Developing a Fore Technology Adapter for the Integrated
Network Management Services

Antonio Rivera
Ludwig-Maximilians-Universitaet

June 15, 1999



Contents



1 Integrated Network Management Services

1.1 INMS and network management

INMS (actually a family of products) is an umbrella network management system developed
by Siemens for the management of heterogeneous networks. It integrates various network
technologies and provides the user with a uniform global view, which can encompass either the
entire network or a part of it as defined by the network administrator.

The design of the INMS system takes into account the growing complexity and heterogeneity
of corporate and carrier networks. In its current version, it supports a large number of different
networking technologies, types of network elements, and network services. The spectrum of
supported network scenarios ranges from LAN, MAN, and WAN architectures through to voice
transmission networks.

In order to understand the motivation behind the design of the INMS family of products,
it is important to have some knowledge of today’s networking landscape. Corporate networks
are made up of subnetworks with different architectures managed by different element man-
agement systems. Since element managers are designed for subnetwork-specific management
tasks, they cannot cooperate with the management systems of other subnetworks. In general,
they use different management protocols and different information models, and operate on dif-
ferent management platforms. To enable communication throughout the entire network, the
management activities of the subnetworks must be coordinated and the subnetwork-specific
management information must be correlated.

INMS integrates the configuration, status, and performance information of the element
management systems in homogeneous networks and combines it into a uniform, superordinate
network management system using a standardized network management protocol (SNMPv1),
a global network model, and a common user interface.

Because it uses a global network model, INMS is open to the integration of new technologies.
Moreover, since the definition of the INMS data model is protocol-independent, it is not limited
to SNMP and can, if required, be upgraded to a bilingual SNMP/CMIP version.

INMS is based on a standard management platform, HP OpenView Network Node Manager,
and is currently available for SUN Solaris and Windows NT Workstations. Its graphical user
interface is based on UNIX/Motif and the HP OpenView mamagement platform.

1.2 INMS Gate

Also known as GateNM or just Gate, it provides a distributed front-end component for INMS
with the purpose of monitoring a set of heterogeneous network elements. In order to perform
this task, Gate implements the following features:

Integration of third party agents. Gate provides a framework for the integration of new
network technologies into the INMS, without having to modify other INMS product compo-
nents. Third party agent integration has to be done by a developer (also known as a customizer
in INMS documentation). This customizer makes use of the Prolog API of Gate to implement
an interface to the new technology.

Distributed Network Management. Gate is implemented as a mid-level manager, able
to monitor a set of (possibly heterogeneous) network elements assigned to it by the network
administrator.

Configurable Alarm Filtering and Correlation. Gate’s Prolog API allows the customizer
to define (optional) alarm filtering and correlation rules.



Graphical User Interface. Gate includes a GUI for maintenance purposes —the Gate
MAI— that can be helpful for the developer to test the Technology Adapter’s functionality.

The INMS Gate allows the integration of SNMPv1 agents and proxy agents, even though
the respective MIB might be in SNMPv2 format. The integration of agents and proxy agents
providing an ASCII-based interface is also possible with the help of the Mediation Device
component, which transforms incoming data streams into generic data structures. Thus, Gate
acts as a SNMPv1/SNMPv2 agent, delivered with a MIB in SNMPv2 format.

Only the Gate Server needs to be modified in case of third party agent integration. The Gate
Server is responsible for agent monitoring, agent autodiscovery and the retrieval of service data,
although the latter has not yet been implemented in version 1.0. Monitoring and configuration
data are stored in a cache that is maintained and updated independently of SNMP get and set
requests of upper-layer applications.

1.2.1 Architecture of GateNM

Gate is based on a client-server architecture. The clients are realized as Emanate subagents
communicating with the Emanate Master Agent via an Emanate proprietary protocol. It is the
Master Agent that provides the SNMP interface of Gate to the INMS products CoreNM (INMS
Server), ViewNM and HelpNM. The Master Agent has been compiled in the trilingual mode in
order to support SNMPv1 as well as SNMPv2 and SNMPv2c. Two clients have been foreseen
for GateNM, namely the Monitoring Subagent and the Service Subagent. The Monitoring
Subagent implements the mechanisms for retrieving monitoring and configuration data, while
the Service Subagent is responsible for retrieving service data.

The version 1.0 of GateNM only implements the Monitoring Subagent. The MIB-IT Agent
is an option to additionally handle MIB-IT SNMP requests for TCP/IP management, and is
delivered by Emanate. It is not necessary for the Gate functionality and needs not to be
described here.

The Gate functionality relies on the following types of interprocess communication:

¢ Communication between INMS Database Export and Gate Server. Reconfiguration of all
Gate instances (i.e. Gate Server instances) takes place after an INMS database export.
Communication takes place via rcp of the respective files and the subsequent request to
reconfigure.

e Communication between Gate MAI and Emanate Master Agent. For example: call
start /stop scripts, Emanate command utilities (e.g. getone), modify configuration files.

e Communication between Gate MAI and Emanate Subagents (MIB-II, Monitoring, Ser-
vice), like calling start/stop scripts, modifying trace configuration, and so forth.

e Communication between Gate MAI and Gate Server, like starting/stopping a process,
Gate maintenance, etc.

Communication between the Gate MAI and other processes is based on TCP /IP.

1.2.2 Implementation of GateNM

The management tasks of Gate can be subdivided in tasks concerning configuration manage-
ment (the retrieval of configuration data for INMS autodiscovery), agent monitoring (retrieval
of monitoring data and trap handling), and those tasks concerning performance management
(standard MIB access to service data).

The Emanate Master Agent forwards incoming get requests via an internal dispatcher table
to the subagent responsible for the respective MIB objects. Since get requests on different
subagents do not mutually affect each other, two individual subagents have been realized:
A monitoring subagent for the retrieval of monitoring and configuration data, and a service
subagent for the retrieval of service data.



This procedure is necessary because get and set requests on monitoring, configuration and
service data will be performed synchronously between a subagent and the Gate Server. Thus,
processing a set or get operation would block the processing of any other management task
when realized with just one subagent. Using two different subagents guarantees that a get
request on service data won’t block agent monitoring tasks and viceversa. Both subagents act
as clients of the Gate Server.

1.3 Technology integration

INMS’s CoreNM component provides the functionality that allows different technologies to be
integrated via their ASCII, bitstream, or SNMP interfaces. In this case, CoreNM implements
an open gateway for existing and new network management systems and network elements on
the market. To this end, CoreNM provides both a runtime environment for technology-specific
adaptation modules and a powerful development environment for their creation.

In principle, the entire INMS functionality, from topology and configuration recording
through to status monitoring and help desk, is available for technologies integrated in INMS
in this way. However, the level of integration that can be achieved for a specific technol-
ogy is essentially determined by the functionality and information content of its management
interfaces. Moreover, the number of alarms forwarded by the respective technology can be ef-
fectively reduced with the aid of intelligent filtering and correlation mechanisms in accordance
with individual operating requirements.

