 11 11 13 21 15 11 53 55 42 65 51 97

min [ns] 25 30 91 114 218 473 1460 1850 1013 5944 1438 0

max [ns] 221 216 265 504 450 567 1840 2408 1355 6394 1921 2785

0 ns

500 ns

1.000 ns

1.500 ns

2.000 ns

2.500 ns

3.000 ns

Illustration 5.2.: Benchmark of AES128, 192 Bytes Input

encr decr encr decr encr decr encr decr encr decr

OpenSSL Rijndael GPU, pre-
loaded Pipe GPU Reference

avg [ns] 36 38 129 158 275 630 1604 2098 2120 3619

std. dev. [ns] 17 7 20 19 12 13 49 71 57 72

min [ns] 31 35 120 151 258 610 1492 1985 2040 3541

max [ns] 286 185 305 344 379 851 1847 2986 2413 4457

0 ns

500 ns

1.000 ns

1.500 ns

2.000 ns

2.500 ns

3.000 ns

3.500 ns

Illustration 5.3.: Benchmark of AES256, 192 Bytes Input

55

5. Evaluation

An important property of the visualized graphs is the fading out graph bar for the decryp-
tion of tiny-AES. Because the required time for decryption with the tiny-AES algorithm far
outweighs the required time of other algorithms, does this completely ruin the scale and us-
ability of the resulting graph. As this overshadowing is constant throughout all benchmarks
of the AES algorithm in its 128-bit key variant, is the readjustment of the scale while simul-
taneously fading out the bar graph the more comprehensible practice. The exact required
time of the tiny-AES decryption can still be seen in the statistics below the bar graph.

Furthermore does Illustration 5.3 depict the encryption and decryption of the same input
size of 192 bytes - visualized in the same manner. Though because the popular implemen-
tation tiny-AES does not feature a 256-bit key variant, does the 5.3 only illustrate 4 instead
of 5 different implementations.

Significant is the assessment that the GPU implementation of AES-256 does better in
relation to its competing implementations than AES-128. For one does the GPU implemen-
tation of AES-256 beat out the FIPS 197 reference implementation even when the GPU
setup is taken into the timing account - which is not the case for the AES-128 GPU imple-
mentation. Additionally does the AES-256 implementation better in relation to the highly
optimized standard implementations. The ’GPU, preloaded pipe’ implementation of the
AES-256 version takes 2.1 and 7.6 times longer than the Rijndael and OpenSSL implemen-
tations respectively, while the same implementation of the AES-128 version takes 2.4 and
8.1 times longer.

Considering the differences in absolute required time between the AES-128 and AES-256
implementaiton does the difference between both presetup implementations come down to
40ns.

Moreover is the input size of 192 bytes not the only input size tested. Illustration 5.4
showcases the benchmarks of AES in the 128-bit key and 256-bit key variant for an input
size of 1536 byte, while illustration 5.5 showcases the benchmarks for an input size of 10KB.
The input size of 1536 byte was chosen as this incorporates the maximum payload size of
an ethernet frame, which is 1500 bytes, and is therefore interesting in regards to the real
applicability of the GPU implementation. The input size of 10KB was chosen as this input
size roughly marks the point after which there is basically no discernible difference in the
required time of the regular GPU implementation and the presetup one.

encr decr encr decr encr decr encr decr encr decr encr decr

OpenSSL Rijndael GPU, pre-
loaded Pipe GPU tiny-AES Reference

avg [ns] 124 128 476 502 3489 5444 4830 6921 8159 48083 11472 19728

std. dev. [ns] 12 15 26 28 132 93 88 98 70 161 108 136

min [ns] 118 123 464 488 0 5138 4492 6557 8040 47902 11400 19605

max [ns] 274 346 712 791 3780 6781 5528 8238 9241 50611 13450 22262

0 ns

5.000 ns

10.000 ns

15.000 ns

20.000 ns

encr decr encr decr encr decr encr decr encr decr

OpenSSL Rijndael GPU, pre-
loaded Pipe GPU Reference

avg [ns] 156 162 629 659 3798 6562 5142 8023 16593 28490

std. dev. [ns] 15 14 28 32 74 98 87 95 90 165

min [ns] 150 157 614 643 3508 6265 4775 7667 16416 28337

max [ns] 378 384 803 1083 4220 7455 6060 8824 18010 31970

0 ns

5.000 ns

10.000 ns

15.000 ns

20.000 ns

25.000 ns

Illustration 5.4.: Benchmark of AES128 (Left) and AES256 (Right), 1536 Bytes Input

56

5.3. Discussion

When examining the average timing of those benchmarks does the fact draw attention that
the required average time does not scale in unison with the input sizes. Taking AES-128 for
example and comparing the benchmarks of the 192 byte input and the 1536 byte input can
be assessed that although the input size is increased by a factor of 8, does the encryption
of the presetup GPU version take 14.8 times as long. Though the exact opposite is the case
when examining the regular GPU version without a preceding setup, as the encryption for
1536 bytes takes only 3.1 times as long as the encryption for 192 bytes.

encr decr encr decr encr decr encr decr encr decr encr decr

OpenSSL Rijndael GPU, pre-
loaded Pipe GPU tiny-AES Reference

avg [ns] 747 754 2914 2937 24122 37119 25599 38700 53649 318141 75632 130274

std. dev. [ns] 43 30 59 61 247 188 250 221 101 574 166 233

min [ns] 727 737 2847 2872 22858 36664 24783 37872 53456 317597 75427 130111

max [ns] 992 894 3043 3075 24475 37510 25952 39086 53964 322800 76879 132143

0 ns

20.000 ns

40.000 ns

60.000 ns

80.000 ns

100.000 ns

120.000 ns

140.000 ns

encr decr encr decr encr decr encr decr encr decr

OpenSSL Rijndael GPU, pre-
loaded Pipe GPU Reference

avg [ns] 950 968 3871 3904 26605 44615 27566 46179 109243 187895

std. dev. [ns] 34 52 75 103 260 252 330 268 133 358

min [ns] 928 939 3785 3813 25559 43829 26194 45205 109083 187094

max [ns] 1074 1330 4095 4682 26984 45658 28225 46908 109737 189508

0 ns

20.000 ns

40.000 ns

60.000 ns

80.000 ns

100.000 ns

120.000 ns

140.000 ns

160.000 ns

180.000 ns

Illustration 5.5.: Benchmark of AES128 (Left) and AES256 (Right), 10KB Input

5.3. Discussion

As the first and most obvious assessment can be said that the GPU implementation of
AES is in all variants significantly lacking behind the industry standard implementation of
OpenSSL and the original Rijndael implementation. Though it is important to note that
both of those implementations are highly optimized in their utilized programming language
as well as in their AES algorithm procedure, with OpenSSL even featuring ARMv6 specific
assembly instructions.

