
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Evaluating the State of Security in
Software-Defined Networks

Fabian Ruffy Varga

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Evaluating the State of Security in
Software-Defined Networks

Fabian Ruffy Varga

Supervisor: PD Dr. Wolfgang Hommel

Advisor: Felix von Eye
Submission
Date: 26. June 2015

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

I hereby guarantee to have authored the present thesis on my own accord. I did not
use any other means other than the listed sources and material.

Munich, 26. June 2015

. .
(Unterschrift/Signature)

Abstract

Software-Defined Networking (SDN) is currently a much discussed topic, as it promises to
free network operators from the proprietary and decentralised restrictions imposed by legacy
networks. The new approach to network architecture shifts the configuration and routing
mechanisms from routers and switches to a central controller, a single programmable software
device which is able to view and command the entirety of the network. The key player in
this evolution is the OpenFlow protocol, propagated by the Open Networking Foundation
(ONF). However, in the process of growing popularity and surge of interest, the security
aspect of SDN has been neglected. This circumstance may become a major hindrance in the
acceptance and adoption of the new paradigm.

The goal of this thesis is to compile research on security regarding both vulnerabilities
and opportunities and to infer requirements for a secure software-defined network. The first
section aims to provide a thorough background of SDN, its architecture and main compo-
nents. The general design is then inspected for flaws by analysing and identifying several
security vulnerabilities and problematic trends in the attack fields of Spoofing, Tampering,
Repudiation, Denial of Service, and Elevation of Privilege. The threats are summarised
and visualised in attack tree models. The results of this security assessment reveal that the
software-defined network based on current standards and popular control software can not
be considered secure. Consequently, the second section of the thesis utilises and augments
contemporary approaches to enhance the security of the OpenFlow protocol as well as the
general SDN infrastructure. The security principles and concepts demonstrate that the de-
sign of SDN is ultimately capable of preventing many of the identified vulnerabilities and
even selectively enhances security compared to legacy infrastructure. Nevertheless, due to
the software-based and virtual nature of SDN, the network may be exposed to the constant
looming threat of software bugs and exploits that may facilitate Denial of Service and Ele-
vation of Privilege in the central controller. Furthermore, the multitude of different required
solutions may heavily impact the performance and latency of the control plane or introduce
new previously unconsidered vulnerabilities.

vii

Contents

1 Introduction 1
1.1 Objective . 1
1.2 Outline . 2

2 Software-Defined Networking 3
2.1 Traditional Network Architecture . 3
2.2 The Motivation for Software-Defined Networking 8
2.3 Past and Present of SDN . 9
2.4 OpenFlow: A General Overview . 12

2.4.1 Standardisation Work . 12
2.4.2 OpenFlow Infrastructure . 12
2.4.3 Data Plane . 14
2.4.4 Control Plane . 18
2.4.5 Application and Management Plane 21
2.4.6 Constructing a SDN Blueprint . 22

3 Security Threats 23
3.1 General Adversary and Threat Methodologies 23

3.1.1 STRIDE . 24
3.1.2 Attack Trees . 25
3.1.3 General Threat Modelling Methodologies 26

3.2 STRIDE Assessment . 27
3.2.1 Data Flow Analysis . 28
3.2.2 Spoofing . 30
3.2.3 Tampering . 35
3.2.4 Repudiation . 39
3.2.5 Information Disclosure . 42
3.2.6 Denial of Service . 45
3.2.7 Elevation of Privilege . 50

3.3 Threat Summary . 51

4 Threat Mitigation and Security Opportunities 53
4.1 A Secure and Dependable Data Plane . 53

4.1.1 Clearly Define Security Dependencies and Trust Boundaries 55
4.1.2 Assure Robust Identity . 55
4.1.3 Build Security based on Open Standards 55
4.1.4 Protect the Information Security Triad 55
4.1.5 Protection Operational Reference Data 56
4.1.6 Make Systems Secure by Default . 56
4.1.7 Protect Accountability and Traceability 56

ix

Contents

4.1.8 Properties of Manageable Security Controls 56
4.2 The Secure ONF Network . 57
4.3 A Secure and Dependable Control Plane . 58

4.3.1 Replication . 59
4.3.2 Diversity . 63
4.3.3 Self-Healing Mechanisms . 65
4.3.4 Dynamic Device Association . 69
4.3.5 Trust Between Devices and Controllers 70
4.3.6 Trust Between Application and Controller Software 71
4.3.7 Security Domains . 73
4.3.8 Secure Components . 74
4.3.9 Fast and Reliable Software Update and Patching 75
4.3.10 Selected Additional Research Efforts 77

4.4 Outlook on Software-Defined Middleboxes . 79

5 Summary and Evaluation 81
5.1 Constructing the Secure Software-Defined Network 82
5.2 Evaluation . 84

5.2.1 Spoofing . 84
5.2.2 Tampering . 84
5.2.3 Repudiation . 85
5.2.4 Information Disclosure . 85
5.2.5 Denial of Service . 85
5.2.6 Elevation of Privilege . 86
5.2.7 Concluding remarks . 86

6 Conclusions and Future Work 87
6.1 Future Work . 88

List of Figures 89

List of Tables and Abbrevations 90

Bibliography 91

x

1 Introduction

Although network technology and capabilities have evolved considerably over the course
of time, the underlying design of the network itself has not adapted to accommodate the
continuously changing demands. While a decentralised approach was deemed necessary to
guarantee sufficient resilience in the early days of networking [1], it is now considered a
major hindrance in terms of innovation and overall efficiency. Network operators have to
handle complex vendor-specific software implementations and operational commands and
constantly risk dependency on a single manufacturer. Proprietary routers and switches
are closely intertwined with specialised middleboxes, including firewalls, intrusion detection
systems (IDS) or load-balancers. The overall consequence is a heavily complex and rigid,
almost completely stagnant, base framework. To address these limitations a new paradigm
has emerged: Programmable Networks. The concept separates the network into two decou-
pled, logical layers. The data plane, where traffic is being forwarded on, and the control
plane, which is responsible for overseeing and directing the elements of the data plane. In
the additional management plane the individual devices of the network can be accessed,
reprogrammed and configured. As a result, the intelligence of the network is largely cen-
tralised and comfortable to manage. Although research communities have been working on
the concept for over two decades [2], programmable networks have only recently gained trac-
tion in both academia and industry. Big data and the enormous growth of cloud services,
which require adaptable and flexible solutions, have been fuelling research in the past years.
Furthermore, the publication of influential OpenFlow protocol [3] has made a considerable
impact among research communities [4]. Developed in Stanford University in 2008 to sim-
plify experimental research, it is widely regarded as the foundation of the modern variant of
programmable networks, Software-Defined Networking (SDN) [5].

However, new technologies also bear new risks. A software-based and centralised supervi-
sion and control exposes a network to a wide range of attacks and dangers, which may have
not been considered in conventional networks. Moving into industry territory after the ini-
tial hype, the largely academic-born software-defined network has come under close scrutiny.
Various committees and research institutions are currently avid to poke holes into the con-
cept of the future architecture. Nevertheless, a substantial amount of solutions mitigating
the current security flaws has been presented as well.

1.1 Objective

The aim of this thesis is to carry out a comprehensive security review of the newest version
of programmable networks. The fundamental design and maturity of SDN is reviewed based
on contemporary literature, discussion and research findings.

A theoretical traditional network, as well as a software-defined network, are constructed,
serving as point of reference for an assessment. The legacy structure is built upon general
information security and networking foundations, whereas the OpenFlow standard specifi-
cations define the design and technical details of the software-defined network. The SDN

1

1 Introduction

blueprint is augmented with common features of relevant control devices and general recom-
mendations of the Open Networking Foundation (ONF), the standard committee devoted
to the development of the OpenFlow protocol.

Empirical research and critical evaluation are consulted to examine the security of the
individual segments of the network. An extensive threat model tries to locate shortcomings
and design flaws and additionally demonstrates possible points of vantage for an attacker.
The thesis attempts to mitigate the encountered vulnerabilities by building on research
proposals of secure designs and individual solutions while addressing the threat model in all
of its aspects. Opportunities and deficiencies are highlighted and the results are compiled
accordingly. Lastly, a sketch of a secure software-defined network is developed and provides
the basis for an effort to estimate final security characteristics in comparison to conventional
architecture.

1.2 Outline

The thesis is organised as follows: Chapter 2 outlines and portrays the status quo of network
architecture and security and subsequently clarifies the motivation and history of Software-
Defined Networking. Section 2.4 covers the technical aspects and structure of SDN, based
on the specifications of the Open Networking Foundation (ONF) and the OpenFlow v1.5
standard. In addition to a summary of standardisation efforts, relevant controller designs are
abstracted and introduced to establish a generic framework of the control plane. Chapter 3
and 4 are the core of the thesis. Drawing from current research findings, Chapter 3 surveys
the security of SDN. A Data Flow Diagram (DFD) of the individual SDN components, all of
which were defined in the preceding section, is constructed to represent a generic software-
defined network. Microsoft’s STRIDE [6] is the main threat model to provide an in-depth
security analysis of the DFD and thus the SDN architecture. The model is enhanced with
attack trees [7] to provide an overview and to visualise the approach of an attacker for each
individual STRIDE aspect.

Based on the results of the assessment, Chapter 4 reviews attempts to mitigate and prevent
the deficiencies and examines two security proposals for software-defined networks. First, an
official amendment recommendation and best practice guide for the OpenFlow protocol is
presented and inspected for solutions and negligences. The second part of the chapter then
leverages the nine secure design principles proposed by Kreutz, Ramos and Verissimo [8] and
provides an overview of security solutions developed for SDN. For each of the nine principles
corresponding research and individual vulnerability and threat solutions are summarised and
inspected for their practicality.

Chapter 5 follows the literature review of Chapter 3 and 4 and merges the research findings
into a single secure design to demonstrate the security potential of SDN. In Section 5.2 the
current state of security in software-defined networks to traditional architecture and draw-
backs and opportunities are addressed. The thesis concludes in Chapter 6 with a summary
of the literature findings, finishing remarks, and indications of future work.

2

2 Software-Defined Networking

Software-Defined Networking is a fundamentally different approach to the conventional
method and harbours a lot of potential. However, a change in network structure has sub-
stantial security implications for operators. To understand the motivation and to be able to
gauge the new security risks it is necessary to define the structure, layout and security of
conventional networks. Likewise, SDN has to be dissected into its base components. This
chapter establishes background, motivation, and understanding of SDN. It provides the basis
for the security evaluation in Chapter 3.

2.1 Traditional Network Architecture

Modern networks are largely decentralised and autonomous. The history of this structural
development traces back to design choices for telephone networks during the era of the
Cold War. Paul Baran, a researcher at the RAND corporation, raised concerns that the
prevailing transport method of telephone networks lacks a satisfactory resilience and exposes
the infrastructure as an easy target for military strikes. A failing element could easily take
out a large section of the network. [1]

He suggested an autonomous travel of communication over the network by giving the
individual elements independence in their behaviour.
If one of the network entities failed, network points would utilise the adjacent information
to forward data on an alternative path. This approach ensures that communication traffic
could navigate through the network without relying on static path specification. During the
development of this project, another researcher, Donald Davies, built the foundation of the
modern packet switching by publishing his concept of separating networking communication
into smaller chunks and sending individual data through the network. Both proposals saw
a large success in the future design of telecommunication, ultimately resulting in prominent
representatives such as the internet and IP networks. [9], [10]

Today’s switches and routers rely on a plethora of protocols to guarantee efficient and
robust communication. To generalise behaviour and to approximate different functionality,
networks are divided into three abstraction layers, commonly referred to as the data, the
control, and the management plane. The data plane, also known as forwarding plane, carries
and transports the data of the network. Temporary storing, queueing, and encapsulation of
information is done by consulting prevalent routing tables, policies, and data sets written by
the control plane. The control plane computes the network and forwarding paths, decides
actions for incoming packets, and synchronises the general data flow of the network. The
access interfaces of the hardware devices and the administration stations constitute the last
logical part of the network, the management plane. Operations which are performed outside
the normal automated scope of the network, such as general policy definition, troubleshoot-
ing, device configuration or manual actions, are part of this classification. In summary, the
management defines and configures a general policy, which the control plane translates and
the data plane executes. [11]

3

2 Software-Defined Networking

In line with the philosophy of Paul Baran and his colleagues, conventional networks com-
bined the three planes into a single device, vertically integrating the control and data plane
and assuring the independence of every node of the network. [12] Each individual router
or switch calculates a personal transport path through the network and does scarcely rely
on central control. Several routing protocols maintain information about the network. The
devices configure their paths dynamically with the help of routing protocols such as Open-
Shortest-Path-First (OSPF) or Intermediate System to Intermediate System (IS-IS), which
gather link state information from all the devices of the network and construct an optimal
network topology. In order to avoid transport loops in the switch topology, ports are blocked
using path computation protocols, most commonly the Spanning Tree Protocol (STP) or
Shortest Path Bridging (SPB). [13] To discover new elements in the network the devices
may broadcast ARP request messages or utilise the Link Layer Discovery Protocol (LLDP),
which periodically sends and collects information about routers in the network. [14] A group
of routers connected over these (interior gateway) protocols is referred to as autonomous
system (AS). Routers seated on the edge of the AS utilise the Border Gateway Protocol
(BGP) to connect and transport traffic from autonomous systems to autonomous system,
while simultaneously adhering to the policies implemented by network operators. [13] All
protocols operate independently in every switch and router of the network. As each device
maintains its own information and protocol stack the control plane is distributed over the
entire AS. If the data plane receives an unknown packet the datagram is forwarded to the
control plane for further directions. [11] Although they are contained within a single device,
control and data plane are separated on a hardware level, with each plane possessing its own
processing units. The switch or router data plane uses the fast application-specific integrated
circuit (ASIC) or switching fabric to process and forward known data packets at cable speed.
The control intelligence is implemented in a general purpose CPU to compute the necessary
action for an unknown or special packet. [15]

Security Measures

Such a decentralised autonomous system has to receive sufficient protection from abuse and
malicious intent. However, specialised security measures for each individual network element
might have a tremendous impact on overall performance and network costs. Administrators
therefore rely on various appliances between demarcation points or in front of important
assets to harden their network. This section presents common techniques and designs to
secure a network on the basis of the information provided in Information Security, The
Complete Reference [16]

A company network is typically divided into different logical zones. The internal section of
an organisation forms the intranet. Any information exchanged, stored, or published here is
designated as private and protected from the public domain. If companies desire to exchange
services and information with other businesses without exposing their private network, an
extranet can be established to connect two sites over the internet. Although an extranet is
based on mutual trust, it adds new attack opportunities and must be independently secured.
In many cases, organisations have assets which can or need to be accessed by the public,
including web or email services. Since the open exposure makes these servers a likely target
of an attack, they are contained in a separate area, the demilitarised zone (DMZ). The DMZ
resides between two security domains and can be seen as the outer ward of a company’s
network.