1.3.1 Prolog API for Technology Adapters

The Prolog API for technology adapters is a library of Prolog predicates and modules built into
the Gate Server that constitutes the Gate framework. The INMS designers provided this API
with the purpose of making it simpler for the developer to implement complex control flows
and help him/her focus on the essential relationships between the agent’s MIB and the INMS
information model.

It is of course difficult to agree with or contest the previous claim based only on the ex-
perience acquired developing the Technology Adapter described here. If this experience is to
be used as a measure of the amount of work required for the task of technology integration,
it is certainly true that defining Prolog rules is a much less complex task than implementing
the same functionality in a procedural language like C. However, a customizer without any
background on logic programming but seasoned in, say, object oriented software development
might have disagreeed on this point.

1.3.2 Module concept for Technology Adapters

Each technology adapter is an IF-Prolog module with a common external interface used by the
Gate framework. The module concept for the technology adapters is similar to the concept
of class used in object oriented programming. A specialized or extended technology adapter
module inherits methods from the derived base technology adapter, much in the way of virtual
methods in C++.

The Basic technology adapter is what can be considered as the root of this hierarchy of
modules. It exports ”callback predicates” for cyclic polling, poll responses and traps to be
called by the ”callback” module of Gate. The callback predicates in turn call control, optional
and mandatory methods. Methods are predicates used like virtual C++ methods that are
inherited to extended agent handlers.

The Fore technology adapter presented in this paper extends the MIB-II module, which in
turn extends the Basic SNMP module. In the sample code presented below, the Prolog fact
extends (’MIB-II’) is used to indicate this inheritance relationship.



% NAME: ’Fore’ - GateNM Customized Agent Handler ’Fore’

% DESCRIPTION:

% Frame generated by createAgentHandlerTemplate(’Fore’, *MIB-II’).
:— module ’Fore’.

:— begin module ’Fore’.

:— import (framework) .

:— import(’Basic’).

extends (’MIB-II’).

1.3.3 The INMS Data Model

The first step in the process of third party integration is to model the network entities of the
new network technology within the framework of the INMS data model. Thus, the very first
thing the developer has to do is understand the INMS data model, which is the basis for the
Gate Monitoring MIB. The essential parts of the INMS data model are:

Proxy Agent. A proxy agent is modelled as a software module that is installed on a work-
station. It manages a definite number of assigned physical nodes, physical modules, physical
and logical ports, physical links and logical links. The workstation the proxy agent is installed
on is modelled as a physical node.

Physical Node. For example, switches, routers and workstations are modelled as physical
nodes. A physical node may contain physical modules. It can be managed directly by Gate or
via a proxy agent.

Physical Module. For example, I/O cards, slots, units, and modules are modelled as physical
modules. A physical module must be contained by a physical node and may contain physical
ports. If the network equipment in question doesn’t support physical modules but does support
physical ports, a dummy physical module must be defined and the physical ports assigned to
it.

Physical Port. For example, ports and interfaces are modelled as physical ports. A physical
port must be contained by a physical module and must contain at least one logical port. If
the network equipment in question doesn’t support such logical entities, a dummy logical port
must be assigned to each physical port.

Logical Port. For example, channels and interfaces are modelled as logical ports. A logical
port must be contained by a physical port.

Physical Link. A physical link connects two physical ports on two separate physical nodes.

NodeToNodeLink. A nodeToNodeLink is defined as a physical link connecting two nodes
where the respective end physical ports are unknown.

NodeToPortLink. A nodeToPortLink is defined as a physical link connecting two nodes
where the physical port of one end point of the link is not known.



LogicalLink. A logical link connects two logical ports. It doesn’t contain information about
the intermediate nodes and links in the path connecting the two end points of the connection
object. For example, FrameRelay PVCs and ATM VPCs and VCCs are modelled as logical
links.

In general, all these objects have an alarm state and an operational state. The TA developer
must define rules in order to model the network technology within the INMS data model, as
well as rules to assess the alarm and operational states of the network components supported
by the new network technology. A prerequisite to develop a reasonable technology adapter is
that the network technology to be integrated provides MIB objects for:

e The modelling of the network technology within the INMS data model as described above.
For example, if the new network technology supports ATM PVCs, which is the case
with Fore’s technology, the corresponding agent MIB must provide objects that allow the
definition of the corresponding Gate MIB objects, e.g. gateAtmPvcSrcVci (source VCI)
and gateAtmPvcDstVeci (destination VCI).

o The definition of Gate operational and alarm status MIB objects for those network entities
supported by the new network technology. For example, if the new network technology
supports ATM PVCs, the corresponding agent MIB must provide MIB objects that allow
the definition of the operational status of the entire PVC, i.e., the gateE2eConnOperStatus
MIB object.

2 Fore’s ATM technology

2.1 About Fore’s network element model

This section describes the hardware characteristics of Fore’s ATM switches in some detail as
they form the basis for the network element model of the Fore-Switch-MIB. The correspondence
between Fore’s and the INMS network element model is explained when appropriate. The
current version of the Fore Technology Adapter supports autodiscovery and monitoring of five
types of Fore ATM switch: the ASX-200WG switch for LAN workgroups, and the four models
designed for LAN backbone and LAN/WAN internetworking: ASX-200BX, ASX-1000, ASX-
1200 and ASX-4000. Since the logical model of a switch is maintained by the different physical
configurations, the Fore-Switch-MIB applies to all switch types.

2.2 ATM switch models

ASX-200WG. Single board, single SCP (switch control processor), up to four network mod-
ules (i.e. modules with network functionality). Only one PS (power supply) module and one
set of internal fans. The network modules support up to eight ports.

ASX-200BX. Single board, single or dual SCP, up to four network modules, two redundant
PS modules and one set of internal fans. The network modules support up to eight ports.

ASX-1000. Up to four switch boards in a common enclosure. Single or dual SCP and up to
four network modules on each board. The network modules support up to eight ports. Two

redundant PS modules and a hot-swappable fan tray are shared by all boards in the enclosure.

ASX-1200. An improved version of the ASX-1000.



ASX-4000. Up to four switch fabrics, functionally equivalent to the boards in the other
models. Up to four network modules controlled by each fabric. Network modules support a
maximum of four ports. The entire array of fabrics is centrally controlled by a single or dual
SCP configuration. The enclosure holds either four AC of five DC power supply modules and
two fan banks.

2.2.1 Special characteristics of the ASX-1000 and ASX-1200

These switch types share the remarkable feature of being able to hold multiple SNMP network
nodes in a single physical enclosure. They can contain up to four boards, each with its own
SCP module and SNMP agent, which makes each board appear to the management system as
a stand-alone ATM switch.

Of course, all boards populating an ASX-1x00 share certain hardware resources (the most
important being ventilation and power supply units), but considering their independent net-
working and management functionality, the Fore Technolology Adapter handles each board as
a logical ATM network node functionally equivalent to an ASX-200BX.