By far more significant though is the fact that both implementations feature a highly
optimized mix columns() function, which are the weak spot of straightforward AES im-
plementations as outlined in chapter 4.2. Both implementations realize the required galois
multiplication by preprocessing the possible outcomes and providing those via lookup tables,
totaling 1536 bytes alone. In return do both optimized implementations replace the very
processing intensive galois multiplication by a simple and massively faster table lookup. At-
testing to this optimization is the fact that both encryption and decryption of the OpenSSL
and Rijndael implementation take up very similar time, as aside from the differing effort for
the galois multiplication both encryption and decryption have very similar instructions.

Both GPU implementations as well as the unoptimized CPU implementations on the other
hand realize the galois multiplication by computing it. A detailed instruction analysis of the
mix columns() functions in section 4.2 however came to the conclusion that this computing
of the galois multiplication makes up 47% of the QPUs total processing time when encrypting
and staggering 88% when decrypting. The required time for the mix columns() function
would be divided by a factor of 5.5 when encrypting and even by a factor of 24.5 when

57

5. Evaluation

decrypting if the function would be implemented using a lookup table only requiring 49
instruction cycles as stated in section 4.3.

This in turn decreases the meaningfulness of comparing the lookup table optimized OpenSSL
and Rijndael implementation with the processing intensive GPU, tiny-AES and FIPS 197
reference implementation.

An interesting and important aspect of the GPU implementation is the difference in re-
quired time caused by a preceding setup of the GPU, which can be averaged to about 1300ns.
As this preceding setup of the GPU is very well realizable by loading an encryption kernel
module at system boot, are the benchmark results of the presetup GPU implementation
signficantly more relevant and important than those of the regular GPU implementation.
Though more importantly does this setup time for the GPU seem to be the reason for why
not only the required time doesn’t scale with input size, but rather the regular GPU and
presetup GPU implementation scaling in opposing fashions (one correlating significantly
negative, the other significantly positive).

One assessment of the previous section was that between the 192 byte and 1536 byte
benchmarks the input size was increased by a factor of 8, though the presetup implementation
took 14.8 times longer while the regular implementation correlated negative and required
only 3.1 times more time. This assessment can be found in a similar manner with the 256-bit
key variant, however barely with the input size scaling comparison between the 1536 byte
and 10KB benchmarks. This behaviour is owed to the fact that with 192 byte as an input
size, the data only needs to be transmitted to and fetched from the GPU once, not requiring
a reset of the GPU for it to be ready to receive another batch of data to be processed. This
GPU reset is necessary for a repeated transmission of data while still keeping the GPU set
up the same way.

Since this GPU reset takes 200ns and is required before every repeated transmission, does
in return the input size now scale very closely with the required time. Furthermore does this
also explain the negative correlation of the required time of the regular GPU implementation
with a higher input size. Because only the first transmission of data requires 1300ns for the
setup of the GPU, do additional data transmissions only require 200ns of reset time as
well as the average required time determined for 192 byte if the GPU would already be
presetup. In the case of encryption with AES-128 does this average required time come
down to 235 as shown in illustration 5.2 Calculating the resutling expected time for a 1536
byte encryption with AES-128 is therefore done by adding the setup time (1300ns) with the
time for encrypting 192 byte while considering the GPU reset time (235ns + 200ns) and
then multiplying it by 8, as 192 byte is one eighth of 1536 byte. The calculated expected
time therefore adds up to 4780ns, which comes very close to the benchmarked 4830ns in
illustration 5.4, further validating that input size and required time do actually scale under
consideration of certain properties.

At last is an important conclusion to be drawn by comparing the benchmark results of
AES-128 and AES-256. Not only does the GPU implementation of AES-256 perform better
than AES-128 in relation to their compared CPU implementations. Going further can the
comparison of both variants even give some indiciation about the required time for a single
Cycling-Encryption-Round.

The time difference between the GPU implementation of AES-128 and AES-256 comes
down to 40ns when encrypting. However both implementations barely differ in the amount
of data transmitted to the GPU in order to execute the GPU algorithm. When encrypting
does the AES-128 variant transmit 6696 bytes while the AES-256 variant transmits 6760

58

5.3. Discussion

bytes, as outlined in section 4.1. Therefore can the time difference of 40ns be equalised to
the execution of the additional 4 Cycling-Encryption-Rounds undertaken by the AES-256
algorithm. Hence does the execution of a single Cycling-Encryption-Round take 10ns on the
GPU with the current implementation.

Assuming that the time required for the execution of the Initial-Encryption-Round and
Final-Encryption-Round combined equals the required time of a single Cycling-Encryption-
Round (although they fall about 200 instruction cycles short). The AES-256 algorithm can
then be stated as performing 14 Cycling-Encryption-Rounds and therefore requiring 140ns
on the GPU. The remaining 135ns that were required for a complete execution are split
into performing the key expansion, transmitting 6760 bytes from the CPU to the GPU and
loading the state bytes from VPM memory to the GPU register. The GPU implementation
of the AES algorithm therefore requires about the same time as the Rijndael implementation
does on the CPU, once the data has been transmitted to the GPU.