4

2.1 Traditional Network Architecture

A simple technique to enforce this separation and to add security to a network is to
enhance the tool set of routers and switches. To prevent ARP spoofing, devices can be
configured only to react to certain pre-defined MAC addresses. Similarly, the virtual local
area network (VLAN) capability of a switch can limit the amount of potential threats and
aids in the division of the network into varying levels of security. If an administrator desires to
block specific data or user packets from travelling through his network, routers and switches
are equipped with Access Control Lists (ACLs). ACLs specify a white- or blacklist for
particular TCP/UDP ports or IP addresses and defend either the hosts or, in case of edge
or border routers, a whole network chunk from attacks. Likewise, routers and switches
write logs of any network activity and provide access via the management plane of the
device. Mechanisms to monitor this information are either a custom command line interface
(CLI) of the vendor, the standardised Simple Network Management Protocol (SNMP) or
the emerging, XML-based configuration access NETCONF [17]. The connection is generally
secured using TLS or the Secure Shell (SSH), but may occasionally be established over unsafe
remote command lines such as Telnet. Administrators may use these tools to identify unusual
behaviour in the network or to configure an affected router. The management connection may
be performed out-of-band. An out-of-band communication is either physically or virtually
separated from the network and does not travel on the same channel as conventional data
traffic. Although more expensive than in-band access, the operator retains full control
over the network even when normal links are overburdened and is able to reconfigure the
individual devices unhindered.

However, a dedicated intruder can easily overcome these features. In order to adequately
defend a conventional network, operators utilise specialised devices between nodes, com-
monly referred to as middleboxes. A common and essential protective tool is the firewall.
Although the ACL of a router can filter IP and port addresses, it is not able to remember
the state of a connection or react dynamically. Operators have to manually configure the
individual devices to specify addresses and can only react to threats. Stateful firewalls ex-
tend the functionality of ACLs and screen or block undesired activities. Packets that do not
match the typical procedure of a specified communication (e.g. an unusual TCP handshake)
are kept from accessing the network. Modern firewall versions are even capable of blocking
unspecified behaviour in the traffic of trusted applications or detect reconnaissance attempts
such as the scan of open server ports.

Often integrated into firewalls is Network Address Translation (NAT), which converts
global into local IP addresses in order to save IP4 address space. Although originally not
intended to function as security appliance, NAT hides the structure of the internal network
and protects hosts from targeted attacks. As the storing capabilities of routers and switches
are typically limited, firewalls additionally provide an extended logging and auditing capa-
bility for the management plane. They are often placed between network bottlenecks or
gateways to observe a maximum amount of traffic, but further defence lines can also protect
highly sensitive hosts or network areas.

Firewalls are sufficient to block specific network applications or traffic in most cases, but
they do not have any means to detect suspicious activity. This defensive network feature is
implemented in a intrusion detection system (IDS). An IDS has a similar functionality as a
simple anti-virus program. It detects and reports threats based on familiar malicious packet
signatures or unusual network behaviour. A common version is the network-based intrusion
detection system. Similar to firewalls, it is placed at strategically advantageous points and
monitors incoming and outgoing traffic.

5

2 Software-Defined Networking

The reactive approach however faces a significant problem. When intrusions are detected,
countermeasures might already be too late. Intrusion Prevention Systems (IPS) therefore
extend the functionality to not only report threats to the administrative station but also
try to diminish or repel a detected attack as early as possible. Over the course of time
the functionality of firewalls and the IPS has converged significantly, as intrusion reaction
has become more crucial. In many cases threat solutions are delivered as Unified Threat
Management (UTM), a combined set of firewalls, IDS/IPS, and additional measures. A new
type of mechanism developed for UTM is the Deep Packet Inspection (DPI), in which the
payload of selected traffic is examined for virus or spam patterns and filtered accordingly.
In many cases traffic has to pass a sequence of all the previous static security devices before
it is permitted to enter the internal networks. Nevertheless, the utmost important part of a
security framework is the administrator himself. He is required to be aware of any ongoings
or incidents in the network and has to recognise false positive or negative alerts. To be able to
fulfil these requirements, administrators rely on security information and event management
(SIEM) systems. Any relevant device reports incidents, real time data, and logs to the SIEM,
which simplifies the data to a high degree and presents it in a human-readable way. Since
a SIEM is generally not an automated tool and provides an operational interface, it can be
considered the extended hand of the administrator and part of the network management
plane.

Internet

Administrator MP =Management plane

DP = Data plane

Management

access

(statistics,

configuration,

maintenance)

Switch fabric

SNMP, NETCONF...

IGP-protocols

Network switch

Switch fabric

SNMP, NETCONF...

IGP-protocols

Network switch

SNMP, NETCONF...

BGP-protocols

Router fabric

Border routerSwitch fabric

SNMP, NETCONF...

IGP-protocols

Network switch

CP = Control plane

Figure 2.1: Distribution of logical planes in legacy networks.

6

2.1 Traditional Network Architecture

Constructing a Network Blueprint

Figure 2.1 visualises the distribution of the logical planes in the network. Every switch and
router contains its own data and control plane, formed by the various network protocols
and the forwarding CPU. Each device provides management functionality and statistics
to a central administration station. The routing policies, VLAN, and access control of
every switch and router in the network have to be manually set up and configured by the
administrators using the management protocols. Figure 2.2 represents an instance of a
generic company network with added security mechanisms. For each important demarcation
point or sensitive host a new defensive devices or threat management appliance has to
be placed. The intranet is protected from the extranet and internet by a second line of
firewalls and intrusion detection systems. A router with an ACL protects the DMZ from
undesired access while the open web services are protected by a third firewall. While sensitive
applications and data might receive special protection, the internal communication of the
company network is not universally monitored. All devices have to reconfigured by the
administrator individually and events are reported to a central management system in the
intranet.

Extranet

Intranet

DMZ

Internet

Firewall

SIEM & administrator

Standard

network

host

Sensitive data and

internal services

Open web services

External company

services

Manual

network

configuration

and monitoring

IDS
BGP router

with ACL

Logical

configuration

path

Unified threat management

with NAT functionality

Internal,

unfiltered

access

External access

(secured with

firewall)

Figure 2.2: A sample architecture of a modern network.

7

2 Software-Defined Networking

2.2 The Motivation for Software-Defined Networking

Software-Defined Networking plans to abandon the previous network design, which centred
around reliability. Instead of devices maintaining their own control and routing, the respon-
sibility falls to external controllers. The result is a fully separated data and control plane,
but a high level of dependency. Considering the success of the initial very robust design, a
departure seems questionable. Indeed, the SDN movement has been controversial.
However, a significant portion of the networking community deems a change necessary and
advocates for the shift to SDN. A large list of companies, including Microsoft, Ebay, Gold-
man Sachs or Yahoo, are investigating SDN solutions. [18] Google has already come forward
to announce they implemented a fully functional data centre using the SDN paradigm. [19]
An other example of the increasing interest is the company Nicira, founded by a developer of
the popular SDN implementation OpenFlow. In 2012 the startup has been bought by major
cloud software vendor VMWare for an unprecedented sum of over 1.2 billion dollars [20].
Several reasons have driven this rise in popularity. A large influence has been the desire to
simplify general networking. New requirements and challenges such as the increased traffic,
security, and the need for quality of service (QoS) have introduced a troubling amount of
complexity. [21] Relying on device-specific protocols and vertical integration has continuously
increased the difficulty to manage a network. As devices have to be configured individually,
misconfiguration errors are a common occurrence. [22], [23] The integration of middleboxes to
compensate for the lack of inherent functionality further complicates the infrastructure. [24]
Researchers claim that the time spent on maintenance and additional equipment has given
a rise to operational and capital costs while proprietary and incompatible devices impede
deployment of new technologies. A common belief is that the underlying infrastructure and
incompatibility stifle flexibility and innovation in the network. [21], [25], [26]
In order to simplify networking and to mitigate the aforementioned problems, researchers
have called for abstraction of the discipline. Similar to the field of programming, the un-
derlying mechanisms should be hidden and the functionality generalised. The control of
the network is no longer distributed in protocols but decoupled from the single devices. A
specialised entity collects and maintains knowledge of the entire network composition. The
data plane of the network is abstracted and thus the control plane is agnostic of any techni-
cal details and mechanisms of the underlying layer. Devices of the control plane are solely
responsible for communicating network goals and policies of the management plane. Per-
forming these commands is only done by the devices of the forwarding layer. The individual
layers are required to provide application programming interfaces (APIs) for flexibility and
programmability. This separation of concerns presumably simplifies the architecture of the
network and facilitates abstraction into manageable pieces. [27] Overall, the new network ar-
chitecture aims to represent the design of a conventional modern computer. The applications
cooperate with an operating system which translates the abstract commands it receives for
the underlying hardware processors to execute. In theory, an introduction of programmable
and abstracted networks with a logically centralised control would abolish a majority of
protocols and middleboxes. With the equipment being programmable, most expensive and
vendor-specific solutions are expected to become obsolete. Instead of having to purchase
middleboxes, operators would be able to implement their own control and security solutions
by developing and deploying custom programs on general purpose servers. A major hope is
that operational costs would decrease significantly due to simple control of the network and
the reduction of overall proprietary devices. [2], [12]

8

2.3 Past and Present of SDN

2.3 Past and Present of SDN

Programmable networks are not a recent emergence. In fact, the concept has been steadily
progressing and developing for over 20 years. Feeling limited in their ability to experiment
and overwhelmed by the growing complexity of network architecture, researchers were look-
ing for novel systems which might enable innovation. [2] The first major endeavour in this
area has been the active networking project [28]. Whereas a network is normally agnostic
of the packet content they receive, active networks were not. Switches could be configured
out-of-band to react differently to user data. Introducing extended data plane functionality,
users could even send capsule packets which were able to directly alter the behaviour of a
network node. By and large, active networks only suggested programmability of the network,
they did not advocate for a pragmatic approach at simplifying network management. In the
end the project did not manage to achieve widespread adoption, partially due to a lack of
necessity, initial deployment complexity and heavy security implications. [2], [29]

Several years later, in the first half of the 2000s, research focus shifted to entangling
the data and control plane. This separation has been seen as one of the central points in
the simplification of network design. A pioneer in this area is the Forwarding and Control
Element Separation (ForCES) [30]. ForCES classified the network components into two
distinct types. Any unit that solely forwards and filters traffic is designated as forwarding
element. The instructions how to process packets are provided by a control element. The
elements are connected via a standardised open interface, which is considered to be a core
feature of the ForCES protocol. The motivation is to facilitate vendor interoperability and
increase the scalability of the network. A diverse set of multiple control elements could
utilise the non-proprietary access point of the hardware-based data plane. ForCES did not
emphasise logically centralised control, but is complemented by parallel projects such as
the Path Computing Element (PCE) [31] and the Routing Control Platform (RCP) [32].
The PCE introduced a central computation node for carrier networks while the RCP was
intended to unify the distributed BGP path computation from a central position. Both
concepts ease the management and coordination of inter-domain traffic for internet service
providers. [2] Although ForCES is still under active development and provides backwards
compatibility, it has not been successful in deployment. Major vendors had little incentive
to abolish their proprietary API and a lack of clear language abstraction limited the range
of functionality. [2]

In an effort to rethink network structure, clean-slate projects surfaced, drawing inspira-
tion from the preceding innovations and suggesting an entirely new perspective. With past
experience and current knowledge in mind, researchers approached network design from the
ground up. An influential formulation of the new way of thinking has been the 4D archi-
tecture [11]. 4D centres around 3 key principles which depart from the decentralised and
low-level perspective. It encourages a network-wide view and global objectives enforced by
routing elements directly controlling the entire domain. The network itself is divided into
the 4 ”D” planes. A Discovery Plane estimates the capabilities of the network and provides
the information to the Decision Plane. In the spirit of the new paradigm the decision plane
regulates the network and configures the devices of the Data Plane, which processes and
forwards packets. Providing a logical and separate channel, the Dissemination Plane is the
point of connection between the two planes, comparable to the open interface in ForCES.
4D is not a practical solution but a proposal for a new approach and provided incentive
to redesign the network. Building on the design principles established by the clean-slate

9

2 Software-Defined Networking

Openflow

ETHANE
 Extended SANE

 specified Ethane Switches

 Controller maintains flow

tables in switches

SANE
 Implementation of 4D

 Central decision element enforces objectives

for whole network

Clean Slate Design and 4D
 Entirely new network design

 Division of the network into 4 different layers

 Forwarding devices are control-dependent

 Network objectives are mapped onto the entire network

 Clean logical

separation of the

control and data

plane

Active Networking
 Introduced the concept of a programmable data plane

 Network elements were able to distinguish packets

 User packets could reconfigure switches

Network Virtualisation
 Abstraction of resources and division into autonomous

heterogenous systems

 Distribution of the physical devices to several users

RCP/PCE
 Logically centralised control over the network

 Consistent view of entire network state
2000

1995

2005

2006

2007

2008

2015

ForCES

 Introduction of an open

programmable interface

between the two planes

Figure 2.3: Timeline of programmable networks on the road to SDN.

project, a Stanford team developed SANE [33]. Intended to be a feasible implementation of
the concept in enterprise networks, the framework implements a single protection layer con-
taining servers which enforce global security and access policies. ETHANE [34] extended the
work of SANE and introduced a centralised controller and specialised ETHANE switches.
The controller communicates with the switches and updates their flow tables according to
an administrator policy. In contrast to routing tables, a flow-based system does not route
based on destination of IP and MAC addresses but rather matches the header fields against
pre-existent table entries and forwards the packet out on the specified port. As the protocol
does not operate based route calculations, the view of the devices is reduced to their own
structure. From the view of the controller a continuous traffic flow travelling over generic
network nodes is created. ETHANE was successfully deployed in the Stanford computer
science department and paved the way for the next step in Software-Defined Networking,
known as OpenFlow [3]. The research and building stones of the past years eventually
culminated in the publication of this protocol, which was heavily inspired by ETHANE.