2.2.2 Special characteristics of the ASX-4000

The physical arrangement of network modules and switch fabrics (boards) in the ASX-4000
differs from that of the other switch models. The network modules are not physically embedded
in the boards: they are inserted in separate slots and comunicate with the fabric over the switch
backplane. Another difference lies in the physical arrangement of network modules: in the ASX-
4000, each fabric supports two port cards, which in turn are logically divided into two interface
groups, each containing up to four physical ports.

However, considering each interface group as a logical network module preserves the model
used in the other switch types: each port card can be considered as a hardware unit consisting of
one or two physical modules, which results in each fabric containing up to four network modules
which in turn can contain up to four physical ports (as opposed to a maximum of eight ports
in each module supported by the other switch types). The same applies to fault management:
failure of a switch fabric results in its ”contained” modules being out of operation.

The ASX-4000 is equipped with four AC or five DC power supply modules. Three AC or
four DC PS modules are required to provide power to an ASX-4000. The fourth AC or fifth
DC power supply is provided for redundancy.

2.2.3 The Switch Control Processor

The switch control processor (SCP) provides the distributed connection setup for a network
of ATM switches. The SCP primarily provides management access through SNMP and is
responsible for storing and updating all SNMP management information. The SCP is also
responsible for monitoring the environmental conditions of the switch, and for reporting events
such as malfunctioning fans, overheated power supplies, etc. It should be noted that the SCP
is not involved in the actual cell switching: this task is up to the switch fabric(s) (boards).
The ASX-200WG is the only switch type that does not support a dual SCP configuration.
When two SCPs are installed in a switch board, the switch recognizes their presence and
automatically runs in dual SCP mode, providing for failover support. In this case the SCPs are
hot-swappable. In the event of a failure on the controlling SCP, the standby SCP takes over. If
PVP/PVC connection preservation is enabled, all PVPs and PVCs listed in the configuration
database (according to the last synchronized status) and found to be intact in the hardware
are maintained without disruption of cell flow.



2.2.4 Fore’s ”smart” PVCs

Permanent virtual ATM connections are designated by Fore as either SPVCs (Smart Permanent
Virtual Circuit connections) or SPVPCs (Smart Permanent Virtual Path Connections). The
Fore TA adopts the same naming convention as it will be consistent with Fore’s documentation.
The use of the word smart refers to the ability of Fore’s internetworking software to dynam-
ically configure the path followed by a permanent virtual connection, which means that the
administrator only needs to configure the ATM PVC/PVP at the switches interacting directly
with the end points of the connection.

2.3 SNMP Interface

Fore network elements are integrated into the INMS through the SNMP agent included in the
switch control software running on every Fore ATM switch. The SNMP agent enables the remote
monitoring and configuration of network nodes and is configurable via Fore’s ATM Management
Interface (AMI). Fore’s ATM Switch Network Configuration Manual contains detailed SNMP
configuration instructions and is avaliable at Fore’s web site.

2.4 Configuration of Fore network elements

Fore’s ATM Switch Network Configuration Manual also offers detailed configuration instructions
for all types of switch hardware, as well as general ATM information in a tutorial fashion.

2.5 ForeView

ForeView Network Management is the proprietary software package provided by the vendor for
the management of Fore ATM networks. It is a graphical application that integrates with HP
OpenView on the Solaris and Windows NT platforms. The ForeView Network Management
User’s Manual includes full installation and configuration instructions and is available at Fore’s
web site.

3 Fore Technology Adapter

3.1 Features

Upon release of the Technology Adapter described in this paper, the INMS will support in its
version 3.0 the distributed monitoring of Fore networks via its Gate component. The INMS
will offer, through the use of the Fore TA, the following functionality for the management of
Fore backbone and workgroup switches:

e Autodiscovery of network modules for all types of Fore backbone switches
e Autodiscovery of their physical ports and configured ATM PVCs

¢ Autodiscovery of power supply, fan (for ventilation), and switch control processor (SCP)
physical modules for all types of Fore backbone switches

e Monitoring of the alarm state of Fore nodes and of their physical modules (network
modules and other types) as well as their physical ports

e Monitoring of the operational state of Fore nodes and of their physical modules (network
modules and other types) as well as their ports and configured PVCs

e Alarm display of fault management relevant alarms in the HP OpenView browser with a
Fore specific alarm category



Fore element

INMS element

Fore node

physNode of type ASX-200WG, ASX-200BX, ASX-1000, ASX-
1200 or ASX-4000

switch board / fabric

not modelled - mapped either to contained physical modules
for the ASX-4000, or to physical node for all other node types

module / port card physModule
power supply module physModule
SCP module physModule
fan bank / fan tray physModule

physical port

physPort (with 1 dummy logical port)

SPVPC

atmPVC with VCI set equal to 0 by the Fore TA

SPVC

atmPVC

Table 1. Mapping of object classes

e Display of alarm state and operational state for nodes, modules, physical ports, logical
ports and PVCs in the Network and Service Browser

3.2 Hardware and software requirements

Deployment of the Fore Technology Adapter will be possible on systems fulfilling the following

requirements:

e Sun Sparc/Ultra Sparc Workstations with Solaris version 2.6

o HP-Workstations with HP-UX version 10.20

e ForeView Software version 5.x.x

e Fore-Switch-MIB released on May 1997

e Fore-Common-MIB released on November 1996

o Fore-TrapLog-MIB released on October 1996

e INMS V3.0 - B and upwards

3.3 Modelling of the Fore node configuration within INMS

Table 1. shows the correlation of Fore switch components with the INMS network element

model.

3.4 Configuration in the INMS database

The Fore TA supports the automatic configuration in the INMS database of nodes, modules,
ports and PVCs in a Fore network, by means of the INMS autodiscovery function. As an
alternative to INMS autodiscovery, it is also possible for the network administrator to manually
configure the physical nodes, modules and ports through the INMS DB editor.

3.4.1 Configuring Fore nodes via the INMS DB editor

The following steps have to be performed in order to define a Fore node with a given name in

the DB editor:



1. Generation of a node. A Fore node is specified in the DB editor by indicating the type
of node (ASX-200WG, ASX-200BX, ASX-1000, ASX-1200 or ASX-4000) along with the given
name, and activating the create button in the Physical Nodes menu.

2. Specifying properties of the node. After creating the node, the properties window is
displayed automatically. The node attributes to be defined in this window are the following;:

e Location. The location of the node (optional)

e Polltimer. The time interval for explicitly retrieving actual state information from the
node by INMS (mandatory)

e ManagedStatus. Attribute to specify if the node should be monitored. By setting this
attribute to unmanaged the network administrator can disable the monitoring for nodes
currently not in operation (mandatory)

o ManagementType. This attribute has to be set to Fore and specifies the name of the
Technology Adapter in Gate (mandatory)

3. Creating a Gate instance. If not already done, the Gate instances responsible for access-
ing the monitored Fore nodes have to be configured in the database as well. A Gate instance
is created as a Software Module object of the host where it is operating (the corresponding
physical node instance must have been previously created in the DB editor). In the property
windows of Gate, the network administrator has to specify the corresponding PollTimer inter-
vall and the TP address of the Gate host. The Fore nodes to be monitored by the Gate instance
in question are assigned to it by choosing the Managed Nodes card in the properties window of
Gate, moving the desired Fore nodes from the left to the right selection list and choosing the
apply button.