This chapter shall be concluded by performing the thought experiment of replacing the
processed galois multiplication by a galois multiplication realized with lookup tables. The
mix columns() function would be implemented nearly identical to the sub bytes() func-
tion, requiring 53 instruction cycles. Whereas the current implementation of mix columns()

requires 272 instruction cycles. If the required instruction cycles of the mix columns() func-
tion come down to 53 instructions would this in turn decrease the required total instructions
for a Cycling-Encryption-Round from 390 instructions (53 + 16 + 272 + 49, see section 4.2)
to 171 instructions (53 + 16 + 53 + 49). This reduces the required instruction cycles by 56
% and would in turn bring down the algorithm execution on the GPU down to 61ns.

To summarize can therefore be said that the OpenSSL implementation on the CPU sig-
nificantly outperforms the GPU implementation of AES. This would still be the case if the
galois multiplication would be implemented more efficiently by lookup tables and the VPM
problem would be solved. The solution of the VPM problem would make the 135ns for data
transfer insignifcant as it would only be required twice for arbitrary amounts (up to 48KB)
of data, however would the application of the AES-256 algorithm - in this scenario requiring
61ns - still require 25ns more than OpenSSL for every 192 bytes. The Rijndael implemen-
tation on the other hand would be greatly outperformed and the performance advantage to
other reference implementations vastly increased.

59

6. Summary and Future Work

This thesis set out to investigate the potential of the Raspberry Pi GPU by parallelizing
the AES block cipher algorithm in GPU specific assembly. Greatly improving the existing
way of accessing the GPU as well as greatly improving the assembler provided an important
foundation to realize this goal. Not only can the assembler for the QASM programming
language now for the first time encode QASM instructions correctly, but those can finally be
executed reliable on all 12 QPUs. The assembler was furthermore provided with a significant
expansion of important functionalities as well as an extensive documentation detailing the
QASM programming language, how exactly the instructions are encoded and how to properly
configure and address the GPU memory. This enables an excellent starting point for future
research conducted on the GPU.

All in all can be said that in the course of this thesis an extensively documented interface
to the GPU was created, that allows for reliably access to a general purpose multicore system
on a simple IoT device.

This enabled the assessment of the GPU’s capabillity, which in fact does show great
performance potential and therefore resolves the original question of this thesis. This great
potential can be concluded from several facts. One of those facts being that although the
GPU implementation of AES realizes the galois multiplication by processing it instead of
utilizing a lookup table and therefore spends 47% of its total encryption processing time
with the mix columns() function, the GPU is still able to perform a complete AES block
cipher algorithm on par with the highly optimized Rijndael CPU implementation once the
required data is located in GPU memory. Though because the transmission of data from
the CPU to the GPU is obviously a necessary part of the GPU implementaiton, does the
CPU outperform the GPU implementation at the moment.

Once the galois multiplication is realized with lookup tables does the GPU performance
even come close to that of OpenSSL - the industry’s most trusted and optimized imple-
mentation. All of those results were achieved with only a first draft of the GPU’s AES
implementation, which certainly offers more possibility of improvement than just the galois
multiplication. Therefore owing the impressive results mostly to the fact that it could be
implemented in parallel.

On the other hand - and this makes up the second fact of why the GPU shows great per-
formance potential - is the slow transmission of data to the GPU, causing the defeat against
the CPU implementations, due to the massive data overhead required for the processing of
a single 192 byte batch. The overhead required to encrypt 192 byte of plaintext amounts to
33 times as much as the actually important plaintext data - even increasing to a factor of
72 when transmitting 192 byte for decryption. This problem however is caused by an only
temporarily unsolved configuration problem of the VPM, for which most certainly there is
a yet undisclosed solution.

Once the configuration problem of the VPM is solved, does this also resolve any issues with
the crippling amount of overhead, truly unleashing the GPU’s potential. The moment this is
the case will the possible amount of data that can be processed within a single transmission

61

6. Summary and Future Work

to the GPU explode from 192 byte to 48KB. Combined with additional methods of speed-
up - aside the galois multiplication - that are certainly possible, does the GPU have a
realistic chance of computing AES faster than the OpenSSL implementation on the CPU.
Nonetheless does the GPU offer in any way an excellent speed-up potential for algorithms,
as the parallelization of the algorithm on the GPU most likely is more easily accomplished
than highly optimizing the algorithm on the CPU.

Furthermore is it important to record that parallelizing the AES block cipher algorithm
is not the best way to show off the GPU’s maximum potential, despite the GPU showing
exactly that. First of all does the AES algorithm require many accesses to lookup tables -
even in the current unoptimized version is a frequent read from the S-box and expandedKey
lookup tables necessary. Though the usual bottleneck of multicore systems can be identified
as the memory bus, from which can be concluded that an algorithm that is more processing
intensive will certainly perform better when parallelized on the multicore GPU, providing a
more realistic picture of the GPU’s true maximum potential. Second of all does the AES
algorithm barely, if at all, utilize the mul pipeline, which is mostly put aside by letting
it perform nop operations. This in fact alone halves the GPU’s achievable parallelization
performance, as one half of the GPU’s ALU hardware is basically idling. Therefore can be
reasoned that an algorithm utilizing the mul pipelines operations more effective, will also
reflect the GPU’s true maximum potential better.

However to conclude - the last paragraph and essentially the whole thesis - can be said
that all of those aspects only add further to the assessment that the GPU really does show
excellent potential for speed-up through algorithm paralleliztion.

Future Work

This thesis is only a first step for researching the potential of the Raspberry Pi GPU, with
possible ideas ranging from improving the AES implementation created in the course of this
thesis to making the enhanced assembler universally usable. Most specific to this thesis and
directly tying on to the undertaken research is the implementation of the galois multiplication
as lookup tables. Though general advancements in the understanding and usability of the
assembler and GPU hardware will benefit this research as well.

An important improvement to the usability of the assembler is the solution of the grave
VPM problem resulting in random reads and writes. This would enable the access to all
48KB of the VPM memory. Furthermore would the performance of the GPU be seriously
increased if access to the fourth slice containing QPU 12 to 15 could be established. Although
those QPUs are listed as present in the hardware architecture reference guide, was it by now
not possible to access them with the official kernel driver, suggesting a deactivation of this
slice by hardware. A further documentation and exploration of the kernel driver would also
be necessary in order to facilitate access to the VideoCore IV GPU for System-on-Chips other
than the BCM2835 featured in the Raspberry Pi 1, with the natural expansion seeming to be
the SoCs of the Raspberry Pi 2 and Raspberry Pi 3. This would in turn make the assembler,
AES implementation and undertaken reasearch more widely usable and applicable.