Similar to preceding solutions OpenFlow was initially designed to catalyse innovation and
to lower costs in campus networks. However, due to its backwards compatibility and simple
deployability it managed to breach into company and data centre networks. The success of
OpenFlow in the industry was solidified with the formation of the Open Networking Foun-
dation (ONF) in 2011. As of 2015 the organisation has more than 150 industry members
and receives endorsement by network equipment vendors such as Cisco, Dell, Brocade and
HP. [18] The term Software-Defined Networking itself became closely associated with the

10

2.3 Past and Present of SDN

project [5], [12], but despite being a major component in the network, OpenFlow is not
synonymous with Software-Defined Networking. Several instantiations, including ForCES
and PCE, are feasible. [35] To address growing confusion and to prevent spread of misinfor-
mation, various standard committees and surveys have published definition and taxonomy
guides. [12], [35]–[37]
The general consensus as to what Software-Defined Networking is, or tries to be, is sum-
marised in the following four principles:

• Separation of data and control plane
In any version of a SDN the planes must be logically separated and connected via an
interface. The control aspect is removed from forwarding devices and delegated to an
external entity.

• Network programmability
The provision of open APIs is a core aspect and eponymous for the paradigm. Software
and scripts should be able to access, configure, and modify network elements with ease.

• Network abstraction
The view of the network is virtualised for any elements of a higher hierarchy. Services
and applications are aware of the state of the whole network, but physical attributes
and resources are irrelevant for configurations and computations.

• Logically centralised control
All forwarding devices of a domain are linked to a controlling entity and are subject
to its enacted policies.

Despite the large variety of implementations falling under this classification (see Figure
2.3), OpenFlow is among the most adopted and influential SDN solutions. [29], [38] While
there may be vulnerabilities specific to the protocol, many threats arise due to the inherent
structure of SDN and can be applied to similar communication and management protocols of
the data and control plane. OpenFlow will thus serve as point of reference when discussing
modern software-defined networks, their architecture, and security. [2], [4]

11

2 Software-Defined Networking

2.4 OpenFlow: A General Overview

This chapter specifies the most recent technical details of the OpenFlow protocol and presents
an overview of popular controller designs. The specific sections explain the individual layers,
the mechanics of an OpenFlow switch and controller, and define the structure of a general
OpenFlow network.

2.4.1 Standardisation Work

OpenFlow is steadily maintained and enhanced by the Open Networking Foundation. The
group regularly publishes technical specifications and recommendations for SDN deployment
and architectures to propagate their vision of a software-defined network and to promote
open standards during development. The size and influence of the ONF ensure that Open-
Flow effectively acts as standard for the southbound interface (i.e. the connection between
the forwarding and control elements). In the wake of OpenFlow’s success the Internet Re-
search Task Force (IRTF) has also has chartered a SDN Research Group (SDNRG) and tries
to complement standard publications with informational RFC reports. Less prolific standard
organisations (SDOs) involved in SDN and OpenFlow include the ITU-T, ETSI, IEEE, and
IETF. [39] While the data plane has been largely unified under OpenFlow, northbound stan-
dardisation has yet to reach a common consensus. A large variety of controller and control
platforms exists, tailored to any specific need or demands. [12] As a result, the ONF has
launched the Northbound Interfaces working group ”to define and subsequently standardise
various SDN Controller Northbound API Interfaces (NBIs)” [40]. To the author’s knowl-
edge, the ONF effort remains the only SDO invested in unifying the northbound interface
to this day. Since its inception in October 2012 the working group has not published any
further documents. Possible reasons for the hesitation might involve concerns of a premature
commitment to a prevalent design. A flawed publication could stifle innovation or fade into
irrelevancy in favour of superior solutions. As there is no clearly dominating concept in
sight, an extensive standard encompassing multiple APIs is also highly probable. [41]

Nevertheless, the ONF Architecture & Framework group has presented an abstraction of
the minimal capabilities of SDN controllers and the northbound interface. [36] To narrow the
breadth of SDN, the ONF suggestions draw the baseline of a plain network and its inherent
security. Key standards utilised in this chapter are the OpenFlow Switch Specification 1.5.0
[42] and SDN Architecture 1.0 [36].

2.4.2 OpenFlow Infrastructure

Figure 2.4 depicts the general structure and idea of an OpenFlow network. Multiple switches
are connected to one OpenFlow-capable controller via the OF-Switch protocol [42]. The
switches are specialised OpenFlow devices utilising flow tables curated by the controller.
They are designed as simple forwarding units and constitute the data or infrastructure plane
of the network. Legacy protocol functionality such as OSPF is relocated from the physical
layer to higher planes. The controllers, which are also capable of collaborating over a west- or
eastbound interface [12], comprise the control plane. The northbound interface connects the
control and the application plane. OpenFlow applications define detailed policies to enact
by the controllers below and configure the data plane by proxy. SDN applications may in
fact be seen as controllers of controllers. The highest authority in the network, the manage-

12

2.4 OpenFlow: A General Overview

MANAGEMENT

PLANE

DATA PLANE

CONTROL PLANE

APPLICATION PLANE

Central controller

Openflow

switches

Network applications

(e.g. load balancer or firewall)

NORTHBOUND INTERFACE

SOUTHBOUND INTERFACE

Figure 2.4: In a software-defined network, the various logical planes are strictly separated.
The controller is the central element of the network, while the management has
logical access to all devices.

ment plane, is vertically integrated across all layers for debugging and installing purposes.
In the fashion of classic networks, management may consist of a central administration sys-
tem or, as it is referred to in the ONF architecture recommendation, a generic operations
support system (OSS). The management includes tasks such as dividing the network into
separate domains for operators or clients, network monitoring or adherence to negotiated
service level agreements. The second distinct protocol, OF-Config [43], denotes a direct
control and management interface for OpenFlow switches which is implemented using the
NETCONF [17] protocol. It is complementary to the OF-Switch specification and aims to
specify manual configuration access of OpenFlow switches. All network elements contains
a resource database (RDB), also known as Network Information Base (NIB), and a client
agent for resource abstraction and execution of higher level commands. Control is exposed to
other network devices. Every level has a virtualised view on lower and provides abstraction
to higher tiers. This structure provides the possibility to recursively stack control planes and
theoretically assign different trust domains. The recursive hierarchical model is designed to
enhance security and scalability of the network. The aforementioned planes are inspected in
detail in the subsequent section.

13

2 Software-Defined Networking

2.4.3 Data Plane

In OpenFlow the data plane denotes any device capable of processing and forwarding user
traffic. The protocol is designed to adapt to new concepts with no restrictions imposed on
choice of transport technology such as Ethernet and IP. Technically, the OpenFlow standard
only specifies the functionality of forwarding elements and implements an API consisting
of instruction primitives for higher levels. Control plane elements can utilise the language
provided by OpenFlow. As a southbound interface, it establishes a connection between the
two planes but does not constrain freedom in data, control, and application design. Nev-
ertheless, the switch specification and its fundamental requirements paint a clear picture of
the OpenFlow data plane structure. For simplicity the ONF refers to any unit that con-
tains a data path and controller connection as OpenFlow switch, as layer two and three
routing functionality of the OSI model is moved to the control plane. OpenFlow-compliant
switches can be implemented physically or virtually. To accelerate deployment, hybrid solu-
tions containing both classic routing intelligence and the independent OpenFlow logic are a
possibility. However, in all variants the basic switch structure remains the same.

OPENFLOW PIPELINE

GROUP

TABLE

METER

TABLE

INGRESS BUFFER

APPLY ACTION

LIST

PORT

QUEUES

DROP PACKET

FORWARD TO

EGRESS PORT

INCOMING PACKET

VIRTUAL & PHYSICAL

EGRESS PORTS

OUTGOING PACKET

SOUTHBOUND

 INTERFACE

CONTROLLER

AGENT

RESOURCE DATABASE

& SWITCH FABRIC

MANAGEMENT

 INTERFACE

COORDINATOR

PROCESS

PACKET

CONFIGURE

SWITCH AND INSERT

FLOW ENTRIES

EGRESS BUFFER

FORWARD

PACKET TO

CONTROLLER

VIRTUAL & PHYSICAL

INGRESS PORTS

Figure 2.5: Internal mechanics of an OpenFlow switch.

14

2.4 OpenFlow: A General Overview

OpenFlow Switches

The OpenFlow switch can be decomposed into several logical components:
Physical and logical ports, the OpenFlow pipeline, and the OpenFlow control communica-
tion channel (see Figure 2.5).

OpenFlow Ports
An OpenFlow switch must implement three port types. Physical and logical ports form
the standard variant. The third type is the reserved port. In contrast to physical ports,
which rest on the hardware interface of the device, logical ports are unbounded. They
can, however, be mapped to a physical port and used for network services. From a switch
perspective, physical and logical ports are not distinguished. Reserved ports are a special
virtual type influencing the forwarding behaviour of the switch. Switches can write several
types of reserved ports into the header of an OpenFlow datagram and differentiate between
ingress and egress ports of the pipeline. There are several noteworthy port types in an
OpenFlow switch. The CONTROLLER port indicates that a packet is to be forwarded to
the controller or, if CONTROLLER is written as ingress port, originates from a controller.
ALL is a generic flooding feature relevant for all OpenFlow ports of the switch, FLOOD
signifies the same behaviour for all legacy ports in hybrid devices. TABLE is only available
as egress port and is used by the controller to denote that a packet should be queued and
processed by the standard flow table pipeline.

OpenFlow embraces traditional port queueing. Queues are attached to logical and physical
output ports and are identified by special identification numbers. Packets can be sorted into
different queue types and assigned to a port to facilitate QoS measures or algorithms.

OpenFlow Pipeline
The heart of every OpenFlow switching device is the OpenFlow pipeline, a sequence of one
or more flow tables. Any table contains a list of flow entries consisting of a set of fields (see
Figure 2.6). The flow tables and their entries are stored in Ternary Content Addressable
Memory (TCAM). TCAM provides fast access but only low data storing capacities, which is
further reduced due to the increased size of the forwarding tables. [12] The header fields of
incoming packets are compared to entries in the match field. Properties may include MAC
and IP source and destination address or special metadata inserted by previous flow table
actions. The match field is designed to be expandable and contains any comparable packet
element. It is possible to wildcard irrelevant fields in order to provide extensive matching.
The counter field tracks statistics about each logical component of the device and monitors
packet quantity or the age of installed flow tables. The packet is passed down the processing
pipeline until a match is found in a table. If the packet matches multiple times in one flow
table, only the entry with the highest priority is selected. However, multiple actions can
be executed for different tables in the pipeline. A packet without a corresponding entry is
either dropped or processed by the table-miss instruction, if such an entry exists. In reactive
approaches a table-miss instruction may forward the packet as PACKET IN message to the
controller for further advice. The controller either drops the packet or installs a suitable
flow entry in the switch. The switch may truncate the packet and buffer the payload until
the controller responds in order to reduce the overall load on the channel. The timeline field
of a flow entry specifies its time-to-live in order to avoid superfluous entries and to prevent
an overflow of the limited flow table memory. Cookies are simple identifiers inserted by

15

2 Software-Defined Networking

CountersPriority FlagsTimeouts CookieMatch Fields Instructions

EtherTypeSrc MAC TCP/UDP SrcIngress Port

IP TypeDest MAC TCP/UDP DestEgress Port

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Flow Entry

Action SetGroup Table Meter Table

Stat-TriggerWrite-ActionsApply-Actions

Goto-TableWrite-MetadataClear-Actions

Goto-Table

Apply-Actions

Output packet

Write-Actions
Associate

group table

Write Group-Actions

Write Meter-

Actions

Incoming

packet

Associate

meter table

Goto-Table

Figure 2.6: The OpenFlow processing pipeline.

the controller to foster performance and are not relevant for processing. Flags can be set
to require special handling such as notifying the controller when a flow table is modified.
Once a packet match has occurred, the switched updates the statistics in the counters group
and performs the associated instructions. Instructions either call or modify an action set,
write metadata, notify the controller of statistics or jump to the next flow table for additional
instructions. Every packet is associated with an initially empty action set and is subsequently
filled during processing of the flow table entries. If the packet reaches the end of the pipeline
or an flow entry is instructed, the aggregated list of actions is executed. Actions are an
essential part in the programmability of OpenFlow switches. A variety of actions exists and
the list is continuously extended. Noteworthy examples are listed in Table 2.1.
To simplify the forwarding process and to reduce the space wasted by specific flow entries

group tables were introduced in the v1.2 specification. Flow entry instructions can point a
packet to a group containing pre-defined action buckets, which are then added to the action
set of the individual packet. Another recent feature of OpenFlow switches are meter bands
to enable traffic shaping and QoS. A meter band measures different types of packet rate at
a specified port and is able to limit data rate or burst size of a particular flow to regulate
traffic in an efficient manner.

16

2.4 OpenFlow: A General Overview

Action Description

Drop Drops the packet.

Output port id Forwards the packet to any of the three port types.

Group group id Associates the packet with a certain output group.

Set-Queue queue id Chooses the queue at a selected port.

Meter meter id Associates the packet with a certain meter.

Set-Field field type value Modifies header fields of the packet for maximum
granularity and customisation.

Table 2.1: Selection of valid actions in an OpenFlow flow entry.

Southbound Interface

The OpenFlow protocol itself represents the southbound interface of the network, a stan-
dardised and mutual communication method between the switch and the controller. Over
the OpenFlow channel interface the remote controller configures the listed tables and sup-
plies the switch with intelligence. It is possible to encrypt the channel with TLS, however
due to performance considerations, TCP is also an option. The protocol supports three basic
message types: controller-to-switch, asynchronous or symmetric. The controller-to-switch
messages are initialised by the controller and contain a broad range of possible applications.
Via a controller-to-switch message, the controller can request the identity, state, settings,
and statistics of a switch or write the flow, meter or group tables. In the opposite direction,
switches are able to send asynchronous messages to the controller. Any packet with CON-
TROLLER as egress port is sent as PACKET IN message for further instructions. These
notifications are generally reciprocated with a flow modification message or discarded. Mod-
ifications the switch performed autonomously, such as the deletion of a flow entry, are also
broadcast. Additionally, when a link or controller goes down, a port state changes or miscel-
laneous network events occur, other controllers are informed immediately. Either side can
send symmetric messages, which encompass Hello, Error, Echo and Experimenter. Hello
messages initialise the OpenFlow connection between two devices. Echo verifies that the
connection is still active, while Error generally reports a failed request. Experimenter is a
message type reserved for future use and custom useful extensions to the OpenFlow proto-
col. To address concerns of availability, a switch can connect to multiple controllers which
can take on the master, slave or equal role. Only master and equal controllers have full
configuration access. The slave role may only read statistics. If one controller is promoted
to master, all remaining controllers are demoted to slaves. In equal mode every controller
has full rights. Additionally, a switch can establish auxiliary connections to bolster the main
connection and increase bandwidth and reliability. The main connection must be imple-
mented over TCP or TLS. Auxiliary connections may also use UDP and are associated with
a main link using a specific ID. While UDP communication is restricted, it is possible to
send PACKET IN messages or read information about the switch configuration. If the main
link fails, any auxiliary connections are also terminated.