4. Configuration of Modules and Ports. Physical modules and physical as well as logical
ports can be entered manually in the INMS database via the DB editor. For Fore nodes, INMS
alternatively supports automatic configuration of modules and ports in the INMS database via
INMS autodiscovery. By default all components of a node are monitored: If Fore ports are not
being used in the configuration the administrator must explicitly set the port to the disabled
state, i.e. administratively down as opposed to the port’s own derived down state.

5. Configuration of logical links. ATM PVCs can be configured manually in ForeView,
Fore’s proprietary management system. For a description of manual configuration procedures
please refer to the ATM Switch Network Configuration Manual. However, through the features
implemented in the Fore TA, the INMS alternatively offers the automatic configuration of PVCs
via INMS autodiscovery.

Note: After entering configuration information in the DB editor a commit action is necessary
in order to make the entered information permanent in the database.

3.5 Autodiscovery

INMS supports the autodiscovery mechanism for the configuration of Fore network nodes based
on the MIB information present in the monitored elements. In this section, the mapping rules
between Fore’s MIB data and the INMS network element model followed by the autodiscovery
mechanism are explained in more detail.

10



Physical Nodes. For the automatic configuration of Fore nodes, the network administrator
has to select each node in HP OpenView before starting the INMS autodiscovery. It is also
up to the administrator to assign each node to a Gate agent. The managed switch model is
determined by accesing the MIB variable switchType.

autodiscovery mapping(

N, % N is unified with the name given to this node
[[switchType, 0] = STypelnt],

(]

):-

s2enum(switchType, Model, STypelnt),
(switchModel(N, _) ->

retract (switchModel (N, _))

; true), !,

assertz(switchModel (N, Model)).

Physical Modules. The Fore-Switch-MIB implements a moduleTable containing the infor-
mation necessary for the discovery of configured physical modules with network functionality.

autodiscovery mapping(

N:

[[moduleName, Board, Mod] = MTypel,
[physModule(N, M, MType)]

) -

concat_atom([’Board’, Board, ’/’, Mod], M),
% map module to board number for board alarms
(module2board (N, Board, M) ->

retract (module2board (N, Board, M))

; true), !,

assertz(module2board(N, Board, M)).

Besides, the Fore-Switch-MIB includes additional tables containing information relative to
Power supply, CPU and Fan modules. For instance, on-board CPUs are discovered with the
help of the envCPUsTable.

autodiscovery.mapping(

N,

[[envCpuType, Board, CpuSlot] = CT],

[physModule(N, M, CpuType)]

) -

% case of asx1000: select CPUs on same board as agent

(( switchModel(N, asx1000) ; switchModel(N, asx1200) ) ->
physBoard(N, Board, BType) % only if board already in database
; true

)’ !’

concat_atom([’CPU’, CpuSlot], M),

s2enum(envCpuType, CpuType, CT).

Just as important as the physical presence of CPU modules is the SCP configuration of the
switch, that is, the configuration of a second CPU as backup in the event of failure of the
primary module. This information is gathered from the dualScpConfTable.

11



% discover if node has dual SCP configuration
user mapping(getSCPconfig(N, Board),
[[dualScpSlot, Board] = Slot,

[dualScpState, Board] = St,

[dualScpPrimary, Board] = Prim,
[dualScpFailover, Board] = F0O],

]

)i

(St == -> % switch operates with dual SCPs
FO == -> % failover enabled

Config = dual
; Config = alome),

(scpConfig(N, Board, Slot, _, .) ->
retract (scpConfig(N, Board, Slot, _, _))
; true), !,

assertz(scpConfig(N, Board, Slot, Prim, Config)).

Physical Ports. The Fore-Switch-MIB implements a hwPortTable containing the informa-
tion necessary for the discovery of configured physical ports. This table contains two different
entries for the port number: one for the ”local” port number, i.e. the number of the port within
its network module, and the other one for the ”global” port number, i.e. the number of the port
within the ATM switch. Although the physPort object uses the global number for uniqueness,
the local number is used by some traps, so a mapping between both numberings is performed
by this rule through the predicate pPortGlobal/5. This autodiscovery rule assigns a dummy
logPort object with index 1 to each discovered physical port.

% hwPortModule is local module number

autodiscovery mapping(

N,

[[hwPortModel, Board, Mod, P] = PT,

[hwPortIfIndex, Board, Mod, P] = I,
[hwPortGlobalIndex, Board, Mod, P] = GIJ],
MappedObjects

Board = 4, % not a dummy physPort for CPU

s2enum (hwPortModel, Ptype, PT),

% case of asx1000: make sure N refers to its assigned Board only
physBoard (N, Board, BType),

concat_atom([’Board’, Board, ’/’, Mod]l, M),
MappedObjects =

[physPort(N, M, GI, Ptype), % P is local port number
logPort(N, M, GI, 1),

userPoll (mapPortNumber (N, M, P, GI, I))], !

MappedObjects = []

Logical Ports. The Fore-Switch-MIB does not implement logical ports. However, it does
have an entry in the hwPortTable (hwPortIfIndex) with the purpose of correlating the physical
port numbers to the ifIndex used in the RFC 1213 ifTable. Thus, the Fore TA assigns to each
physical port a dummy logical port with index 1.

12



Logical Links. The Fore-Switch-MIB implements several tables containing information about
configured ATM PVCs and PVPs. The pnniSpvpcSrcTable contains information about SPVPCs
(Smart Permanent Virtual Path Connections) that have the managed switch as their source,
and is used by the Fore TA to retrieve information about PVPs configured at the current node.
Similarly, the pnniSpvcSrcTable contains information about SPVCs (Smart Permanent Virtual
Circuits) that have the managed switch as their source, and is used by the Fore TA to retrieve
information about PVCs. The current version of the Fore TA includes ATM PVCs and PVPs
in the INMS database only when both end points of the switched part of the virtual connection
are Fore ATM switches managed by GateNM.