Additional interesting research is also embodied by further exploring the real usability of
the AES implementation created in this thesis and testing the parallelization potential for
further block cipher modes of operation. Especially the CTR mode, which is parallelizable
in encryption and decryption, seems complex in realization on the CPU but seems well
fitted for a parallelization attempt on the GPU. A closing impulse for possible future work

62

regarding the real usability, is the realization of the created AES implementation as a kernel
module - including the functionality of a preceding setup.

63

A. Appendix

1 /* XORs the state with the current roundKey
2 */
3 void add_round_key(uint8_t *state , const uint8_t *expandedKey , int round)
4 {
5 for (int i = 0; i < 16; i++) {
6 state[i] ^= expandedKey [(16 * round) + i];
7 }
8 }

Listing A.1: Implementation of add round key() in C

1 /* Replaces each byte of the state with the corresponding invSbox byte
2 */
3 void inv_sub_bytes(uint8_t *state)
4 {
5 static const uint8_t invSbox [] = {
6 0x52 , 0x09 , 0x6A , 0xD5 , 0x30 , 0x36 , 0xA5 , 0x38 , 0xBF , 0x40 , 0xA3 , 0x9E , 0x81 , 0xF3 , 0xD7 , 0xFB

,
7 0x7C , 0xE3 , 0x39 , 0x82 , 0x9B , 0x2F , 0xFF , 0x87 , 0x34 , 0x8E , 0x43 , 0x44 , 0xC4 , 0xDE , 0xE9 , 0xCB

,
8 0x54 , 0x7B , 0x94 , 0x32 , 0xA6 , 0xC2 , 0x23 , 0x3D , 0xEE , 0x4C , 0x95 , 0x0B , 0x42 , 0xFA , 0xC3 , 0x4E

,
9 0x08 , 0x2E , 0xA1 , 0x66 , 0x28 , 0xD9 , 0x24 , 0xB2 , 0x76 , 0x5B , 0xA2 , 0x49 , 0x6D , 0x8B , 0xD1 , 0x25

,
10 0x72 , 0xF8 , 0xF6 , 0x64 , 0x86 , 0x68 , 0x98 , 0x16 , 0xD4 , 0xA4 , 0x5C , 0xCC , 0x5D , 0x65 , 0xB6 , 0x92

,
11 0x6C , 0x70 , 0x48 , 0x50 , 0xFD , 0xED , 0xB9 , 0xDA , 0x5E , 0x15 , 0x46 , 0x57 , 0xA7 , 0x8D , 0x9D , 0x84

,
12 0x90 , 0xD8 , 0xAB , 0x00 , 0x8C , 0xBC , 0xD3 , 0x0A , 0xF7 , 0xE4 , 0x58 , 0x05 , 0xB8 , 0xB3 , 0x45 , 0x06

,
13 0xD0 , 0x2C , 0x1E , 0x8F , 0xCA , 0x3F , 0x0F , 0x02 , 0xC1 , 0xAF , 0xBD , 0x03 , 0x01 , 0x13 , 0x8A , 0x6B

,
14 0x3A , 0x91 , 0x11 , 0x41 , 0x4F , 0x67 , 0xDC , 0xEA , 0x97 , 0xF2 , 0xCF , 0xCE , 0xF0 , 0xB4 , 0xE6 , 0x73

,
15 0x96 , 0xAC , 0x74 , 0x22 , 0xE7 , 0xAD , 0x35 , 0x85 , 0xE2 , 0xF9 , 0x37 , 0xE8 , 0x1C , 0x75 , 0xDF , 0x6E

,
16 0x47 , 0xF1 , 0x1A , 0x71 , 0x1D , 0x29 , 0xC5 , 0x89 , 0x6F , 0xB7 , 0x62 , 0x0E , 0xAA , 0x18 , 0xBE , 0x1B

,
17 0xFC , 0x56 , 0x3E , 0x4B , 0xC6 , 0xD2 , 0x79 , 0x20 , 0x9A , 0xDB , 0xC0 , 0xFE , 0x78 , 0xCD , 0x5A , 0xF4

,
18 0x1F , 0xDD , 0xA8 , 0x33 , 0x88 , 0x07 , 0xC7 , 0x31 , 0xB1 , 0x12 , 0x10 , 0x59 , 0x27 , 0x80 , 0xEC , 0x5F

,
19 0x60 , 0x51 , 0x7F , 0xA9 , 0x19 , 0xB5 , 0x4A , 0x0D , 0x2D , 0xE5 , 0x7A , 0x9F , 0x93 , 0xC9 , 0x9C , 0xEF

,
20 0xA0 , 0xE0 , 0x3B , 0x4D , 0xAE , 0x2A , 0xF5 , 0xB0 , 0xC8 , 0xEB , 0xBB , 0x3C , 0x83 , 0x53 , 0x99 , 0x61

,
21 0x17 , 0x2B , 0x04 , 0x7E , 0xBA , 0x77 , 0xD6 , 0x26 , 0xE1 , 0x69 , 0x14 , 0x63 , 0x55 , 0x21 , 0x0C , 0x7D

};
22
23 for (int i = 0; i < 16; i++) {
24 state[i] = invSbox[state[i]];
25 }
26 }

Listing A.2: Implementation of inv sub bytes() in C

65

A. Appendix

1 void mix_columns(uint8_t *state)
2 {
3 static const uint8_t mixMultMatrix [] = {
4 0x02 , 0x03 , 0x01 , 0x01 ,
5 0x01 , 0x02 , 0x03 , 0x01 ,
6 0x01 , 0x01 , 0x02 , 0x03 ,
7 0x03 , 0x01 , 0x01 , 0x02};
8
9 // Because state [1|2|3] need state [0] for calculation , state [0] can not