The switch specification does not detail how multiple controllers coordinate their actions
or how the topology is synchronised. If connection to the controller is lost, the switch in-
stantly enters fail secure or standalone mode, depending on device support or configuration.
In fail secure mode the switch continues to operate using the flow table information it has re-

17

2 Software-Defined Networking

tained and drops any unknown packets designated for the control channel. In fail standalone
mode the (hybrid) switch reverts to native switching behaviour, if available, and resumes
OpenFlow functionality after the connection is restored. Controller designs and details are
not specified in the technical publications of the ONF. The thesis nevertheless attempts to
sketch functionality and designs based on popular solutions and recommendations.

2.4.4 Control Plane

The control plane is the central intelligence in SDN and an essential aspect in the success
and deployment of the software-defined network. It is represented by its control composition
and devices. As development of the software and elements is not bound by OpenFlow
or restricted by standards, a large landscape of implementations has evolved. Each version
attempts to succeed in its vision of a network and fulfils different aspects seen necessary by its
developers. Moreover, companies are continuously devising their own proprietary controllers
adapted to proprietary interfaces. This thesis focuses on the open OpenFlow interface and
thus on open-source OpenFlow controllers. To abstract the variety of controllers and their
internal composition the chapter consults the ONF Architecture Recommendation [36] and
selects several noteworthy control projects.

OpenFlow Controllers

Controllers can be divided into two distinct types. The first type is a physically and log-
ically centralised controller with high individual performance linked to multiple switches.
To guarantee fault tolerance and resilience, distributed controllers employing many-to-many
connections have been introduced. [44] In order to secure the consistency in a switch, the
ONF recommends that controllers are either strictly synchronised or manage disjunct slices
of the network while exchanging information horizontally. [42] Controllers either operate in
proactive or reactive mode. In the former mode, the controller pre-installs flows based on
the known topology, which saves flow latency and reduces congestion created by controller
requests. In reactive mode the controller waits until a switch inquires about the flow for a
particular packet to take the network load and QoS conditions into account.

Even though a broad range of controllers exists, a few particularly influential implemen-
tations have emerged. NOX [45], made available to the research community by the Nicira
startup has been the first open-source controller designed for OpenFlow. The controller
utilises a relatively basic and centralised approach and two versions exist. NOX is the
classic version written in C++ and dedicated to maximum performance. POX is the less
complex but slower alternative written in Python. Development on these controllers has ef-
fectively been discontinued since 2012. [46] Nevertheless, a fundamental amount of research
and security solutions have been performed on the basis of these versions.

Heavily backed by industry are the OpenDaylight [47] and Floodlight [48] projects. Open-
Daylight is an open-source controller and a collaborative effort by several ONF members
and The Linux Foundation. It is designed to be compatible with more southbound inter-
faces than OpenFlow (e.g. the PCE protocol or BGP configuration) and is regarded as one
of the candidates with the highest potential for northbound API standardisation. [49] Flood-
light has been forked from the academic Beacon controller and is maintained by Big Switch
Networks. It is highly modular, supports multiprocessor parallelism and contains several al-
ready integrated application components such as path computation and device management.

18

2.4 OpenFlow: A General Overview

SOUTHBOUND INTERFACE

NORTHBOUND API

HORIZONTAL

INTERFACE

MANAGEMENT

INTERFACE

APPLICATION

AGENT
CONTROL SOFTWARE

PATH & POLICY COMPUTATION

POLICIES

VIRTUALISED

NETWORK VIEW

CONTROLLER PORTS

DISTRIBUTED DATABASE

CACHE (IF AVAILABLE)

FETCH

DATA

WRITE

WRITE

PROVIDE INFORMATION

C
O

O
R

D
IN

A
T
O

R

SU
B

SC
R
IP

T
IO

N

 IN
T
E

R
F

A
C

E

WRITE

Figure 2.7: Internal mechanics of an OpenFlow controller.

A recently published and noteworthy controller is ONOS [50], which is specifically designed
to achieve a carrier-grade control plane based on availability, scalability and performance. It
is a natively distributed and logically centralised controller. Although multiple controllers
are present, the data plane switches only connect to a single logical device.

Khondoker et al., 2014 [51] developed a decision making template to recommend a con-
troller as objectively as possible. They selected RYU [52] in competition with OpenDaylight,
Floodlight, Trema, and POX as the best candidate, based on criteria such as modularity,
interface support, and maturity. Floodlight and OpenDaylight were placed second and third
respectively. RYU is a composable framework based on Python and well documented and
defined. It supports several southbound interfaces as well as the OF-Switch wire protocol.
Floodlight, NOX/POX, RYU are centralised control architectures, while OpenDaylight and
ONOS also offer distributed functionality via clustering.

The general SDN controller can be dissected into four different logical interfaces it needs
to maintain (see Figure 2.7).

The first interface is the data-control plane interface (D-CPI), more commonly referred to
as southbound interface. Due to the OpenFlow virtualisation of the network, the controller
views switches as a connected list of active data paths and network states. The controller
connects to the agent of the underlying switch, accesses the resource database information
and enters the data into its own RDB. The resources the controller has collected from con-
nected switches and network elements are again virtualised or abstracted for the view of

19

2 Software-Defined Networking

the management and northbound interface applications. All selected controllers support the
OF-Switch protocol or additionally the OF-Config specification as their D-CPI. Although
not all controller software implements the latest publication OF-Switch v1.5, it can be as-
sumed that it will eventually be adopted.

The east-/westbound interface is implemented in distributed controller systems to guar-
antee consistency and the quick exchange of data. [12] Conventional OF-Switch controllers
are only indirectly informed about adjacent peers by asynchronous switch messages and
thus generally do not utilise a horizontal interface. However, due to scalability and perfor-
mance concerns, controllers eventually need to be efficiently distributed. [44] Neither NOX
nor Floodlight nor RYU seem to offer horizontal communication functionality and therefore
no east-/westbound interface.

Several controller architectures have emerged which implement native and logically cen-
tralised distribution. The NOX extension Onix [53] is the most prominent example, with
controllers connecting to a distributed data store and exchanging data over imports and ex-
ports. Building on Onix, OpenDaylight as well as ONOS support clustered controllers which
share a distributed data cache and network information base (NIB), on which any partic-
ipating controller can subscribe and write. [47], [50] As opposed to direct, inter-controller
communication, all three approaches utilise common open-source distribution services to
synchronise and maintain this data. The second approach is the placement of an orchestra-
tion layer atop or below of the individual controllers to enable communication via a proxy.
Examples are Hyperflow [54], an additional layer to coordinate multiple controllers, and
FlowVisor [55], a sub-layer to slice out autonomous network parts for each individual con-
troller to manage.

The last interface is the northbound or Application-Control Plane Interface (A-CPI),
which links the controller to SDN applications and top level devices. It is a highly contested
territory as application requirements differ vastly. Similar to the switch providing infor-
mation to the controller, the controller provides data to the network applications over the
northbound connection. There is no clear access method defined for this interface and many
controllers (e.g. OpenDaylight, Floodlight, RYU or ONOS) expose multiple interfaces. A
common pattern is the use of a Representational State Transfer (REST) API for remote
applications and a custom interface for direct and more extensive module integration based
on the development language (e.g. OpenDaylight exposes a REST interface for web appli-
cations and a Java framework for ”native applications”[47]). As the northbound interface
is not standardised and interpretation may vary, applications and similar features are not
portable and generally restricted to one controller type.

Similar to agents, all controllers are required to provide a coordinator functionality for the
management interface. The access is commonly provided over a secure shell and a CLI in
combination with the northbound interface of the controller (e.g. REST). Often, a graphi-
cal user interface (GUI) is supported to improve configuration procedures and usability. In
addition to the APIs provided by controllers, several programming languages have emerged
to foster the SDN paradigm of extracting simplicity. They move away from the lower level
of OpenFlow to higher abstractions to significantly ease the programming of network appli-
cations. Again, SDN languages can be divided into language tiers. Lower languages such as
Nettle are able to program a network controller, higher levels such as Frenetic are designed
to develop applications in cooperation with an existing controller. [12]

20

2.4 OpenFlow: A General Overview

2.4.5 Application and Management Plane

Although the control plane is often referred to as the brain of the network, the application
plane fits this description more accurately. The SDN applications compute and develop the
policies and instructions which the controller installs on the forwarding layer. However, as
the field of potential use cases is highly diverse, no generic functionality can be extracted.
Applications generally have entire control over the network slice they are connected to with
the controller having to synchronise conflicting policies and actions. To avoid decision and
operational conflicts, applications are often packaged with the controller, or consolidated as
a single entity with internal conflict resolution. [56]

The existing network applications can be grouped into five categories: traffic engineering,
mobility and wireless, measurement and monitoring, security and dependability, and data
centre networking. [12] The fields measurement and security are particularly relevant for the
scope of this thesis, as a large amount of security functionalities may be outsourced to the
application plane.

The management plane is connected to all three planes and continuously queries state,
performance, and network events. Contrary to the application layer the management plane is
often represented by a single administrative station keeping vigil over the network. [36] The
administrator performs manual tasks which controller and applications are not technically
capable of or authorised to enact. Installing new network elements or software, dividing
and ration resources and identifying issues are part of the responsibility. In general, any
Operations, Administrations, and Management (OAM) [57] functionality is employed in the
management plane and the switches but can potentially be extended to SDN applications. An
example of a useful OpenFlow tool an administrator might use is the dpctl [58] command,
which requests flow information and is able to manually insert flow tables into a switch.
The OF-Config specification additionally defines management functions to directly configure
an OpenFlow switch. As it is common practice it can be assumed that any management
connectivity is performed over a SSH terminal or authorised connection.[16] Note that in
SDN the administrative station is assumed to have full configuration access and authority
over every single element in the network.

21

2 Software-Defined Networking

Extranet

Intranet

DMZ

Internet

Programmable

Openflow switch

SIEM & administrator

Central

Openflow

controller

Standard

network

host

Sensitive data and

internal services

Open web services

External company

services

Default network access

Automatic

network

configuration

and monitoring

Logical

configuration

path

Internal,

unfiltered access

External

access

Figure 2.8: The OpenFlow network.

2.4.6 Constructing a SDN Blueprint

Knowing the technical details, a software-defined network and its individual components can
be constructed. Several virtual and physical switches are connected to a single controller
over the OpenFlow southbound interface. Instead of manually configuring the devices of the
network, the administrator formulates a general network aim or develops applications on the
controller, which enact an optimal network configuration. The firewall, access control, and
VLAN channels are distributed over the OpenFlow switches and are automatically adjusted
by the controller, which is aware of every single switch state in the network. A central
management system connects to all devices of the network for individual configuration, or
may instead fetch all information from a management application installed on the central
controller. It should be noted that one goal of SDN is to supersede static middleboxes placed
at demarcation points using flexible security applications or generic server distributed in the
network. However, generic SDN does not employ any intrusion detection or load-balancing
mechanisms and the necessary interoperability of OpenFlow controllers with middleboxes
is not yet clearly defined in this thesis. Therefore, specialised appliances are not included
in this network base design. Over the baseline technical details of SDN presented in this
chapter, the security of typical software-defined networks can be examined and a technical
data flow diagram can be devised.

22

3 Security Threats

Following the public discourse, SDN appears as a technology which is able to solve all the
nuisances and problems of legacy networks. However, the academic invention has been
largely tried and tested in safe and small environments and not in actual company or data
centre networks. So far it has not been of interest for malicious intruders and hackers
and obvious problems might have not been exposed yet. The question remains, whether
SDN is capable of overcoming the security, reliability, and scalability issues which have
been newly introduced or inherited from conventional networks. As SDN gained traction,
more and more security assessments and tests have been performed on the new paradigm.
Several comprehensive surveys have already commented on its state of security. Kreutz
et al., 2014 [12] and Jarraya, Madi, and Debbabi, 2014 [4] dedicate a chapter to security
deficiencies and research in their surveys. Scott-Hayward, O’Callaghan,and Sezer, 2013 [59]
focus on security and address challenges and opportunities in their survey of SDN. There are
several attempts to specifically analyse the OpenFlow protocol. [60]–[62] Using STRIDE and
attack trees, Klöti, 2014 [63] utilises a similar approach as this thesis, but does not extend
the scope beyond the OpenFlow v1.0 protocol and OpenFlow switches and only models three
of the six threats. In the fashion of these surveys, this chapter tries to thoroughly examine
the security issues of a standard SDN and compiles the contemporary and latest literature
while supplementing personal consideration. The STRIDE methodology is applied to the
network constructed in Chapter 2.4 and the individual threat aspects are summarised and
visualised using attack vector charts.

3.1 General Adversary and Threat Methodologies

Threat models are a popular method to roughly assess the security of a system or the
overall company. A variety of models exists. The most relevant approach for this thesis is
the software-centric model, which abstracts individual assets and components of the system
with the purpose is to highlight potential misconfiguration or malfunctioning parts.

Many of the secure design approaches in information technology are grounded in the eight
secure design principles proposed by Saltzer and Schroeder in 1975 [64] (see Table 3.1). The
Microsoft Security Development Lifecycle (SDL) includes these principles in their thread
modelling step and utilises the STRIDE methodology. Although SDN is not completely
software-based, the SDL approach is also applicable to the overall design of the network and
its technical components. The book Thread Modeling: Designing for Security [65] serves as
the foundation for the description of STRIDE in the next chapter.

23

3 Security Threats

Principle Description

Economy of mechanism Keep the design as simple as possible to avoid unnecessary
mistakes.

Fail-safe defaults Only allow access by special permission instead of blocking
intruders.

Complete Mediation Check any object at any time for unauthorised access.

Open design Overall design should not be obscured and depend on igno-
rance of the attacker.

Separation of privilege. In order to be able to perform an operations in a system at
least two conditions should to be met.

Least privilege System elements are only given as much access as they re-
quire to function.

Least common mechanism The system should avoid shared resources or, if they are
necessary, treat them with special care.

Psychological acceptability Security measures and policies must be simple, reasonable,
and realisable to minimise mistakes and gain widespread
adoption.