% discover SPVPCs

autodiscovery mapping(

SrcN,

[[pnniSpvpcSrcCallingPort, I] = SrcPort,
[pnniSpvpcSrcCallingVPI, I] = SrcVpi,
[pnniSpvpcSrcCalledAtmAddr, I] = DstAddr, % NSAP address
[pnniSpvpcSrcCalledPort, I] = DstPort,
[pnniSpvpcSrcCalledAssignedVPI, I] = DstVpi,
[pnniSpvpcSrcName, I] = SPVPCname,

% [pnniSpvpcSrcQosIndex, I] = QosIndex,

% [pnniSpvpcSrcFwdQoSClass, I] = FwdQos,

% [pnniSpvpcSrcBckQoSClass, I] = BckQos,

% can read qosClassName in QosClassExpansionTable
[pnniSpvpcSrcRowStatus, I] = RowStat],

MappedObject
) -
RowStat == 1, % only entries with status = valid

% unify DstN. Succeds only if destination node in database
atmAddress(DstN, _DstBoard, DstAddr),

% nsapPrefix defined as leading 13 octects of NSAP address:
% atom prefix(DstAddr, 13, NsapPre),

% nsapPrefix(DstN, DstBoard, NsapPre),

% SrcPort and DstPort are global port numbers

% retrieve source and destination module numbers:
pPortGlobal (SrcN, SrcM, _SrcP, SrcPort, .),

pPortGlobal (DstN, DstM, _DstP, DstPort, .),

MappedObject =

[userPoll(getAtmPvc (I, SPVPCname, SrcN, SrcM, SrcPort, 1, DstN, DstM, DstPort,

1, ’SPVPC’, SrcVpi, O, DstVpi, 0))], !

MappedObject = []

PVP connections are stored in the database with a value of 0 for the VCI parameter required
by the INMS atmPvc object. In the case of (smart) PVC connections, source and destination
VClIs are read from the correspondig MIB table.

% discover SPVCCs

autodiscovery.mapping(

SrcN,

[[pnniSpvcSrcCallingPort, I] = SrcPort,
[pnniSpvcSrcCallingVPI, I] = SrcVpi,
[pnniSpvcSrcCallingVCI, I] = SrcVci,
[pnniSpvcSrcCalledAtmAddr, I] = DstAddr, % NSAP address
[pnniSpvcSrcCalledPort, I] = DstPort,

13



[pnniSpvcSrcCalledAssignedVPI, I] = DstVpi,
[pnniSpvcSrcCalledAssignedVCI] = DstVci,

[pnniSpvcSrcName, I] = SPVCname,

% [pnniSpvcSrcQosIndex, I] = QosIndex,

% [pnniSpvcSrcFwdQoSClass, I] = FwdQos,

% [pnniSpvcSrcBckQoSClass, I]1 = BckQos,

% can read qosClassName in QosClassExpansionTable
[pnniSpvcSrcEntryStatus, I] = RowStat],

MappedObject

) -

RowStat == 1, % only entries with status = valid

% unify DstN. Succeds only if destination node in database
atmAddress(DstN, _DstBoard, DstAddr),

% nsapPrefix defined as leading 13 octects of NSAP address:
% atom prefix(DstAddr, 13, NsapPre),

% nsapPrefix(DstN, DstBoard, NsapPre),

% SrcPort and DstPort are global port numbers

% retrieve source and destination module numbers:
pPortGlobal (SrcN, SrcM, _SrcP, SrcPort, .),

pPortGlobal (DstN, DstM, _DstP, DstPort, .),

MappedObject =

[userPoll(getAtmPvc(I, SPVCname, SrcN, SrcM, SrcPort, 1, DstN, DstM, DstPort,
1:

’SPVCC’, SrcVpi, SrcVci, DstVpi, DstVci))], !

MappedObject = []

3.6 Technology dependent mapping rules
3.6.1 The switch board as a container object

Since the INMS object model does not include boards as a container object, it is necessary to
map board-related SNMP information to the object placed immediately above or below in the
containment hierarchy, that is either to the containing SNMP node or to the contained physical
modules, according to switch type.

Switch types ASX-200WG and ASX-200BX. Since these switch models contain only
one board, it is natural to consider the switch board as the node itself.

Switch types ASX-1000 and ASX-1200. This switch type can contain up to four boards,
each with an own SCP board and SNMP agent. Since each agent is reachable through an
IP address of its own, thus making each switch board appear as an independent management
entity, the Fore TA considers each board as a separate SNMP node. However, it is necessary
to take into account that all boards contained in an ASX-1x00 share the same power supply
modules and fan bank module. Considering that every agent will necessarily keep management
information related to these modules, the Fore TA follows the vendor’s MIB design and maps
information about them in a redundant manner: each node (i.e. board) contained in an ASX-
1x00 enclosure will appear to have an own fan bank and an own set of power supply modules.

Switch type ASX-4000. This switch type can also contain up to four boards, but unlike
the ASX-1x00, all of them are managed by a single SNMP agent running on a separate SCP
board in the switch enclosure. A second SCP board can be included for redundancy, but this

14



one will only act as a backup SCP, so that the entire compound is managed at any given point
by a single agent. In this case it is necessary to map all board-related management information
to the physical modules controlled by each board. An advantage of this switch type in relation
to an ASX-1x00 is that there is no replication of management information related to the power
supply modules (up to five units) and fan banks (two units).

3.6.2 ATM Addressing

This version of the Fore TA uses the addressing scheme defined by Fore’s proprietary SPANS
signalling protocol in order to determine the ATM address of a managed switch. Other address-
ing schemes as well as end system addresses are beyond the scope of the TA’s mapping rules.
However, Fore switches support both private and public ATM addressing schemes, making it
possible to incorporate other forms of network node addressing in future versions of the TA.
The following address types are supported by Fore’s management information base:

SPANS ATM address:
SpansAddress ::= OCTET STRING (SIZE (s))

ATM Forum ATM address (allows E.164 addresses):
AtmAddress := OCTET STRING (SIZE (8 — 20))

NSAP (Network Service Access Point) address:
NsapAddr ::= OCTET STRING (SIZE (20))

In both the AtmAddress and NSAP conventions, native E.164 addresses are represented
as W octets using the format specified in section 3.1.1.3 of the ATM Forum UNI Signalling
4.0 specification. In contrast, an NSAP-encoded address is 20 octets, and an NSAP-encoded
network prefix is 13 octets long.

3.7 Implementation

The Fore TA makes use of the following dynamic predicates in order to correlate technology
specific information to the INMS data model:

physBoard /3. To implement mapping of board to node.
module2board/3. To implement mapping of board to contained modules.

pPortGlobal/5. To correlate local (i.e. within its module) and global (i.e. within the switch)
physical port numbers, as well as logical indexes as defined in the RFC 1213 ifTable.

switchModel/2. Used by mapping rules based on switch type.

atmAddress/3. ATM address of each managed node. Necessary to determine end points of
an ATM PVC/PVP.

atmPvcID /4. Unique identifier for each configured ATM PVC/PVP.

scpConfig/5. To store information about primary CPU module and dual/stand-alone config-
uration.

15



4 Fault management

Fore’s fault management is based on an operational status model which can be almost directly
mapped into the INMS network element model. Hereafter has each monitored component (node,
module, port) an operational state with possible values equivalent to up, down and testing. The
alarm state of Fore nodes is determined by INMS on the basis of the actual operational state
of the monitored Fore node components. The monitoring of the Fore network is performed by
INMS by way of polling status variables in the MIB of the Fore nodes and processing relevant
traps generated by the managed entities. The relevant Fore traps are mapped into Gate alarms
and are also forwarded to the View component. The next sections describe the monitoring of the
operational and alarm states as well as trap mapping for Fore networks. The administrator may
set individual Fore node components to the unmanaged or deleted state from the management
table. In this case relevant traps take into account the administrative status of the object.