10 // be overwritten before all calculations are done. Therefore are the
11 // calculations saved in a temporary array.
12 uint8_t tmp [4];
13
14 for (int i = 0; i < 4; i++) {
15 tmp [0] = galois_mul(state [(4 * i) + 0], mixMultMatrix [0])
16 ^ galois_mul(state [(4 * i) + 1], mixMultMatrix [1])
17 ^ galois_mul(state [(4 * i) + 2], mixMultMatrix [2])
18 ^ galois_mul(state [(4 * i) + 3], mixMultMatrix [3]);
19 tmp [1] = galois_mul(state [(4 * i) + 0], mixMultMatrix [4])
20 ^ galois_mul(state [(4 * i) + 1], mixMultMatrix [5])
21 ^ galois_mul(state [(4 * i) + 2], mixMultMatrix [6])
22 ^ galois_mul(state [(4 * i) + 3], mixMultMatrix [7]);
23 tmp [2] = galois_mul(state [(4 * i) + 0], mixMultMatrix [8])
24 ^ galois_mul(state [(4 * i) + 1], mixMultMatrix [9])
25 ^ galois_mul(state [(4 * i) + 2], mixMultMatrix [10])
26 ^ galois_mul(state [(4 * i) + 3], mixMultMatrix [11]);
27 tmp [3] = galois_mul(state [(4 * i) + 0], mixMultMatrix [12])
28 ^ galois_mul(state [(4 * i) + 1], mixMultMatrix [13])
29 ^ galois_mul(state [(4 * i) + 2], mixMultMatrix [14])
30 ^ galois_mul(state [(4 * i) + 3], mixMultMatrix [15]);
31
32 state [(4 * i) + 0] = tmp [0];
33 state [(4 * i) + 1] = tmp [1];
34 state [(4 * i) + 2] = tmp [2];
35 state [(4 * i) + 3] = tmp [3];
36 }
37 }
38
39 uint8_t galois_mul(uint8_t a, uint8_t b)
40 {
41 uint8_t p = 0; // p as the product of the multiplication
42
43 while (b) {
44 if (b & 1) { // If b odd , then add corresponding a to p
45 p = p ^ a; // In GF (2^8) , addition is XOR
46 }
47 if(a & 0x80) { // If a >= 128 it will overflow when shifted left , so reduce
48 a = (a << 1) ^ 0x11b; // XOR with primitive polynomial x^8 + x^4 + x^3 + x + 1
49 } else {
50 a <<= 1; // Multiply a by 2
51 }
52 b >>= 1; // Divide b by 2
53 }
54 return p;
55 }

Listing A.3: Implementation of mix columns() in C

1 key192_expansion(uint32 key [6])
2 {
3 // Create an expandedKey with the size of 208 bytes or 52 uint32
4 uint32 expandedKey = new expandedKey [52];
5
6 // First copy initial key to expandedKey as a basis to expand upon
7 for (int round = 0; round < 6; round ++) {
8 expandedKey[round] = key[round];
9 }

10
11 for (int round = 6; round < 52; round ++) {
12 // Perform special expansion on every 6th round
13 if (round % 6 == 0) {
14 expandedKey[round * 4] = sub_word(rot_word(expandedKey [(round - 1) * 4]))
15 XOR rcon_word ((round / 6) - 1)
16 XOR expandedKey [(round - 6) * 4]
17 } else {
18 expandedKey[round * 4] = expandedKey [(round - 1) * 4]
19 XOR expandedKey [(round - 6) * 4]
20 }
21 }
22 }

Listing A.4: Key Expansion Algorithm for 192-bit Key in Pseudocode

66

1 key256_expansion(uint32 key [8])
2 {
3 // Create an expandedKey with the size of 240 bytes or 60 uint32
4 uint32 expandedKey = new expandedKey [60];
5
6 // First copy initial key to expandedKey as a basis to expand upon
7 for (int round = 0; round < 8; round ++) {
8 expandedKey[round] = key[round];
9 }

10
11 for (int round = 8; round < 60; round ++) {
12 // Perform special expansion on every 4th and 8th round
13 if (round % 4 == 0) {
14 if(round % 8 == 0) {
15 expandedKey[round * 4] = sub_word(rot_word(expandedKey [(round - 1) * 4]))
16 XOR rcon_word ((round / 8) - 1)
17 XOR expandedKey [(round - 8) * 4]
18 } else {
19 expandedKey[round * 4] = sub_word(expandedKey [(round - 1) * 4])
20 XOR expandedKey [(round - 8) * 4]
21 }
22 } else {
23 expandedKey[round * 4] = expandedKey [(round - 1) * 4]
24 XOR expandedKey [(round - 8) * 4]
25 }
26 }
27 }

Listing A.5: Key Expansion Algorithm for 256-bit Key in Pseudocode

1 ## This implementation of galois_mul(uint8_t a, uint8_t) takes input in r0 (a)
2 ## and ra20 (b) and overwrites accumulators r1 and r2. The output is stored in
3 ## accumulator r1. The Implementation takes b in a regular register so that
4 ## register r3 will not be overwritten and several galois_mul can easily
5 ## combined in r3 and r1.
6 galoisMul:
7
8 ldi ra33 , 0x00000000 # r1 = p = 0
9

10 galWhile:
11 # if (b & 1)
12 and ra34 , ra20 , 0x00000001; nop
13 brr.zf ra39 , rb39 , galFor1End # branch if (b & 1) == 0 to ’galFor1End ’
14 nop ra39 , ra39 , rb39; nop
15 nop ra39 , ra39 , rb39; nop
16 nop ra39 , ra39 , rb39; nop
17
18 xor ra33 , r1 , r0; nop # p = p ^ a
19
20 galFor1End:
21
22 # if (a & 0x80)
23 and ra34 , r0 , rb4; nop
24 brr.zf ra39 , rb39 , galFor2Else # branch if (a & 0x80) == 0 to ’galFor2Else ’
25 nop ra39 , ra39 , rb39; nop
26 nop ra39 , ra39 , rb39; nop
27 nop ra39 , ra39 , rb39; nop
28
29 shl ra32 , r0 , 1; nop # a = a << 1
30 ldi ra34 , 0x0000011b
31 xor ra32 , r0 , r2; nop # a = a ^ 0x11b
32
33 brr ra39 , rb39 , galFor2End # branch to ’galFor2End ’
34 nop ra39 , ra39 , rb39; nop
35 nop ra39 , ra39 , rb39; nop
36 nop ra39 , ra39 , rb39; nop
37
38 galFor2Else:
39
40 shl ra32 , r0 , 1; nop # a = a << 1
41
42 galFor2End:
43
44 shr ra20 , ra20 , 1; nop # b = b >> 1
45
46 brr.ze ra39 , rb39 , galWhile # branch if b /= 0 to ’galWhile ’
47 nop ra39 , ra39 , rb39; nop
48 nop ra39 , ra39 , rb39; nop
49 nop ra39 , ra39 , rb39; nop