Table 3.1: The eight design principles as defined by Saltzer and Schroeder. [64]

3.1.1 STRIDE

STRIDE visualises and decomposes a system in order to infer inconsistencies or potential
deficiencies. To lower complexity and to gain an overview the product is divided into individ-
ual sensitive components and modelled into a data flow diagram (DFD) (see Table 3.2). The
term itself is an acronym of six basic security threats: Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of Privilege. These threats violate
several properties, which are seen as necessary to establish a secure system:
Spoofing infringes on the authentication property and allows attackers to conceal or fake
their identity to gain access to information or cloud their attack. Potential targets, which
can be spoofed in a system, are interactors or system processes. A lack of proper authen-
tication enables the spoofing of network elements and might result in man-in-the-middle
(MITM) attacks. Due to a mutual dependency, a single STRIDE threat might trigger or
induce further attack possibilities. Consequently, MITM attacks are associated with several
vulnerabilities in the network.
Tampering is the second threat and affects the integrity of the data and systems, as system
processes, data flows or any data stores might be modified. A change in data integrity or
system components must be instantly identifiable or visible and reported. Otherwise an
attacker might stealthily gain financial advantage, damage sensitive enterprise property or
cause legal repercussions.
Repudiation is a closely related problem. Interactors and processes must not be able to
deny any actions in the system or access to restricted components or areas. Any action has
to be accurately tracked. Additionally, the possibility to tamper with logs, recordings, and
documents must be eliminated to guarantee absolute responsibility.
Information disclosure is a significant vulnerability and affects the confidentiality of the
system, a fundamental aspect of IT Security. If data flows, stores or processes accidentally

24

3.1 General Adversary and Threat Methodologies

Component Description Graphical representation

Data Flow Flow of information. One-sided arrow →
Data Store Sensitive data linked to data flows. Parallel lines =

Process Algorithm, code, or machine. Circle ©
Multi Process Complex entity. Double-lined circle }
Interactors System end points and users. Rectangle �
Trust Boundary Different levels of trust and security. Dotted line - - -

Table 3.2: Components of a typical data flow diagram.

expose sensitive information during standard operations the user or company might suffer
severe repercussions. Eavesdropping on the right data streams or communication channels
provides malicious users with a range of possibilities.
Denial of service reduces the availability rate of the system and prevents customers and
users from accessing data or services. While interactors generally can not be overloaded or
shut down, other technical components very well might be. Abusing the capabilities of the
system is one of the most simple and popular methods to threaten or damage an enemy
financially. Ensuring the perpetual availability is thus of the utmost concern for network
operators and companies.
Elevation of privilege is the last principle and violates proper authorisation. If an attacker
is able to pose as higher authority to grant himself more capabilities, he might gain access to
large sections of the system, bypass guard mechanisms, and proceed undetected and undis-
turbed. This threat emerges from lack of access control mechanisms, differentiation of user
authority or successful Spoofing.

After having modelled the DFD, each component is evaluated and analysed for its ro-
bustness or vulnerabilities based on these aspects. STRIDE can be extended with Attack
Trees to trace the path and behaviour of a potential attackers. These models are a popular
method to reflect on overall security of the systems architecture and evaluate the feasibility
of various attacks.

3.1.2 Attack Trees

According to Bruce Schneier, attack trees are defined as ”a formal, methodical way of de-
scribing the security of systems based on varying attacks. [7] Attack trees are not strictly
defined and may be customised at will to adapt to the problem at hand. In general the tree
represents the viewpoint of an attacker trying to achieve a certain objective, in this case
one of the STRIDE aspects. The root node is the goal of the attacker, while the leafs of
the node form sub-goals. The tree is decomposed into elementary or complex operations
and requirements. Complex operations may be deconstructed into a more detailed attack
tree. A path to a node is achieved by a junction of AND or OR gates. Either one or all of
multiple actions are required to rise up in the tree hierarchy. Once all possible attack paths
have been found and established, the feasibility of the attacks is assessed. Actions which
are very costly, unlikely or averted by the base design are marked, more detailed description
might also be applied. The remaining paths are open security vulnerabilities, which have
to be prevented or addressed. Figure 3.1 shows a small, simplified model of a Denial of
Service attack on a network router. Rectangular forms signify elementary actions, while

25

3 Security Threats

Denial of Service

Destroy router Flood router with

packets

Set up botnet
Install suitable

software

Acquire physical

access to router
Break into company

Acquire job at

company

OR-Gate

AND-Gate
Basic action

Complex action

Unlikely path

Figure 3.1: An attack tree showing methods to incapacitate the main router of a network.

diamond shapes are complex achievements. Dotted lines highlight a path which is unlikely
or sufficiently mitigated.

3.1.3 General Threat Modelling Methodologies

STRIDE is not the only risk assessment methodology. Three common types of approaches
exist: Asset-centric, attacker-centric, and software-centric. Asset-centric focusses on sen-
sitive data, information or hardware, which needs to be protected. For each asset, the
damaging methods and the overall impact of a loss are evaluated. STRIDE can be extended
with DREAD (Damage, Reproducibility, Exploitability, Affected Users, Discoverability) to
gauge the potential chance or extent of an attack. Similarly, the Common Vulnerability
Scoring System (CVSS) [66], an industry standard to rate and assess the potential of a
security vulnerability, can be utilised to prioritise and identify security issues for individ-
ual assets. However, these models are not part of the scope of the thesis as they classify
security priority and company loss, which is not relevant for theoretical frameworks, such
as the model established in the previous chapter. The attack-centric method humanises,
categorises attackers into several personalities (e.g the ”Script Kiddie” or ”Agent”) and es-
timates their capabilities in the current system. According to these capabilities, prevention
methods are developed and applied. This approach is less concerned about the technical
intricacies of the relevant system and more about the damage potential and risk of varyingly
professional attackers. The software-centric approach is the most suitable methodology, as
it disassembles the system into single interworking mechanisms, actors, dependencies, and
trust boundaries. The software-defined network can be interpreted as a large operating sys-
tem structure and thus the software-centric model can aptly analyse and highlight potential

26

3.2 STRIDE Assessment

vulnerabilities. Instead of DFDs, the software architecture can also be decomposed into
UML diagrams, state-charts or Petri nets. Ariss, Wu, and Xu, 2011 [67] presented an ap-
proach to integrate attack trees into state charts to visualise the insecure state of a system.
Nevertheless, these approaches are likely more suitable for software systems with processes
and varying system states and not fluid, interaction-based structures as in SDN. The thesis
OpenFlow - A Security Analysis [63] discusses further methodologies for threat modelling
and presents extensions to already existing models.

3.2 STRIDE Assessment

The decomposition of a system in STRIDE is a necessary measure to accurately understand
the potential deficiencies of the product and graphical analysis of a data flow diagram is a
useful methodology to inspect an SDN architecture. Based on the technical depictions of
Chapter 2 the DFD symbolises the flow and storage of information in a software-defined
network.

MANAGEMENT

APPLICATIONS

SWITCH

CLUSTER

SYNCH.

CONTROLLER

INDEPENDENT

CONTROLLER

SYNCH.

CONTROLLER

Write and request

flow tables

Writes controller policies and

manages distributed controllers

Sends and receives data packets

Exchanges messages for control

or management devices

Performs manual

configurations

Provides switch

statistics

Sends network view

and information

W
ri

te
s

p
o

lic
ie

s
a
n

d
 a

p
p

lie
s

c
o

n
fig

u
ra

tio
n

P
ro

vi
d

e
s

d
e
ta

ile
d

, s
u

m
m

a
ri
se

d

in
fo

rm
a
ti
o

n
 o

f
e

n
ti
re

 n
e
tw

o
rk

Sends individual

network topology

information and

unknown packets

Synchronises

shared network

view

Sends individual

network topology

information and

unknown packetsWrite and

request

flow tables

Sends network

view and

information

SWITCH

CLUSTER

Figure 3.2: Data flow of a generic OpenFlow setup employing two synchronised and one
distributed independent controller.

27

3 Security Threats

CONTROLLER CPU

POLICY

PORT BUFFERS

VIRTUALISED NETWORK VIEW

 AND GENERAL INFORMATION

NORTHBOUND

INTERFACE

APPLICATIONS
MANAGEMENT

reads

Consult policy for

routing and packet

decisions

Writes and

updates policy

Manual

 configuration

Manual

statistics

query

Process and send

 switch, management and

application packets

WEST-/EASTBOUND

INTERFACE

PEER CONTROLLER

Update

Broadcast

 changes

Synchronise

Automatic

information

query and

processing

Automatic

 configuration

Figure 3.3: Data flow of a SDN controller.

3.2.1 Data Flow Analysis

Four main bidirectional data streams are present in SDN. The management is logically
connected to all devices, while the three remaining components are hierarchically layered.
Compromising any of the main units impacts the entire network and therefore each entity
possesses their own trust boundaries. It is mandatory for a secure network to properly au-
thenticate any and all communication of the four main components. Section 2.4 discussed
the eventual necessity of distributed controllers for the sake of reliability and scalability.
The method of communication is not clearly defined in the ONF specifications, but it can
be assumed that controllers are either orchestrated by applications or communicate natively
over the horizontal interfaces. The devices either control disjunct slices of the network or
are strictly synchronised. Management and applications are highly diverse and can not be
sufficiently abstracted into DFD elements. They are regarded as external entities. Never-
theless, the upper layers offer a vantage point for an attacker and are most likely a major
source of attacks. Applications are particularly vulnerable to software exploits and should
not be fully trusted by the controller.

Switches and controllers are modelled into several smaller, logical parts, based on the
details of Section 2.4. A controller is expected to run on a virtual server with a power-

28

3.2 STRIDE Assessment

SWITCH CPUS

FORWARDING TABLES

INGRESS PORT

BUFFER

EGRESS PORT

BUFFER AND

QUEUES

RESOURCE DATABASE

SOUTHBOUND

INTERFACE

CONTROLLER

MANAGEMENT

Controller-to-Switch

message

Asynchronous message

 (e.g. PACKET_IN)

Update local

topology

reads

Consult table for

packet decision
Update counters

and statistics

Write decision

tables

Reads flow tables

and counter

statistics

Individual

configuration

Individual

statistics

Queue or drop

packet

Process packet

Figure 3.4: Data flow of a SDN switch.

ful computing unit and connects to the network via physical ports. All versions maintain
the policy database, which is written manually by the management, or automatically by
applications. The application and management interface are merged into the northbound
interface, as they enact the same functionality from the view of the controller. For the sake
of simplicity, routing and computing applications integrated into the controller software are
not regarded as separated process. They operate within the trust domain of the controller
and may consume the same system resources. If the internal routing and application intelli-
gence is compromised, so is the controller. Natively distributed controllers contain a shared
cache database, which also influences topology and computing behaviour. Management and
applications access topology information and statistics over the API of the controller. Asyn-
chronous messages of switches or adjacent controllers form the main view of the network.
Combining the view with the policy, the controller formulates and computes forwarding
decisions of the applications and sends control commands to the switches.

A switch contains ingress and egress ports with attached queues or buffers, the southbound
interface, and the tables. Meter, group, and forwarding tables are consolidated into the
umbrella term forwarding decision tables. Although not further detailed in the DFD, meter
tables and the capability to automatically limit bandwidth are possibly relevant for DoS
mitigation, while the individual statistics saved in the counters and forwarding tables might

29

3 Security Threats

be subject to Tampering. Switches generally provide individual link discovery information
and general local statistics to higher hierarchical entities. The ONF does not mandate
that the communication with the control plane takes place over out-of-band connections.
Management and control messages might be sent over the standard data network, the only
requirement is a TCP/IP connectivity. An in-band communication of configuration messages
is a possibility. [42] The entire DFD is divided into three sub-DFDs. Figure 3.2 represents the
overall flow structure, Figure 3.3 the internal flow of a controller and Figure 3.4 the switch.
There are two STRIDE variants to the conventional method. STRIDE-per-element applies
every aspect to every component of the DFD. However, for complex systems such as a SDN
isolating every component does not provide sufficient insight into vulnerable dependencies
and is a redundant approach. The second variant focusses on interactions of the individual
parts and how attackers might abuse these interactions. While this approach is far more
detailed, the complexity of the diagram increases considerably. The chosen method in this
thesis is a basic, general model of the data flow in the network and the view of an attacker
trying to achieve individual goals. For every aspect, an attack tree is generated to abuse any
of the components of the network, some of which are bilaterally dependent. Attacks which
are not feasible or already prevented by the basic specifications and design choices will be
marked as such.

3.2.2 Spoofing

Spoofing an element of the network is frequently the first step of a larger attack. Whether
an attacker successfully mimics, compromises or implants a device is negligible as long as
the goal of trust or inconspicuousness is achieved. Conventional ARP Poisoning is assumed
to be weakened due to the ARP-agnostic nature of OpenFlow switches and the abolishment
of automatic switch broadcasts. Controllers nonetheless are still vulnerable to spoofed ad-
dresses of internal hosts. [68] In this thesis and in the context of SDN, a Spoofing attempt
is further denoted as deceiving other devices to be a legitimate member of the network (e.g.
a switch, controller or application), which implies a lack of proper authentication. Spoofing
is often a gateway for other STRIDE threats and is considered to be a base threat in the
following sections.

Four main components are susceptible to Spoofing in a software-defined network. The
switch, the controller, the applications, and the management.

The internal, affected mechanics of the switch and controller are the interfaces and their
respective authentication procedures. It can be assumed that hijacking and spoofing the
controllers of the network is the highest priority of an attacker. The controller cooperates
with all logical planes and has control over the entire network. Without reliable certifi-
cates it is easily achievable to connect as a legitimate network element. The virtualisation
of controllers and switches in a software-defined network simplifies the insertion of a mali-
cious device by installing it on a compromised host. [69] The right MITM placement of a
decoy switch potentially gives an intruder control over the entire remaining network slice
and enables a broad range of attacks and insights. [60] In this case, Tampering also pro-
hibits a further detection by administrative services as the switch can modify all OpenFlow
notification and control messages.

Out-of-band communication is not required as it is cost-intensive and elaborate to imple-
ment. The potential absence of a separate channel renders the northbound interface openly
accessible in the network and prone to a man-in-the-middle attack over a compromised

30

3.2 STRIDE Assessment

switch. [69] A controller that does not demand authentication can be misled to enact com-
mands on behalf of the attacker. Depending on the implementation, natively distributed
controllers could fall victim to a rogue version which has replaced a legitimate controller
or registered as a new peer. If the access method of the administrator and applications is
not an out-of-band communication, the entire controller could be spoofed for other network
members, thus resulting in an absolute need for strong authentication mechanisms.