4.1 Monitoring of operational states

This section describes the determination of the operational state for nodes, modules and ports
in terms of the respective MIB variables in the Fore managed entities.

4.1.1 Node level

Within the INMS network element model the operational state of the node is determined by
the reaction of the node to an SNMP GetRequest: the node is up if it responds, otherwise it is
down. If the node is down its alarm state is Critical.

4.1.2 Module level

The Fore TA considers four different types of physical module.

Network module. The moduleTable (moduleGroup 1), indexed by moduleBoard and mod-
uleNumber, contains the necessary information:

e moduleState (INTEGER reset(1), inService(2), outOfService(3) ), which indicates the
administrative state of a given module, and

¢ moduleAttachState (INTEGER inService(1), outOfService(2) ), which indicates its actual
(operational) state

The Fore TA applies the following mapping scheme for the operational state:
e reset — > testing
e inService — > up

e outOfService — > down

status mapping (N,

[[moduleAttachState, Board, Mod] = IntOp,

[moduleState, Board, Mod] = IntAdm],

[nodeAlarm(N, physModule(N, M), Severity, Reason,

physModule(N, M), ’’, OpStatus)]

) -

concat_atom([’Board’, Board, ’/’, Mod], M),

physBoard(N, Board, _BType), %if asx1000 -> only this agent’s board
% some enumerated states not defined in INMS:

% s2enum(moduleState, AdmStat, IntAdm),

16



(IntOp == 1 ->

(IntAdm == 2 -> Status = up

H

Status = testing)

H

Status = down), !,

(Status == down ->

(IntAdm == 3 -> 7, AdmStat == down
OpStatus = disabled,

Reason = moduleOutOfServiceByManager,
Severity = ’Normal’

OpStatus = Status, % i.e. ’down’
Reason = moduleOutOfService,
Severity = ’Major’)

I

OpStatus = Status,
Reason = agentPolled,
Severity = ’Normal’

).

Power supply module. This information is provided in the envPowerSupplyTable (power-
Group 3), indexed by envPowerSupplyIndex:

e envPowerSupplyInputState (INTEGER normal(1), fail(2) ), i.e. the state of the input
voltage to the power supply module

¢ envPowerSupplyOutputState INTEGER normal(1), fail(2) ), i.e. the state of the output
voltage from this power supply

o envPowerSupplyCurrentState (INTEGER normal(1), fail(2) ), i.e. the state of the current
on the input return path of this power supply

e envPowerSupply5VoltState (INTEGER normal(1), fail(2) ), i.e. the state of the +5V
output of this power supply

Given the degree of sophistication of the technology involved, the Fore TA follows a very strict
policy when assessing the operational state of a monitored node: only if all four variables have
the value 'normal’ does the TA map the operational state of a power supply module to the
INMS value ’up’, otherwise the operational state will be ’"down’.

Fan bank module. The necessary information is retrieved from the envFanBanksTable (fans-
Group 2), indexed by envFanBankIndex:

e envFanBankState (INTEGER normal(1), fail(2) )

The status mapping is straightforward in this case.

Switch control processor module. This information is provided by the envCPUsTable
(cpuGroup 3), indexed by envCpuBoard and envCpuSlot:

e envCPUState (INTEGER normal(1), fail(2), standby(3), boot(4) )
The TA applies the following mapping scheme for the operational state:

e normal — > up

17



e fail — > down
e standby — > (administratively) down
e boot — > testing

The operational state ’standby’ is only possible with a dual SCP configuration, and means that
the SCP in question is playing the role of backup SCP. In case of a dual configuration, a ’down’
condition in the primary SCP should be mapped as a nodeAlarm with severity "Major’, whereas
the same condition with a single SCP configuration should have the severity ’Critical’.

status_mapping(N,

[[envCPUState, Board, CpuSlot] = IntState],

[nodeAlarm(N, physModule(N, M), Severity, Reason,

physModule(N, M), ’’, OpStatus)]

) :-

% case of asx1000: select CPUs on same board as agent

( ( switchModel(N, asx1000) ; switchModel(N, asx1200) ) ->
physBoard(N, Board, BType) % only if board already in database
; true

), b,

concat_atom([’CPU’, CpuSlot], M),

% some enumerated states not defined in INMS, but useful as ’reason’:
s2enum(envCPUState, State, IntState),

(

IntState == 1 ->

OpStatus = up,

Reason = agentPolled,

Severity = ’Normal’

OpStatus = down,

concat_atom([’State of CPU is ’, State], Reason),

(scpConfig(N, Board, CpuSlot, CpuSlot, alone) ->

Severity = ’Critical’ % stand-alone SCP is down

; Severity = ’Warning’) % Fore: should second CPU on board be up 7

).

4.1.3 Physical port level

The status information is retrieved from the hwPortTable (moduleGroup 3), indexed by hw-
PortBoard, hwPortModule and hwPortNumber:

e hwPortOperStatus (INTEGER other(1), up(2), down(3), unused(4) )
e hwPortAdminStatus (INTEGER, up(1), down(2) )

The operational state ’other’ is considered by the Fore TA as ’testing’ for lack of an alternative
in the INMS model.

4.1.4 Logical port level

Given that each physical port contains only one dummy logical port, the operational state of
the latter is derived directly from the operational state of the containing port.

18



4.1.5 PVCs

Information about the operational state of an ATM PVC is contained in the same tables used
for autodiscovery purposes. For SPVPCs, their status is retrieved from the pnniSpvpcSrcTable
(q2931Group 9), indexed by pnniSpvpcSrcIndex:

e pnniSpvpcSrcStatus (INTEGER up(1), down(2) ), indicating the operational state, and

e pnniSpvpcSrcRowStatus (INTEGER active(1), notInService(2), notReady(3), create-
AndGo(4), createAndWait(5), destroy(6) ), indicating the status of the entry, i.e. the
status assigned to this SPVPC by administrative action.

Only three of these values will be returned in response to a management protocol retrieval
operation: 'notReady’, notInService’ or ’active’. That is, when queried, an existing row can
have only one of three states:

e it is either available for use by the device (active),

e it is not available for use by the device, though the agent has sufficient information to
make it so (notInService), or

e it is not available for use, and an attempt to make it so would fail because the agent has
insuficient information (notReady).

The Fore TA applies the following mapping scheme for the operational state:
e up and active — > up
e up and notReady — > testing
e down and notInService — > administratively down
e down and notReady — > testing

e down and active — > down

4.2 Implementation

The operational state of Fore nodes can be maintained using the standard algorithms supported
by Gate. However, several technology specific dynamic predicates are necessary to correlate
some topology and state information between the INMS data model and Fore’s. These predi-
cates are listed in section 3.7.