Listing A.6: Implementation of Generic Galois Multiplication in QASM

67

A. Appendix

1 ## p = gal_mul(a, 0x0e), r2 = p, r0 = a
2 shl ra32 , r0 , 1; nop # a = a << 1
3 and ra33 , r0 , 0x100; nop # if (a & 0x100) then a = a xor 0x11b
4 shr ra33 , r1 , 8; nop
5 nop ra39 , r1 , 0x11b; mul24 rb33 , r1 , 0x11b
6 xor ra32 , r0 , r1; nop
7
8 xor ra34 , r0 , 0x00000000; nop # p = p ^ a
9

10 shl ra32 , r0 , 1; nop # a = a << 1
11 and ra33 , r0 , 0x100; nop # if (a & 0x100) then a = a xor 0x11b
12 shr ra33 , r1 , 8; nop
13 nop ra39 , r1 , 0x11b; mul24 rb33 , r1 , 0x11b
14 xor ra32 , r0 , r1; nop
15
16 xor ra34 , r0 , r2; nop # p = p ^ a
17
18 shl ra32 , r0 , 1; nop # a = a << 1
19 and ra33 , r0 , 0x100; nop # if (a & 0x100) then a = a xor 0x11b
20 shr ra33 , r1 , 8; nop
21 nop ra39 , r1 , 0x11b; mul24 rb33 , r1 , 0x11b
22 xor ra32 , r0 , r1; nop
23
24 xor ra34 , r0 , r2; nop # p = p ^ a
25 ## Result of gal_mul(r0, 0x03) now in r2

Listing A.7: Implementation of p = gal mul(a, 0x0e) in QASM

68

List of Figures

2.1. 16-byte Block in Memory seen as State-Matrix 4
2.2. AES Encryption (left) and AES Decryption (right) Algorithm 5
2.3. Functionality of shift rows() and inv shift rows() 7
2.4. Mixing Matrices of the Encryption (left) and Decryption (right) 7
2.5. Visualization of the rot word() Functionality 9
2.6. ECB Encryption Mode (Top) and ECB Decryption Mode (Bottom) [Wik17c] 10
2.7. Illustration of the ECB Data Pattern Flaw [Wik17e] 11
2.8. CBC Encryption Mode (Top) and CBC Decryption Mode (Bottom) [Wik17a] 12
2.9. CTR Encryption Mode (Top) and CTR Decryption Mode (Bottom) [Wik17b] 13
2.10. Raspberry Pi 1 model B [ELi17] . 14
2.11. VideoCore IV 3D System Block Diagram [Bro13] 15
2.12. VideoCore IV QPU Core Pipeline [Bro13] . 17

3.1. Structure of a Single ALU Instruction - The Pipeline Operations 21
3.2. Structure of a Single ALU Instruction - Non-encoded Elements 22
3.3. Structure of a Single ALU Instruction - The Write-registers 22
3.4. Structure of a Single ALU Instruction - The First Read-registers 23
3.5. Structure of a Single ALU Instruction - The Second Read-registers 23
3.6. Operations Executable by the Add Pipeline [Bro13] 24
3.7. Operations Executable by the Mul Pipeline [Bro13] 25
3.8. The QPU Register Address Map Including Virtual Registers [Bro13] 29
3.9. VideoCore IV VPM Horizontal Access Mode Examples [Bro13] 30
3.10. Configuration Fields for VPM Load & Read [Bro13] 31
3.11. Configuration Fields for VPM Write & Store [Bro13] 32
3.12. Visualization of VPM Mutex Problem . 34
3.13. Instruction Encoding of ALU and ALU Small Imm [Bro13] 36
3.14. ALU Instruction Fields [Bro13] . 37
3.15. RaspberryPi GPU Open Source Status [Wik17f] 40

4.1. Visualization of the Transmissision of every Buffer to the GPU 46

5.1. Testvector of Conducted Experiments . 54
5.2. Benchmark of AES128, 192 Bytes Input . 55
5.3. Benchmark of AES256, 192 Bytes Input . 55
5.4. Benchmark of AES128 (Left) and AES256 (Right), 1536 Bytes Input 56
5.5. Benchmark of AES128 (Left) and AES256 (Right), 10KB Input 57

69

List of Tables

2.1. Comparison of Introduced Block Cipher Modes of Operation 19

3.1. Overview of Conditional Specifiers for Branches 26

71

Listings

2.1. Implementation of sub bytes() in C . 6
2.2. Implementation of galois mul() in C . 8
2.3. Key Expansion Algorithm for 128-bit Key in C 9
2.4. Implementation of rcon word() in C . 9

3.1. Examples for the Load Immediate Instruction 25
3.2. Example of an Unconditional Branch . 26
3.3. Example of a Conditional Branch . 27
3.4. Example of the Branchback Functionality . 27
3.5. Examples for the Use of Semaphores . 28
3.6. Implementation of Transmitting 16 byte from CPU to QPU via VPM 31
3.7. Implementation of Transmitting 16 byte from QPU to CPU via VPM 32
3.8. Example on How to Cause Partially Random VPM Read 33
3.9. Examples for Both Usage Modes of TMU Access 35
3.10. Termination of QPU . 35
3.11. mailbox.h - Kernel Driver Header . 40
3.12. Example Use of Kernel Driver . 43
3.13. Data Setup for 1 TMU and 2 VPM Buffers 44