To counter the threat of Spoofing, every trust boundary in the main DFD has to be suffi-
ciently secured. The OpenFlow protocol supports TLS as a relevant measure. [42] However,
the authentication service is often not fully implemented, not activated by default in con-
troller and switch implementations, or is simply disabled by network administrators due to
performance concerns. [60] The focus on data centres, which are often regarded as ”phys-
ically secure” [60], neglected strict authentication measures and recommendations. The
last broad survey on TLS support in controllers and switches has been conducted in 2013
and highlighted a severe lack of TLS adoption. [60] The report states that most OpenFlow
switch vendors do not support TLS. Coincidently, since 2011 the requirement of TLS sup-
port has been dropped in the OF-Switch specification and the link between switches and
controllers has been renamed from secure channel to controller channel. TLS is still optional
or requires manual implementation in various control softwares (e.g. Floodlight, NOX or
OpenDaylight). Additionally, switches may not be authenticated since mutual authentica-
tion is not demanded. [60] The developer team of Floodlight currently has no plans to deploy
native TLS support, since the ”control plane is typically isolated from the data plane and
in a secure environment” [70]. The protocol has to be manually installed and configured
using additional extensions. It is to be expected that past criticism and rising awareness
will eventually drive further TLS adoption. Since the release of the critical OpenFlow secu-
rity assessment in 2013, the criticised controller architectures seem to have implemented at
least rudimentary support for the TLS protocol. [51] Considering the fact that the protocol
supports authentication, security-conscious administrators and companies should be able to
choose acceptable solutions in the future. Nevertheless, a network employing TLS still faces
challenges, as the protocol suffers from a constant stream of new bugs and exploits. In fact,
OpenSSL is considered to be one of the most vulnerable software types due to common usage
of unsupported versions. [71] The ONF does not specify or mandate a particular TLS ver-
sion. One of the dangers is backwards-compatibility and fall-back mechanisms to insecure,
older version, most recently demonstrated by the POODLE attack. [72] Furthermore, UDP
messages with a static data path ID [42] can freely be sent over a auxiliary connection. As it
is possible to guess the ID due to low randomisation, spoofed UDP configuration messages
may be injected into the control channel. The OpenFlow protocol supports VLAN flow
matching, which also introduces a virtually separate control and management channel and
might prevent the spoofing of a controller or switch and MITM attacks. This dynamic and
automatic configuration reduces potential misconfiguration in VLAN setups. Additionally,
flows can be configured to drop control and management traffic from questionable sources.
However, by compromising a switch, VLAN hopping, or modification of suitable flow tags,
the attacker might gain access to these channels. These problems are not exclusive to SDN,
but the centralised structure extends the potential impact of a vulnerability significantly.
While IPSec Tunnel Mode between switches and controllers is theoretically supported to
guarantee authenticity and confidentiality in the network [42], adoption by vendors and
developers is not observable, most likely due to lack of demand or interest.

The northbound interface of controllers is problematic in SDN and highly vulnerable to

31

3 Security Threats

Spoofing. Many network operating systems rely on unencrypted HTTP basic authentication
with weak or no passwords at all. HTTPS is not enabled by default. [73] Controllers utilise
common software frameworks and APIs, which, if not properly maintained by code reviews,
might introduce a broad range of known and unknown vulnerabilities. [12] Frequently, mul-
tiple southbound and northbound APIs are supported, each exposing a different set of weak
points. A DEFCON demonstration in 2014 [73] showed the possibilities of exploiting the
widespread Floodlight and OpenDaylight software. The speaker accesses the interface of the
controllers as switch and authenticates himself as trusted. The spoofed switch gains control
over the entire network by sending application messages to the controller and blocking out
any detection devices or administrators from repairing the network.

Code hardening, separate channels, and rigid authentication for any access point are the
only native measures to counter an breach in the general controller design. It is necessary
to detect suspicious activity early to prevent a hijacking of the northbound interface. As
the management interface of switches is accessed over SSH by default, the connection can
be considered secure. The OF-Config publication [43], which includes a specification of ma-
nagement access, demands a SSH or TLS connection to the switch. The STRIDE assessment
by Brandt et al., 2014 [62] also infers an inherent resilience of the management connection
against Spoofing. Klöti, 2014 [63] presumes that hijacking the management interface is only
possible via more extensive attack methods. Whether via HTTPS, SSH or an application
proxy, the management connection to the controller depends on the choice of the devel-
oper. Nonetheless, previously discussed considerations regarding any type of authentication
measure also apply.

The OF-Switch specification does not further define the method of synchronisation be-
tween controllers. Strictly adhering to the definition of multiple controllers in the speci-
fication, a rogue distributed controller could demote all legitimate controllers to the slave
role and enact the intruder’s policies. Switches in listener mode are particularly vulnerable
to this attack, if they accept any incoming connection attempt. Distributed controllers,
which are coordinated over the application plane, are susceptible to the security issues of
SDN applications and the northbound interface. If the controller possesses a horizontal in-
terface, it is necessary to validate the new peers. Neither Onix [53] nor OpenDaylight [74]
nor OpenDaylight seem to define or implement a suitable protocol for verification and al-
low new controllers to instantly subscribe to information and write data. However, these
controller softwares may use third-party distributed databases such as Apache ZooKeeper,
which employs TLS authentication.

All these attacks are likely performed from a hijacked unit of the intra- or extranet. Either
remote or physical access to a host are a requirement before an attacker is able to advance.
The preparatory work is not exclusive to SDN, yet an integral part of Spoofing. Soft- or
hardware exploits, social engineering, malware or unmonitored remote access are common
tactics. The Trustwave 2012 Report [75] identifies remote access applications as the most
widely used intrusion. Infecting clients is the second-most frequent method to compromise a
legitimate device. A new emerging risk is the trend of Bring-Your-Own-Device (BYOD) in
companies. [75] Employees may bring their own laptops, smartphones, or tablets and connect
these to the intranet. An attacker can take advantage of naive users and gain simple access
to the externally secured network by installing malicious software on the BYOD device host
and waiting until the user connects at his workplace.

Figure 3.5 shows the attack tree developed for this STRIDE threat for each affected
component. As soon as an attacker has gained access to the network either physically or

32

3.2 STRIDE Assessment

remotely, he has various options to deceive switches or controllers. It is unlikely that an
attacker gains physical access to the network and a physical breach can not be prevented
by network devices. It is presumed that available authentication is properly implemented
by responsible operators and that an intruder can not send switch or command messages.
Nevertheless, security exploits do exist on various levels and are of more variety than in
legacy networks.

Comparison to Traditional Architecture

Although an attacker must use conventional methods to establish himself in the network,
his succeeding capabilities are considerably extended. SDN introduces the controller and
applications, two new imitable targets in the network. The new logical components are
capable of exerting a great amount of power over the entire network and are therefore a prime
target. The programmability and programming interfaces potentially harbour a multitude
of new security holes and virtualisation of physical network devices, such as switches and
the controller, lowers the barrier for imitation. Traditional authentication protocols exist
as countermeasure. However, as highlighted in the security threat reports, they might not
be sufficient to protect controllers and switches from abuse. The increased impact makes
Spoofing is a sizeable threat in SDN, more so than in legacy networks. Even assuming all
trust boundaries are secured in the network, Spoofing is still possible. It is thus considered a
base vulnerability for further threats. Security-conscious network operators need to address
this threat with special care and caution and deploy mechanism to automatically detect
spoofed connections and devices based on suspicious behaviour. A new possibility of SDN
is the deployment of sophisticated applications, which are able to detect and neutralise
Spoofing in the entire network. A necessary tool to avert the overall danger of this STRIDE
threat.

33

3 Security Threats

Spoofing

Deceive

controller Deceive

Switch

Authenticate as

controller

Authenticate

as

application

Send switch/

peer

notifications to

controller

Send

application/

management

commands to

controller

Find controller

API

vulnerability or

design flaw

Authenticate

as switch Authenticate

as

administrator

Authenticate

as peer

controller

Exploit SSH

vulnerability

Obtain physical access to any

authenticated device of the network

Exploit TLS

vulnerability in

the network

Social

engineering

Acquire relevant

position at

company

Exploit TLS

vulnerability in

the network

Break into

company

Obtain control of

suitable host in the

network

Scan and identify

vulnerable targets

Exploit security

flaw

Man-in-the-middle attack

Redirect

traffic to host

Tampering of

controller view

Prevented with

the use of TLS

authentication

Not preventable

with technology

Mitigated with

out-of-band

communication

Send controller

messages to

switch

Take over BYOD

host

Figure 3.5: Attack Tree showing several methods to achieve Spoofing in SDN.

34

3.2 STRIDE Assessment

3.2.3 Tampering

Tampering grants an untrusted person a multitude of advantages. The successful modifica-
tion of data can lead to the next step of an attack or the corruption of important information.
A common example of the hazardous implications of the second STRIDE threat are bank
transactions. Without knowledge of the involved parties, a man-in-the-middle can modify
the specified transfer sum and redirect an arbitrary amount of money to his personal account.

SDN increases the amount of dependent systems and the centralisation of intelligence,
which makes it particularly vulnerable to falsified information. Spoofing and Tampering
are often intertwined and mutually dependent. The act of forging data flows and topology
deceives other members of the network while improper authentication provides the ability
to manipulate data stores and flows. Several of the following attacks require successful
Spoofing or enable further Spoofing attacks. All data flows, stores, and processes of the
system are in danger of carrying misleading information. On a network scale, an attacker
could intercept any of the main data streams and manipulate asynchronous, controller-to-
switch or management messages. An underestimated threat are man-in-middle attacks, as
the network is often considered to be physically secure. [60] The interception is performed
by physically interrupting the connection or spoofing a device of the network and redirecting
traffic. A strategically placed switch or host could rewrite OpenFlow control and topology
information. Any subsequent switches receive tampered controller-to-switch messages while
the controller is wrongly informed about network state as asynchronous report messages are
retained and modified. [60]

A switch contains several vulnerable assets. The resource database and the decision tables
are of special interest for an attacker. It is unlikely that the internal data flows of the device
are tampered with. If a person has access to the physical components of the switch and
is capable of restructuring them to the point of successful, undetected Tampering, then his
capacities exceed the normal threat considerations.

Forged control messages can rewrite flow, group, and meter tables. Manipulated decision
tables reroute traffic to a black hole or to a different user, essentially generating Denial of
Service (see Section 3.2.6) and Information Disclosure (see Section 3.2.5). A consideration
is the remapping of virtual ports to a new physical port. However, any changes to port
states are reported to the controller and most likely detected unless the controller has been
hijacked. [42] If the management or control channel is compromised, port remapping might
already be a superfluous action. The second data store is the resource database, which con-
tains local topology of the switch. The switch forwards information about his neighbours to
provide a virtualised overview of the network. If an attacker is able to connect a new adja-
cent device, the deceived switch might inform the controller about non-existent or malicious
neighbours as legitimate network nodes. The controller erroneously takes the new entities
into consideration and recomputes traffic over the malformed path. [60]

The last potential target is the southbound interface itself. Albeit a sophisticated ap-
proach, the attacker could install malicious or malfunctioning firmware on the switch and
reform incoming management and control messages. Although this method is unlikely for
hardware switches and out of the scope of the protocol itself, virtual switches could be
severely affected. It might be a necessity to verify flow correctness and isolate malfunction-
ing switches.

Controllers are exposed to similar dangers as the OpenFlow switch. A major difference
is the computational structure, as the controller generally runs on the operating system

35

3 Security Threats

of a server. Vulnerabilities of the OS consequently become the vulnerabilities of the con-
troller. An infected server can manipulate the network view to hide a breach or overwrite
the policy database schema, as control distributions do not seem to restrict writing access
to the database, verify the integrity of stored data or secure sensitive information. Con-
troller servers might openly expose a debug configuration interface which an attacker can
utilise to stealthily reconfigure the device. [73] If the controller maintains a log in the resource
database, it might be overwritten to prevent detection and non-repudiation. Similarly to the
firmware manipulation of switches, malware could be inserted into the operating software or
affect the controller applications. Successfully spoofing network elements and deceiving the
controller is a prime motivation for Tampering, as authenticated management, applications
or peer controllers are able to alter the policy while rogue switches and peer controllers can
send falsified reports to distort the network view. [69]

A further problem is the lack of Byzantine fault tolerance. Byzantine faults may emerge,
if disjunct and distributed systems need to reach agreement. If multiple logically centralised
controllers are present in the network, they are required to communicate and vote on a consis-
tent decision for the data plane. A malicious controller could potentially inject inconsistent
decisions or modify the distributed database in order to alter the packet flow. [76]

In an argument for a controller security enforcement kernel, Porras et al., 2012 [77] discuss
policy tampering performed by malicious and buggy applications. A demonstrative example
is a method to circumvent a functioning firewall, which is possible due to dynamic nature
of OpenFlow routing tables. A rogue or defect application commands controllers to install
a forwarding rule which modifies the destination IP address of particular source addresses.
The attacker then pretends to send packets to a legitimate address of the network, thus
bypassing the firewall. Once the packet has moved past the wall, the misled switches change
its destination address according to the malicious but legitimate flow entries and the attacker
is able to target a protected host. The attack demonstration highlights the requirement of
application control and policy consistency in order to minimise security backdoors.
(see Figure 3.6)

10.0.0.2

10.0.0.2 -> 10.0.0.3:80

OF switch

Of controller

10.0.0.2 -> 10.0.0.3:80; Modify SRC IP to

10.0.0.1

10.0.0.1 -> 10.0.0.3:80; Modify DST IP to

10.0.0.4

10.0.0.1 -> 10.0.0.4:80; Forward

10.0.0.3

10.0.0.4

(1)

(4)
(3)

(2)

(5)

BLOCK 10.0.0.2 -> 10.0.0.4:80

10.0.0.1 -> 10.0.0.4:80

Figure 3.6: As demonstrated by Porras et al an attacker is able to bypass the firewall due to
the inconsistencies in the policy of the controller (Figure inspired by [77]).

36

3.2 STRIDE Assessment

Applications and management are regarded as end interactors of the system. Their struc-
ture is not subject to detailed analysis, but it can be assumed that they are transitively
affected by vulnerabilities of the controller, i.e. falsified network view and policies.