4.3 Monitoring of alarm states

The alarm state mapping of some hardware components of Fore nodes necessarily has to be
based on switch type and/or actual configuration.

4.3.1 Nodes

ASX-200WG alarm status mapping. Since the ASX-200WG is the only switch type that
supports only one SCP and only one power supply module, failure of one of them can only
result in a Critical alarm state.

ASX-200BX alarm status mapping. This switch type supports a dual SCP configura-
tion, so that the presence of a backup SCP can be determined via autodiscovery. A second
(redundant) power supply module is shipped as standard configuration.

19



| ASX-200WG | HP OV
Everything up Normal
SCP module down Critical
Power supply module down Critical
Fan bank module down Major
Any physical module down Major
Any physical port down Minor
Any ATM PVC down Warning

Table 2. Alarm status mapping for the ASX-200WG

| ASX-200BX | HP OV
Everything up Normal
SCP module down Major for dual SCP configurationCritical for single SCP
Power supply module down Major
Fan bank module down Major
Any physical module down Major
Any physical port down Minor
Any ATM PVC down Warning

Table 3. Alarm status mapping for the ASX-200BX

ASX-1x00 alarm status mapping. As described in section 2.2, each switch board contained
in an ASX-1x00 enclosure can be roughly considered as equivalent to an ASX-200BX node. As
with the latter model, the presence of a backup SCP on each board can be determined via
autodiscovery, and a second power supply module is always provided for redundancy. It is
important for the network administrator as well as for the operator to keep in mind that all
nodes contained in a single ASX-1x00 enclosure share the same PS modules and fan bank, with
the effect that a single event affecting any one of these components will be reported by all
on-board SNMP agents.

ASX-4000 alarm status mapping. As already mentioned in section 2.2, board alarms are
mapped to their contained modules. The presence of a backup SCP in this switch type can
also be determined through autodiscovery. A redundant PS module belongs to the standard
configuration. Besides, this is the only model equipped with two fan banks.

| ASX-1x00 | HP OV
Everything up Normal
SCP module down Major for dual SCP configurationCritical for single SCP
Power supply module down Major
Fan bank module down Major
Any physical module down Major
Any physical port down Minor
Any ATM PVC down Warning

Table 4. Alarm status mapping for the ASX-1x00

20



ASX-4000 | HP OV

Everything up Normal

SCP module down Major for dual SCP configurationCritical for single SCP
Power supply module down Major

Fan bank module down Major

Any physical module down Major

Any physical port down Minor

Any ATM PVC down Warning

Table 5. Alarm status mapping for the ASX-4000

4.3.2 Modules, physical and logical ports

The monitoring of the alarm states of modules, physical and logical ports is done using the
standard algorithms supported by Gate. For a description of these algorithms please refer to
the INMS documentation.

4.4 Trap mapping

The Fore TA processes only Fore traps signalizing an operational state change in a network
component (node, module, port) monitored by INMS. Besides updating its internal MIB, Gate
generates alarms containing information about the received Fore trap and forwards them to
the View components in the network. The mapped Gate alarms are displayed within the View
component under the alarm category ”Fore”.

Let us consider trap number 1093 for instance. The Prolog rule must include control struc-
tures to handle the special case of switch model ASX-4000, in which a logical node can contain
more than one physical board.

trap.mapping(N, 6, 1093 /*asxFabricDown*/,

[[PoardIndex, Board] = Board,

[trapLogIndex,0] = ],

Events

) -

% if switchModel == asx4000: can’t report a board alarm

% since boards not modelled -> map trap to modules

switchModel (N, asx4000),

concat_atom([’Board number ’, Board, ’ down or hot-swapped’], Details),
% build list of alarms for all contained modules

setof (Mod, module2board(N, Board, Mod), Modules),

setof (nodeAlarm(N, physModule(N, M), ’Major’, fabricDownTrapReceived,
physModule(N, M), Details, down),

member (M, Modules), Events), !

I

% if switchModel = asx4000 -> board == node.

not switchModel(N, asx4000),

Events = [nodeAlarm(N, physNode(N), ’Critical’, fabricDownTrapReceived,

physNode(N), ’Physical node down or hot-swapped’, down)],
]

Table 6 lists the mapping between relevant Fore traps and the operational state of the
respective components in the INMS network element model. Table 7 lists the mapping between
relevant Fore traps and Gate alarms. The Reason and EventDetails fields in the Gate alarms
correspond to the reason given in Table 6.

21



| Event (Trap Nr.) | Object | OpState | Reason
asxSwLinkDown (0) physPort down asxSwLinkDown
TrapReceived
asxSwLinkUp (1) physPort up asxSwLinkUp
TrapReceived
asxHostLinkDown (2) physPort down asxHostLinkDown
TrapReceived
asxHostLinkUp (3) physPort up asxHostLinkUp
TrapReceived
asxNetModuleDown (4) physModule down moduleDown
TrapReceived
asxNetModuleUp (5) physModule up moduleUp TrapRe-
ceived
asxPsInputDown (6) physModule (PS) down powerSupplyDown
TrapReceived
asxPsInputUp (7) physModule (PS) up powerSupplyUp
TrapReceived
asxPsOutputDown (9) physModule (PS) down powerSupplyDown
TrapReceived
asxPsOutputUp (10) physModule (PS) up powerSupplyUp
TrapReceived
asxFanBankDown (22) physModule (Fan) | down fanBankDown
TrapReceived
asxFanBankUp (23) physModule (Fan) | up fanBankUp
TrapReceived
asxLinkDown (28) physPort down asxLinkDown
TrapReceived
asxLinkUp (29) physPort up asxLinkUp
TrapReceived
asxTempSensorOverTemp (32) (de- overTemp TrapRe-
pends on location of temperature e physNode e restricted ceived
sensor) (enclosure) )
e restricted
¢ physModule
(PS)
asxTempSensorRegularTemp (33) (see regularTemp
previous trap) o physNode e up TrapReceived
(enclosure)
e up
e physModule
(PS)
asxFabricTemperatureOverTemp (34) overTemp TrapRe-
(mapping depends on switch type) o physNode o restricted ceived
e physModule e restricted

Table 6. Mapping between relevant Fore traps and INMS objects

22




| Event (Trap Nr.) | Object | OpState | Reason
asxFabricTemperatureRegularTemp regularTemp
(35) (see previous trap) e physNode e up TrapReceived
e physModule e up
asxDualScpSyncFailure (1034) physNode up, but send "Warn- | dualScpSyncFail
ing’ alarm TrapReceived
asxDualScpSwitchOver (1035) physNode restricted dualScpSwitchOver
TrapReceived
asxDualScpHotSwap (1036) physNode up, but send "Warn- | dualScpHotSwap
ing’ alarm TrapReceived
asxPsCurrentDown (1068) physModule (PS) down psCurrentDown
TrapReceived
asxPsCurrentUp (1069) physModule (PS) up psCurrentUp
TrapReceived
asxPs5VoltDown (1070) physModule (PS) down psbVoltDown
TrapReceived
asxPs5VoltUp (1071) physModule (PS) up ps5VoltUp TrapRe-
ceived
asxFabricDown (1093) (mapping de- fabricDown
pends on switch type) o physNode o down TrapReceived
e physModule e down
asxFabricUp (1094) (node might have | physNode unknown starts
been reconfigured) node_autodiscovery
ifLinkDown (2001) physPort down linkDown TrapRe-
ceived
ifLinkUp (2002) physPort up linkUp TrapRe-
ceived