4.1. QASM Preparations for AES . 47
4.2. Control Flow in QASM AES . 48
4.3. Implementation of add round key() in QASM 48
4.4. Implementation of sub bytes() in QASM . 49
4.5. Implementation of p = gal mul(a, 0x03) in QASM 50
4.6. QASM Postprocessing for AES . 51

A.1. Implementation of add round key() in C . 65
A.2. Implementation of inv sub bytes() in C . 65
A.3. Implementation of mix columns() in C . 66
A.4. Key Expansion Algorithm for 192-bit Key in Pseudocode 66
A.5. Key Expansion Algorithm for 256-bit Key in Pseudocode 67
A.6. Implementation of Generic Galois Multiplication in QASM 67
A.7. Implementation of p = gal mul(a, 0x0e) in QASM 68

73

Bibliography

[ARM17a] ARM: ARM1176JZF-S Technical Reference Manual. http://infocenter.

arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cegdejjh.html.
Version: 2017

[ARM17b] ARM: ARM1176JZF-S Technical Reference Manual. http://infocenter.

arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cdfbbchb.html.
Version: 2017

[Axa08] Axantum: 128-Bit Versus 256-Bit AES Encryption. http://www.axantum.

com/AxCrypt/etc/seagate128vs256.pdf. Version: 2008

[Ben12] Benvenuto: Galois Field in Cryptography. https://sites.math.washington.
edu/~morrow/336_12/papers/juan.pdf. Version: 2012

[Bro12] Broadcom: BCM2835. https://web.archive.org/web/20120513032855/

http://www.broadcom.com/products/BCM2835. Version: 2012

[Bro13] Broadcom: VideCore IV Architecture Reference Guide. https://docs.

broadcom.com/docs/12358545. Version: 2013

[Bro14] Brodkin: Raspberry Pi marks 2nd birthday with plan for open source graph-
ics driver. https://arstechnica.com/information-technology/2014/02/

raspberry-pi-marks-2nd-birthday-with-plan-for-open-source-graphics-driver/.
Version: 2014

[Deb17] Debian: Libssl-dev 1.01t. https://packages.debian.org/jessie/

libssl-dev. Version: 2017

[ELi17] ELinux: RpiFront.jpg. http://elinux.org/images/9/96/RpiFront.jpg.
Version: 2017

[Far16] Farnell: RASPBRRY-MODA+-512M - Evaluation Board.
http://uk.farnell.com/raspberry-pi/raspbrry-moda-512m/

sbc-raspberry-pi-model-a-512mb/dp/2536236. Version: 2016

[Gua13] Guardian, The: Edward Snowden: the whistleblower behind the NSA
surveillance revelations. https://www.theguardian.com/world/2013/jun/09/
edward-snowden-nsa-whistleblower-surveillance. Version: 2013

[Iwa10] Iwai, Nisikawa Kurokawa: AES encryption implementation on CUDA GPU and
its analysis. https://www.researchgate.net/publication/224213275_AES_

encryption_implementation_on_CUDA_GPU_and_its_analysis. Version: 2010

[Lip00] Lipmaa, Wagner Rogaway: Comments to NIST concerning AES modes of op-
eration: CTR-mode encryption. 2000

75

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cegdejjh.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cegdejjh.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cdfbbchb.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Cdfbbchb.html
http://www.axantum.com/AxCrypt/etc/seagate128vs256.pdf
http://www.axantum.com/AxCrypt/etc/seagate128vs256.pdf
https://sites.math.washington.edu/~morrow/336_12/papers/juan.pdf
https://sites.math.washington.edu/~morrow/336_12/papers/juan.pdf
https://web.archive.org/web/20120513032855/http://www.broadcom.com/products/BCM2835
https://web.archive.org/web/20120513032855/http://www.broadcom.com/products/BCM2835
https://docs.broadcom.com/docs/12358545
https://docs.broadcom.com/docs/12358545
https://arstechnica.com/information-technology/2014/02/raspberry-pi-marks-2nd-birthday-with-plan-for-open-source-graphics-driver/
https://arstechnica.com/information-technology/2014/02/raspberry-pi-marks-2nd-birthday-with-plan-for-open-source-graphics-driver/
https://packages.debian.org/jessie/libssl-dev
https://packages.debian.org/jessie/libssl-dev
http://elinux.org/images/9/96/RpiFront.jpg
http://uk.farnell.com/raspberry-pi/raspbrry-moda-512m/sbc-raspberry-pi-model-a-512mb/dp/2536236
http://uk.farnell.com/raspberry-pi/raspbrry-moda-512m/sbc-raspberry-pi-model-a-512mb/dp/2536236
https://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
https://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
https://www.researchgate.net/publication/224213275_AES_encryption_implementation_on_CUDA_GPU_and_its_analysis
https://www.researchgate.net/publication/224213275_AES_encryption_implementation_on_CUDA_GPU_and_its_analysis

Bibliography

[Lor14a] Lorimer: Hacking the GPU for Fun and Profit. https://rpiplayground.

wordpress.com/. Version: 2014

[Lor14b] Lorimer: SHA-256 Implementation on QPUS. https://www.raspberrypi.

org/forums/viewtopic.php?f=33&t=77231. Version: 2014

[Ltd16] Ltd, Raspberry: Ten millionth raspberry Pi and a new kit. https:

//www.raspberrypi.org/blog/ten-millionth-raspberry-pi-new-kit/.
Version: 2016

[Mag17] Magazine, MagPi: Issue 53. https://www.raspberrypi.org/magpi/issues/
53/. Version: 2017

[Mol15] Molnar, Peter: Overclocking and Stability Testing the
Raspberry Pi 2. https://retroresolution.com/2015/11/21/

overclocking-and-stability-testing-the-raspberry-pi-2-part-1/.
Version: 2015

[NIS97] NIST: Preselection of Round 1. http://csrc.nist.gov/archive/aes/

pre-round1/aes_9701.txt. Version: 1997

[NIS01] NIS: FIPS 197. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.

pdf. Version: 2001

[Ou06] Ou, George: Is encryption really crackable. http://www.webcitation.org/

5rocpRxhN. Version: 2006

[Pre98] Preneel, Bosselaers Rijmen: Principles and Performance of Crypto-
graphic Algorithms. http://www.drdobbs.com/algorithm-alley/184410756.
Version: 1998