Solutions to many of the addressed issues are the use of TLS, reliable authentication,
and proper review of potential open network services. [60], [69] However, Section 3.2.2 has
demonstrated methods of an attacker to achieve access despite proper authentication mea-
sures. The OpenFlow design choice removes intelligence from the switches. They do not
authenticate and verify their peers and thus relay the threat of an ARP and LLDP-spoofing
attack or malicious connection vulnerability to the controller. A practical approach to im-
plement this theory and to poison network visibility and topology is demonstrated by Hong
et al., 2015 [78]. According to their research, the attack was successfully performed on sev-
eral common controller implementations (Floodlight, OpenDaylight, NOX), despite proper
TLS authentication of the control channel. The team presents Host Location Hijacking and
Link Fabrication as two new attack methods in an OpenFlow network. After acquisition
of compromised hosts, bogus LLDP packets were sent into the network to deceive the link
discovery protocol of the controller. The mechanisms to identify genuine packets are circum-
vented by obtaining and mimicking packets or inspection of the open source code. The first
attack tricks the controller into believing a network host has relocated. The second injects
non-existent or detour paths into the network. Both attacks were performed from a generic
host in the intranet. These methods largely replace ARP-poisoning in OpenFlow and are
only possible due to weak topology management and packet verification on the controller
side. [78] Furthermore, Klöti, 2014 [63] identifies three possible Tampering attacks on the
switch. Two are based on the manipulation of flow aggregation and the redirection of traffic
by either sending out the packet on another port or modifying the packet header fields. The
third attack is a manipulation of the flow entry counters. He assesses that switches could
send packets to cause a buffer-overflow in the counters field of the flow entry. However, Klöti
deems this threat not feasibly in the scale of current networks. He concludes that Tampering
has to be mitigated by implementing proper controller intelligence and the authentication
of every single switch in the network. Antikainen, Aura and Särelä, 2014 assess that if a
controller does not authenticate every single switch of the network, topology spoofing and
traffic diversion remains an issue. [69] The attack tree of Figure 3.7 summarises the Tam-
pering attack. Many possibilities emerge from successful Spoofing or a compromised server.
However, a modification of the central network topology can be performed without need for
authentication or the hijacking of a switch.

Comparison to Traditional Architecture

Tampering displays a similar threat pattern as Spoofing. The average access risk is not
exacerbated if authentication measures are properly implemented and the network is phys-
ically secure. However, the application and control plane reveal several new entry points
for an attack. The modification of central information has a significantly larger impact on
the network. Routing intelligence is not distributed and switches are dependent on a single
entity maintaining the view of the network. If this database is affected, the whole network
is compromised. A controller has to correctly identify corrupt and conflicting information in
the same fashion as it has to notice and detect Spoofing attempts. Many practitioners agree
that the responsibility of security and consistency shifts to the control platform, which has
to verify switch topology and application reports. [79], [80]

37

3 Security Threats

Tampering

Modify controller and

application data Modify

switch data

Utilise

management

or application

Potential risk but

out of the scope

of SDN

Send controller-

to-switch

messages

Send management

commands to

switch

Send

commands

to controller

Install

malware on

server

Exploit

server

vulnerability

Overwrite policy

and resource

database

Poison network

view

Spoof switch

or peer

controller

Send falsified

topology

information

Spoofing

Exploit application

bug or install

malicious application Host Location

Hijacking

Attack

Obtain control

of suitable host

in the network

Inspect

controller

source code

Intercept

legitimate LLDP

packets

Identify

message

structure

Link

Fabrication

Attack

Inject spoofed

LLDP/ARP

messages into

network

Generate PACKET_IN

message to notify

controller of topology

change

Spoofing
Install

malicious

firmware

Modify data

flow

Man-in-the-middle

attack

Hijack controller

channel

Hijack network

switch

Hijack

management

channel

Rewrite

decision

tablesRemap

ports

Superfluous

Modify local

switch topology

Register new

virtual switch

Overflow table

entry counters

Obtain control of

suitable host in

the network

Elaborate

and

complex

Amount

of

required

packets

too high

Figure 3.7: Attack Tree showing several methods to achieve Tampering in SDN.

38

3.2 STRIDE Assessment

3.2.4 Repudiation

It is desirable for administrators to trace back any actions or events in the system to a single
entity for either legal or debugging purposes. Simultaneously, users prefer to be reaffirmed
of authentic communication and the arrival of their messages at the expected destination.
Non-Repudiation assures accountability and transparency of interactors in the system. The
concept itself overlaps with authenticity and resilience to Tampering to a great extent, but
is often an ancillary requirement to promise users a trustworthy system. From a technical
perspective it is not considered feasible to absolutely prevent Repudiation, as computing
systems might be compromised or authentication tokens illegally acquired. [81] Nevertheless,
measures to guarantee a degree of liability for system components and users exist. This
thesis defines non-repudiation as the capability to accurately trace back any kind action to
a single device or host of the network and as a result identify and incriminate malicious or
compromised devices. Legal considerations or host based signatures and encryption are not
inspected, as these are out of the scope of an OpenFlow network. OpenFlow supports IPSec
and host authentication is in theory available to secure the end-to-end user communication.
In the network the control plane is notably vulnerable to Repudiation. The data plane lacks
intelligence, is not autonomous and thus does not perform any deniable actions.

Nonetheless, data plane devices should report all modifications and internal data changes
to higher logical planes. The OpenFlow southbound protocol [42] does indeed specify au-
tomated messages and reports all changes of the flow tables, port states or controllers in a
switch. This is expected, as forwarding knowledge to the control plane is a fundamental part
of the OpenFlow paradigm. To the authors knowledge however, asynchronous messages do
not detail who has performed or commanded a particular modification. This poses a prob-
lem with multiple controllers or management connections. Even if all the connections are
authenticated it does not seem possible to pin the action down to a single actor.

Controllers possess knowledge of the entire network and its hosts and switches in the topol-
ogy and virtualisation database. The central intelligence provides great potential to remedy
the Repudiation threat and monitor the behaviour of network interactors. [82] Still, native
OpenFlow does not deploy sufficient forensic mechanics [82] and controllers face several is-
sues regarding identification of accountability. Controller implementations maintain a log
for debugging purposes, but do not seem to discern application input from the northbound
interface. [83] Porras et al., 2015 [56] specifically inspected the Floodlight architecture and
deem the lack of application accountability problematic. The controller does not distinguish
policy operations of multiple applications or identifies conflicts. If applications are designed
as monolithic block and commands are forwarded to the controller uniformly, internal con-
flicts and misbehaving applications are not detected. Overall, the southbound as well as the
northbound interface do not provide the ability to track actions of higher level devices.

A second security consideration is tampering of log files maintained in the resource database.
An infected controller or server might simply overwrite suspicious log entries, if data is not
continuously sent to the OSS or SIEM of the network. It is also possible to configure switch
to rewrite certain MAC and IP source addresses to cloud the exact origin of malware or
Distributed Denial of Service (DDoS) attempts. Network monitoring tools or basic intrusion
detection mechanisms might simply be blocked from certain data paths and thus do not
report suspicious activity. If controller modifications are not reported instantly to central
management regardless of configuration, covert activity could stay undetected for extended
periods of time.

39

3 Security Threats

Comparison to Traditional Architecture

The Repudiation threat in SDN does not differ significantly from legacy networks as the
major cryptographic protocols TLS and IPSec are theoretically supported as countermea-
sures. In fact, the centralised overview amplifies the potential to trace covert communi-
cation activities and rogue devices. [82], [84] Repudiation issues in OpenFlow largely stem
from Tampering or general implementation negligence, since the authentication measures
are supported but not advocated. Nevertheless, introducing unique IDs for controllers and
applications and informing other network members of the actions of peer devices are com-
pulsory considerations. The activities of malfunctioning controllers and applications have
to be meticulously documented and monitored to provide a minimal capability to correctly
track down or find suspicious behaviour. Figure 3.8 demonstrates the overall possibilities to
deny actions or hide activity.

40

3.2 STRIDE Assessment

Repudiation

Deny device actions
Deny host-to-host action

and communication

Assume control over

controller or management

station

Utilise lack of tracking

functionality in switch

PACKET_IN notifications

Spoofing Tampering
General exploit

Modify/delete

controller log

file

Tampering

Deploy rogue

application

Utilise lack of application

accountability in

controller

implementations

Hide activity

Block network

sensors

Dynamically

rewrite source

IP and MAC

address

Deploy/Hijack

MITM switch

Out of the scope of OpenFlow

or mitigated using IPSec/TLS

authentication

Figure 3.8: Attack Tree showing several methods to achieve Repudiation in SDN.

41

3 Security Threats

3.2.5 Information Disclosure

Two distinct types of Information Disclosure are applicable to software-defined networks.
On the one hand, user traffic can be monitored, recorded, and crucial data subsequently
acquired, on the other hand, reconnaissance and the identification of potential targets are
preparation steps for a larger attack, most commonly DoS. Concerning data interception,
OpenFlow suffers from the same vulnerabilities as traditional networks. An attacker can
sniff passwords and confidential data, if a man-in-the-middle device has been installed and
the traffic is not encrypted. Network administrators attenuate the problem by implementing
authentication and encryption protocols. OpenFlow supports TLS and IPSec and thus
employs a comparable amount of security to state-of-the-art networks. Further concerns
regarding authenticity an the prevention of Spoofing have been addressed in Section 3.2.2.

A potential new problem is the extraction of information on the controller host, as con-
troller distributions offer multiple XML-based services which are potentially vulnerable to
fault parsing attacks. An example is the NETCONF management service deployed on con-
troller architectures such as OpenDaylight [47] or RYU [52] and the OF-Config protocol [43]
in general. Security exploits in OpenDaylight, which provide access to sensitive files or cre-
dentials, are already existent and documented. [85] However, NETCONF [17] and similar
configuration access methods generally demand a SSH or TLS connection, which provides a
sufficient protection, if and only if default passwords are changed.

The OpenFlow protocol itself exposes several new reconnaissance possibilities in the net-
work.

By default switches and controllers listen on the TCP port 6653 for new connections [42]
and might be accessible from external sources in order to provide home office functionality or
remote site access. The openly accessible port presents a new possibility for attackers to scan
for OpenFlow networks, as manual scripts or a port scan quickly identify the active Open-
Flow services. Even if port scans are unavailable due to security measures it is still possible
to fingerprint for OpenFlow network by measuring different response time in packets. The
high fluctuation depending on the selected header fields suggests the existence of a control
channel. [86] After the attacker has found suitable a target, he can distinguish switches and
controllers by inspecting handshake messages. A OFPT FEATURES REQUEST answer to
an OpenFlow HELLO message denotes communication with a controller. [42] These attacks
can be prevented if border switches drop any packets targeting the OpenFlow ports. How-
ever, it might be necessary to enable open exterior access to controllers to perform remote
operations. Isolating the network with VLANs is a possible measure, but does not guarantee
full security. Certificates are therefore a requirement to ensure a minimal degree of security
in respect to outside connections.

Once an attacker has compromised a host that is connected to an authenticated switch
in the network, several methods to gain information about the devices and the network
topology present themselves. Switches expose network data in their RDB and forwarding
decision tables, controllers provide information about the entire network topology, access
control lists, and general policy. An attacker then obtains these resources by abusing faulty
authentication and querying the devices. A basic management, application or controller
request prompts an insightful information response. Furthermore, flow table instructions
simplify the mirroring of traffic to specific hosts as one single, remotely installed entry
suffices as configuration. [61]

Even if switches and controllers are mutually authenticated and Spoofing is prevented,

42

3.2 STRIDE Assessment

network data can be collected using a side-channel timing attack. To determine which
packet headers generate new flow rules, the attacker sends packets with different modified
header fields and awaits a response. A statistically significant difference in round-trip time
ascertains, which packets are sent to the controller by the switch and create a new flow entry
in the table. Klöti, 2014 [63] as well Shin and Gu, 2013 [86] succeeded in implementing
an experimental test scenario of this reconnaissance method. Both projects measured and
compared response times of sample packets and were able to determine whether a flow rule
existed in a particular switch. Shin and Gu additionally presented a SDN scanner tool,
capable of identifying OpenFlow networks without using port scans and assessing flow rule
conditions. An important step in the preparation phase for a DoS attack on switches or
controllers.

Comparison to Traditional Architecture

New network components introduce new possibilities to collect data. The agile and pro-
grammable nature of an OpenFlow network facilitates Information Disclosure as single de-
vices can be quickly reconfigured to direct traffic over detour sniffing paths. The variance
in response time helps attackers to map parts of the network without needing to access any
device. In SDN multiple elements maintain information about the entire network in flow ta-
bles and virtualisation databases. This information may be revealed using remote queries or
by gaining access to a server. While user data is protected with TLS and IPSec, basic SDN
does not provide adequate methods to hide information about the overall network structure.
The attack tree in Figure 3.9 highlights the three basic aspects of Information Disclosure in
SDN and methods to retrieve information from the data flows or devices.

43

3 Security Threats

Information Disclosure

Extract controller information Extract switch

information

Potential risk but

out of the scope

of SDN

Install malware

on server

Exploit server

vulnerability

Exploit controller

services

Identify

Openflow

network

Exploit interface

bug

Sniff user traffic

Misuse port mirroring

Hijack network

node

or perform

 MITM attack

Scan ports
Utilise parsing

error

Find bug in

programming language

Redirect traffic to

malicious host

Spoof controller

Request controller

information (topology,

forwarding tables)

Measure variation in

response times

Obtain general server data

(e.g. passwords)

Extract controller

resource database

Possible, but

unlikely when

using proper

TLS

authentication

Possible, but

unlikely when

using proper

TLS

authentication

Spoof switch

Request switch information

(neighbours, forwarding

tables)

Obtain control

of suitable host

 in the network

Perform side-

channel timing

attack

Identify which packets do or

do not generate flow table

rules

Possible, but

unlikely

when using

proper TLS

authenticati

on

Figure 3.9: Attack Tree showing several methods to achieve Information Disclosure in SDN.

44

3.2 STRIDE Assessment

3.2.6 Denial of Service

The centralisation of network elements suffers from the constant danger of creating a single-
point-of-failure. Software-Defined-Networking proposes the central controller, an opportu-
nity as well as an Achilles’ heel in the network. The ONF itself acknowledges that the
controller ”emerges as a potential single point of attack and failure that must be protected
from threats” [87]. However, the controller is not the only blind spot in SDN. Denial of
Service can be considered the most prevalent threat in SDN. All of the STRIDE aspects
play a part in the success of DoS, as the attack surface is broad and a variety of targets is
available.

The first component to expose several weaknesses are switches. Using conventional DoS
methods an attacker might simply flood the ingress ports and interfaces of the switch. It is
unclear if the flow tables of OpenFlow switches produce more processing load than routing
tables in traditional devices. Flow table matching, table lookup, and application of actions
generate a significant computing overhead, which could lead to a slower processing of larger
amounts of data. Case studies reveal that current switch CPUs may be a limiting factor in
the reactive approach, as they are not able to handle a high installation frequency of flow
table entries while simultaneously sending PACKET IN messages. [61], [88]

If the CPU is sufficiently fast, ingress and egress interfaces and their buffers are the limiting
hardware factor. It can be assumed that every interface and physical port utilises a dedicated
buffer and shares additional dynamic memory with its neighbours. If one ingress interface
is flooded, the remaining fabric (including the management access) is still operational. The
output buffer is most likely not affected by flooding as traffic has to pass ingress ports and
the CPU. Over-subscription of switch ports leads to the possibility that traffic from multiple
interfaces is traverses one particular egress port and renders the outlet unusable for any
remaining flows. However, determining and acquiring this informations requires intimate
knowledge about the network and is generally infeasible. These considerations do not differ
significantly from traditional network switches. However, the change from routing to flow
tables and the new controller-to-switch communication channel introduce new options. An
attacker can send any kind of packet to the connected switch, assuming he has gained access
to one or multiple hosts in the network. Under the condition that the controller operates in
reactive mode and allows PACKET IN messages, the malicious host is able to send diligently
crafted packets to the switch without being authenticated.