Table 6. Mapping between relevant Fore traps and INMS objects

23




| Event (Trap Nr.) | Gate trap | Severity Object
asxSwLinkDown (0) gatePportTrap Minor physPort
asxSwLinkUp (1) gatePportTrap Normal physPort
asxHostLinkDown (2) gatePportTrap Minor physPort
asxHostLinkUp (3) gatePportTrap Normal physPort
asxNetModuleDown (4) gateModuleTrap Major physModule
asxNetModuleUp (5) gateModuleTrap Normal physModule
asxPsInputDown (6) gateModuleTrap Major physModule (PS)
asxPsInputUp (7) gateModuleTrap Normal physModule (PS)
asxPsOutputDown (9) gateModuleTrap Major physModule (PS)
asxPsOutputUp (10) gateModuleTrap Normal physModule (PS)
asxFanBankDown (22) gateModuleTrap Major physModule (Fan)
asxFanBankUp (23) gateModuleTrap Normal physModule (Fan)
asxLinkDown (28) gatePportTrap Minor physPort
asxLinkUp (29) gatePportTrap Normal physPort
asxTempSensorOverTemp (32) (de-
pends on location of temperature e gateNode e Minor e physNode
sensor) Trap ' (enclosure)
e Warning
e gateModule e physModule
Trap (PS)
asxTempSensorRegularTemp (33) (see
previous trap) ¢ gateNode ¢ Normal e physNode
Trap (enclosure)
¢ Normal
¢ gateModule e physModule
Trap (PS)
asxFabricTemperatureOverTemp (34)
(mapping depends on switch type) e gateNode e Minor e physNode
Trap
e Minor e physModule
e gateModule
Trap
asxFabricTemperatureRegularTemp
(35) (see previous trap) o gateNode e Normal e physNode
Trap
e Normal e physModule
e gateModule
Trap
asxDualScpSyncFailure (1034) gateNodeTrap Warning physNode
asxDualScpSwitchOver (1035) gateNodeTrap Minor physNode
asxDualScpHotSwap (1036) gateNodeTrap Warning physNode
asxPsCurrentDown (1068) gateModuleTrap Major physModule (PS)
asxPsCurrentUp (1069) gateModuleTrap Warning physModule (PS)

Table 7. Mapping between relevant Fore and Gate traps

24




Event (Trap Nr.) | Gate trap | Severity | Object
asxPs5VoltDown (1070) gateModuleTrap Major physModule (PS)
asxPs5VoltUp (1071) gateModuleTrap Normal physModule (PS)
asxFabricDown (1093) (mapping de-
pends on switch type) e gateNode e Critical e physNode

Trap .

e Major e physModule
e gateModule

Trap
asxFabricUp (1094) (node might have | TA starts | unknown physNode
been reconfigured) node_autodiscovery
ifLinkDown (2001) gatePportTrap Minor physPort
ifLinkUp (2002) gatePportTrap Normal physPort

Table 7. Mapping between relevant Fore and Gate traps

5 Conclusion

5.1 Anecdotal

It seems appropriate to finish this paper with an account of some practical aspects of this
project. A key resource for the development of an application intended to manage network
nodes is (definitely) technical documentation. It is only fair to acknowledge Fore Systems for
the extensive technical as well as tutorial documentation they make freely available at their web
site. On the other hand, it was very difficult to obtain additional technical assistance through
the channels set up with this purpose. One can’t help but to ask himself if these channels are
provided by the company with only customers in mind.

Anybody who has ever read MIBs knows that they are not always clear enough on their
descriptions of tables and variables. Tests are often necessary in order to figure out the relation-
ships between variables in different MIB tables, among other things. Given the fact that ATM
backbone switches are hard to come by, it was a blissful event to find Fore’s most advanced
switch types at the Leibniz Supercomputing Center (LRZ).

While the people at the LRZ were very helpful, the workstation set apart for network
management test purposes was running a Solaris 2.5 version, so that it has still not been
possible to test the Technology Adapter on the LRZ’s switches. An upgrade to Solaris 2.6 on
the test machine —necessary to run the new version of the INMS— should be completed any
time soon.

Finally, an unexpected development in the ATM market took place at the time of writing
this paper. Fore Systems announced in April that it has reached an agreement with General
Electric to become a fully owned subsidiary of the electrical industry giant. The news that a
direct competitor of Siemens takes over the vendor of the technology intended to be integrated
in the INMS product line upon completion of this study project raises interesting questions.
Whatever the outcome, this paper will not handle such non-technical matters.

5.2 To-do list

As already explained above, the Technology Adapter described here has not yet been fully
tested. Some (minor) corrections might prove necessary. On the other hand, Fore released a
new version of the switch MIB early this year. Whereas the present version of the TA should
suffice for the management of every currently available switch type, the new MIB contains some
interesting extensions that might justify an improved version of the TA.

25



Another open question refers to the use of icons to represent Fore nodes on HP OpenView
maps. While it its possible to design new icons for OV maps, the author considered that using
Fore’s own icons would preserve the look and feel of Fore network elements to the advantage
of network operators. Thus, Fore’s german branch was contacted for their permission to use
these icons, with possitive results. However, Fore’s representative has so far failed to fulfill his
offer to provide the icons via e-mail. In the meantime, the INMS is using standard OpenView
network node icons to render Fore switches on the maps.

ATM technology and implementations thereof are still under development. As standards
evolve, vendors include new features and improve on the previous ones. The issue of ATM
traffic monitoring alone would be stuff for another semester project in its own right. Since QOS
monitoring has not yet been implemented in the INMS, traffic parameters are not handled by
the current version of the Technology Adapter. But then, this one does not claim to be more
than a first version.

26



6 References

1 Siemens AG INMS - Top Level Design for INMS Gate V3.0.

2 Siemens AG INMS User Manual.

3 Fore Systems Inc. ForeView Network Management User’s Manual.
4 Fore Systems Inc. ATM Switch Network Configuration Manual.

5 Fore Systems Inc. ForeRunner ASX-200WG, ASX-200BX, ASX-1000, ASX-1200 ATM
Switch Installation and Maintenance Manual.

6 Fore Systems Inc. ForeRunner ASX-4000 ATM Switch Installation and Maintenance Manual.

7 Appendix

Some INMS slides —see next pages.

27