[Reu13] Reuters: Merkel frosty on the U.S. over ’unaccept-
able’ spying allegations. https://www.reuters.com/article/

us-eu-summit-idUSBRE99N0BJ20131024. Version: 2013

[Rij02] Rijmen, Daemen: Rijndael Encryption Algorithm. http://www.efgh.com/

software/rijndael.htm. Version: 2002

[Sah09] Saha, RoyChowdhury Mukhopadhyay: A Diagonal Fault Attack on the
Advanced Encryption Standard. http://eprint.iacr.org/2009/581.pdf.
Version: 2009

[San16] Sandvine: 70 Percent of global internet traffic will be en-
crypted in 2016. https://www.sandvine.com/pr/2016/2/11/

sandvine-70-of-global-internet-traffic-will-be-encrypted-in-2016.

html. Version: 2016

[Sch12] Schneier, Bruce: Can the NSA breach AES. https://www.schneier.com/

blog/archives/2012/03/can_the_nsa_bre.html. Version: 2012

[War14] Warden: How to optimize Raspberry Pi Code us-
ing its GPU. https://petewarden.com/2014/08/07/

how-to-optimize-raspberry-pi-code-using-its-gpu/. Version: 2014

76

https://rpiplayground.wordpress.com/
https://rpiplayground.wordpress.com/
https://www.raspberrypi.org/forums/viewtopic.php?f=33&t=77231
https://www.raspberrypi.org/forums/viewtopic.php?f=33&t=77231
https://www.raspberrypi.org/blog/ten-millionth-raspberry-pi-new-kit/
https://www.raspberrypi.org/blog/ten-millionth-raspberry-pi-new-kit/
https://www.raspberrypi.org/magpi/issues/53/
https://www.raspberrypi.org/magpi/issues/53/
https://retroresolution.com/2015/11/21/overclocking-and-stability-testing-the-raspberry-pi-2-part-1/
https://retroresolution.com/2015/11/21/overclocking-and-stability-testing-the-raspberry-pi-2-part-1/
http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt
http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://www.webcitation.org/5rocpRxhN
http://www.webcitation.org/5rocpRxhN
http://www.drdobbs.com/algorithm-alley/184410756
https://www.reuters.com/article/us-eu-summit-idUSBRE99N0BJ20131024
https://www.reuters.com/article/us-eu-summit-idUSBRE99N0BJ20131024
http://www.efgh.com/software/rijndael.htm
http://www.efgh.com/software/rijndael.htm
http://eprint.iacr.org/2009/581.pdf
https://www.sandvine.com/pr/2016/2/11/sandvine-70-of-global-internet-traffic-will-be-encrypted-in-2016.html
https://www.sandvine.com/pr/2016/2/11/sandvine-70-of-global-internet-traffic-will-be-encrypted-in-2016.html
https://www.sandvine.com/pr/2016/2/11/sandvine-70-of-global-internet-traffic-will-be-encrypted-in-2016.html
https://www.schneier.com/blog/archives/2012/03/can_the_nsa_bre.html
https://www.schneier.com/blog/archives/2012/03/can_the_nsa_bre.html
https://petewarden.com/2014/08/07/how-to-optimize-raspberry-pi-code-using-its-gpu/
https://petewarden.com/2014/08/07/how-to-optimize-raspberry-pi-code-using-its-gpu/

Bibliography

[Wik17a] Wikipedia: CBC Mode Illustration. https://en.wikipedia.org/wiki/

Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg.
Version: 2017

[Wik17b] Wikipedia: CTR Mode Illustration. https://en.wikipedia.org/wiki/

Block_cipher_mode_of_operation#/media/File:CTR_encryption.svg.
Version: 2017

[Wik17c] Wikipedia: ECB Mode Illustration. https://en.wikipedia.org/wiki/

Block_cipher_mode_of_operation#/media/File:ECB_encryption.svg.
Version: 2017

[Wik17d] Wikipedia: Finite Field Arithmetic. https://en.wikipedia.org/wiki/

Finite_field_arithmetic. Version: 2017

[Wik17e] Wikipedia: Illustration Data Pattern Flaw. https://en.wikipedia.org/

wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29.
Version: 2017

[Wik17f] Wikipedia: Raspberry Pi Driver API. https://en.wikipedia.org/wiki/

Raspberry_Pi#Driver_APIs. Version: 2017

77

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CBC_encryption.svg
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CTR_encryption.svg
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:CTR_encryption.svg
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:ECB_encryption.svg
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#/media/File:ECB_encryption.svg
https://en.wikipedia.org/wiki/Finite_field_arithmetic
https://en.wikipedia.org/wiki/Finite_field_arithmetic
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29
https://en.wikipedia.org/wiki/Raspberry_Pi#Driver_APIs
https://en.wikipedia.org/wiki/Raspberry_Pi#Driver_APIs

	Introduction
	Background
	The Advanced Encryption Standard
	The AES Block Algorithm
	Block Cipher Modes of Operation

	The Raspberry Pi
	The Raspberry Pi System-on-Chip
	The Raspberry Pi GPU Architecture

	Related Work and Summary of AES on the GPU

	QPU Assembly Language and Assembler
	QASM - The RPi QPU Assembly Language
	ALU Instructions
	Non-ALU Instructions
	QPU Register Map
	The Vertex Pipe Memory
	The Texture Memory Units
	QPU Termination

	Implementation of Assembler
	ALU Instruction Encoding
	Load Immediate Instruction Encoding
	Branch Instruction Encoding
	Semaphore Instruction Encoding

	The GPU Kernel Driver
	Example Use of Kernel Driver
	Transmitting and Receiving Data through Kernel Driver

	Implementation of AES
	Implementation of AES on the CPU side
	Implementation of AES on the GPU side
	Summary and Problems of AES Implementation

	Evaluation
	Testsetup
	Experimental Results
	Discussion

	Summary and Future Work
	Appendix
	List of Figures
	List of Tables
	Listings
	Bibliography