Information Disclosure (see Section 3.2.5) provides the opportunity to determine which
packets actually generate flow rules. The flow table is then flooded with malformed table
entries. Kuznier et al., 2015 [89] have determined that large flow entries severely impact
switching performance in some vendor devices. If the flow table is constantly filled within
the expire date, the switch is effectively incapacitated. OF-Switch [42] specifies that, instead
of replacing old entries, the switch replies with an ERROR message to the controller. Au-
tomatic flow entry eviction is a possibility, but only optional and not a required function.
As TCAM generally utilises low space for the sake of performance, it is achievable reach the
size limit in short time. Switches are assumed to support around 8K to 32K flow table en-
tries [12], in reality the typical maximum seems to average around 1500 elements [88], which
is not sufficient for larger networks. Some switches allow as little as 250 CAM entries. [61]
False instructions are continuously forced into the flow tables and hinder the installation
of legitimate entries, thus achieving a Denial of Service for particular network flows. To
address the general problem of limited entry size, switch vendors are already increasing the

45

3 Security Threats

minimum available size. Furthermore, flows may be aggregated to save space. However,
these approaches may be futile, if the attacker is aware of the flow entry configuration.

The controller-to-switch channel itself is vulnerable to various DDoS attacks. Zombie
hosts generate unknown packets with bogus header fields which switches then forward to the
control unit for advice. The sheer amount of possible header field combinations allows for
effective burdening of the channel. While the computing power of the server requires large
amounts of traffic and these packets might eventually be dropped by the controller, it is a
possibility to slow the processing power significantly enough to cause an overload in control
operations. In addition authentication is not required for this attack and the implementation
of a computing-heavy TLS encryption could amplify the effect.

Resource attacks have been studied and demonstrated extensively in SDN security re-
search. [60], [61], [63], [86], [90] Controllers which have been thoroughly examined are POX,
Floodlight, ONOS, and OpenDaylight, each of them being vulnerable to abuse. Many of the
proof of concept demonstrations have been performed in the virtual network environment
Mininet [91], which is freely available for testing and research purposes. Although not a real
production network, it is able to represent and simulate the architecture and behaviour of
real devices and can be used to highlight general design flaws. Klöti, 2014 [63] tested an at-
tack on a POX controller in Mininet. The malicious host minimally altered the header fields
and successfully filled the flow tables of the target switch. The controller did not attempt to
remove any superfluous entries, although it received error replies and performance degraded
substantially. Inspecting the log file of the default Mininet controller, a new and previously
unconsidered vulnerability was found. Old log entries are not purged and the file grows
indefinitely. The behaviour of a controller without any available storage space is undefined
and could lead to potential issues, most likely device failure. A thorough examination of
writing functionalities to avoid unexpected system failure is therefore necessary in a code
review. A similar problem has been identified by Romaõ et al., 2013 [61] after examining the
popular virtual switch software Open vSwitch. The switch does not implement a hard limit
for flow table entries. As soon as the program exceeded the reserved space in the machine
the switch process was terminated to avoid further waste of memory. The network chunk
connected to the switch is effectively taken out of service. Tri and Kim, 2015 [90] measured
the impact of a resource consumption attack on flow tables and OpenDaylight in detail. The
results displayed an expected heavy drop in performance as exhausted switches forwarded
packets through the controller. The controller also did not address full tables and continued
to its attempt to install new entries.

An alternative to these resource consumption attacks is cutting off the controller-to-switch
communication channel. After losing connection, the switch proceeds to revert to fail secure
mode or fail standalone mode, heavily limited in its switching capability. [42] The network
may still be operational, but switches in fail secure mode are essentially frozen in forwarding
behaviour. Hybrid switches in fail standalone mode have to rely on conventional routing
protocols, which can be considered a violation of the SDN paradigm. Other than the in-
jection of TCP FIN packets, it is possible to interrupt the communication by spoofing the
target switch and exchanging OFTP HELLO messages. The controller perceives a change
in topology and cancels the connection with the original switch. After the real, benign
switch attempts to reconnect and the false connection is cut, the malicious script registers a
new device and thus continuously interrupts the connection. [92] Shalimov et al., 2013 [93]
studied various controller implementations and found that malformed messages can cause
interruptions or program failure. OpenFlow headers in particular are responsible for discon-

46

3.2 STRIDE Assessment

nects or malfunction in architectures such as NOX, POX, Floodlight, and OpenDaylight’s
predecessor Beacon. Malformed packets are not dropped and processed by the controllers,
thus exposing a potential vulnerability. RYU, however, passed the tests. A similar bug has
been published by the ONOS project. The ONOS controller [50] throws an exception and
drops the connection to the switch after inspecting invalid or truncated switch packets. [94]
The frequent occurrence of fault-prone packet processing in various controller designs ex-
poses a common potential vulnerability in the control plane, which could lead to simple and
harmful attacks and is not sufficiently address in either the OpenFlow protocol or the major
controller distributions.

Lastly, a research report of Dover Networks [95] identifies an exploit in the Floodlight
controller, which does not purge old switch records. The attacker registers a new switch
using the conventional OpenFlow handshake. After a successful connection an unsolicited
OF FEATURE REPLY with a modified switch ID is sent. The controller replies with an
error message but stores the false ID. The connection is cancelled and the process repeated
until the switch table and network topology database is sufficiently filled. The lack of
memory renders the controller unable to maintain the switch tables. The device ceases
being operational and drops active connections, resulting in a dysfunctional network.

The aforementioned attacks are deemed to be unavailable if TLS is active. It depends
on the implementation and configuration whether an infected host can send packets with
a malformed OpenFlow header to controllers over an authenticated switch. Assuming the
switch does not drop the bad packet and relays it to the control channel over a PACKET IN
message, the controller could be broken despite the proper use of authentication. Another
possibility is malicious payload to compromise the controller. The OpenFlow protocol imple-
ments a switch buffer which truncates packet content when transmitting an unknown packet
to the control plane. However, the buffering of packets in the data plane is an optional
feature in the OpenFlow protocol and not supported by all switch vendors. Deep-packet-
inspection (e.g. for QoS or security purposes) could expose the controller to malware or risk
software failure.

While switches and the channels are a viable access method, the hourglass design of
SDN and the controller bottleneck grant the most potential for DoS attacks. The erratic
behaviour of controllers demonstrate that the software is a new liability in the network.
An attacker can utilise device failure in response to innocuous actions or packets without
having to resort to more sophisticated methods. If the source code of controllers is not
properly reviewed, the central intelligence is in constant danger of accidental or intentional
failure. Assuming the control channel is not separated and out-of-band, an attacker can
use several conventional methods to overload the controller. The resource database of the
controller server can be exhausted with TYP SYN floods, preventing legitimate management
or application access. Depending on the underlying hardware, a simple flooding attack on the
control channel causes congestion on the network interface card and port buffers, effectively
disrupting any type of traffic. From a northbound perspective, applications which reside on
the controller server and thus in the same trust boundary pose additional danger. Shin et
al., 2014 [79] demonstrated that crashing applications also crash the controller. To signify
a general controller design problem, they tested their theory on three different controllers.
Floodlight, NOX, and Beacon all terminated due to application errors. Furthermore, if not
restricted, malicious or defective applications might consume valuable system resources of the
controller, as they operate in the same process or memory space as the control software. [79]

Spoofing (see Section 3.2.2) and Tampering (see Section 3.2.3) provide the unique ability

47

3 Security Threats

to cut out large slices of the network, redirect traffic or shut down any functionality. Switches
can immediately be reconfigured to drop user or administrator traffic. It is even probable
to create a flexible botnet in a software-defined network. Abusing the controller and flow
tables, traffic can instantly be redirected to target an external entity or network.

Even without application or management access the virtualised view of the deceived con-
troller might be tampered. Discovery protocols and host tracking provide a false view of
the network and mislead the controller into redirecting traffic into null routes. An example
has been demonstrated by Hong et al., 2015 [78], who utilised the Link Fabrication Attack
to trick the spanning tree protocol of controllers into blocking incorrect ports. Users which
were connected to these ports were subsequently denied entry to the network.

Overall, TLS does not suffice in preventing DoS attacks. To limit, control, and direct
traffic, OpenFlow implements forwarding and meter tables. These mechanisms are essen-
tial addressing traffic based Denial of Service. An effective prevention requires a functional
control plane and channel. While OpenFlow implements auxiliary connections to support
the channel, they are potentially unreliable as they depend on the main link. If the main
connection is interrupted (e.g. via a TCP FIN packet), all auxiliary connections are dropped.
Distributed controllers are a necessary measure to harden a network, but introduce complex-
ity and increase the risk of misconfiguration and asynchronism. OpenFlow switches support
multiple controllers and fallback mechanisms to ensure reliability. However, automated DoS
response by multiple controllers is not scope of the OpenFlow protocol or addressed in dis-
tributed implementations. The responsibility to detect and address anomalous behaviour is
delegated to the applications and is not part of the controller or data plane.

Comparison to Traditional Architecture

SDN magnifies the risk of Denial of Service in the network to a great extent. Network
elements drop independence for the sake of agility and ease of configuration, but if the
central intelligence fails, the network breaks down. The programmability and software-
centric approach introduces new attack vectors and error potential, leading to failures or
outages. Manipulation of the network map results in intentional configuration errors and
traffic black holes. Furthermore, the multitude of possibilities to damage the system, which
is also demonstrated by the variety of paths in Figure 3.10, broadens the attack surface.
Nevertheless, SDN also provides several opportunities to dynamically mitigate DoS attacks.
Applications can isolate zombie hosts, if they are identified in due time. Traffic can quickly
be rerouted to avoid congestions and switch meter bands limit incoming data rate, resulting
in dynamic and agile protection of sensitive network areas. Constant network monitoring
facilitates fast identification of anomalous behaviour. These possibilities, however, are based
on the assumption that the controller is operational or utilises the necessary protective
tools. OpenFlow does not include these capabilities by default. Intelligent applications and
distributed controllers have to be deployed in SDN in order to guarantee reliable attack
defence.

48

3.2 STRIDE Assessment

Denial of Service

Incapacitate controller

In-depth

knowledge

required

Incapacitate

switch

Overflow port

buffers

Redirect traffic

into a black hole

Abuse flow

tables

Terminate controller-

to-switch

communication

Overflow

table space

Identify packet

headers which

generate flow rules

Information

Disclosure

Flood packets

Modify flow

tables
Tampering

Identify

oversubscribed

ports

Flood switch

with SYN

requests

Identify flow

table rules for

port

Overload control

channel with

PACKET_IN

messages

Cause memory

failure on virtual

switch

Spoof original

switch

Force controller

to terminate

connection

Send malformed

packet

Potential

new risk but

out of the

scope of

SDN

Install

malware

on server

Exploit

server

vulnerability

Send bad

packet

Utilise bug in

integrated

application

Cause

software

malfunction

Deceive routing

intelligence into

installing null routes

Tampering
Falsify network

topology
Flood SYN

requests

Obtain control

 of suitable hosts in the

network

Consume

available

memory

Inject TCP FIN

packet

Figure 3.10: Attack Tree showing several methods to achieve Denial of Service in SDN.

49

3 Security Threats

3.2.7 Elevation of Privilege

The least privilege imperative ensures that users, processes, and interactors of a system do
not perform any more operations than they are permitted to do. If a process of a system
gains higher authorisation, i.e. elevates his privilege, the whole system is compromised. The
threat affects the OpenFlow network in two distinct ways (see Figure 3.11). The basic path is
the intrusion into discrete trust zones. If an attacker manages to bypass the basic controller
and switch authentication mechanisms, he has obtained a higher level of authorisation in
the network. The methods to gain trust from the individual OpenFlow devices are covered
in Section 3.2.2 and 3.2.3 respectively.

New threat considerations emerge with the adoption of service concepts such as Network
as a Service (NaaS), which postulate virtualisation of network architecture and sharing of
physical resources. [96] If SDN grows and eventually achieves carrier grade deployability,
controller and network resources are sold by service provides to external customers. Ad-
ditionally, companies may provide services of their network to untrusted remote affiliates
or subsidiaries over a extranet. Each network user requires a different set of visibility and
traffic quality to control their service over a disjunct or shared section. One argument for
SDN is the simplification of network division and allocation over control and management
platforms. However, the sharing of resources between various users introduces new threats
and problems. A common suggestion of network separation in SDN is the FlowVisor [55]
application, which acts as a proxy between control and data plane and assigns controllers
to strictly separate network sectors. Every controller has only knowledge of its designated
network and is not able to insert flows into external switches. In theory, multiple controllers
are connected to FlowVisor, each managing a different virtual section of potentially overlap-
ping devices. FlowVisor rewrites asynchronous and controller-to-switch messages according
to the defined network topology and forwards the commands or reports to the relevant de-
vices. Although FlowVisor is a single implementation of network separation and is generally
used for research purposes, it represents a general design principle and its vulnerabilities.
Assuming one attacker has taken over one of the controllers, it might be possible to deceive
FlowVisor in the same fashion as switches are spoofed in OpenFlow. A spoofed controller
can assume control over the network of the original device and insert any flow entry into
the switches. FlowVisor is theoretically hidden from controller view in the network, but
the proxy might introduce a measurable delay and FlowVisor activity could be identified
by measuring differing response times. [63] An other notional vulnerability in FlowVisor is
the proper verification of actions. It is possible to insert rules into switches, which rewrite
the VLAN ID and other fields of the packet and manipulate flows to inject traffic into other
isolated networks. [97] Furthermore, Yu, Quian, and Quian, 2014 [98] have identified prob-
lematic behaviour regarding shared flow table spaces in a switch. It is possible to override
flow tables entries of other controllers by inserting more specific, higher priority rules into
the flow table, thus taking control over the shared switch. These vulnerabilities have to be
addressed before it is even possible to deploy SDN in multi-user networks. A second issue
of supplying the controller as a service is the application and agent access control in the
northbound interface of shared controllers. [56] Customers and subordinate network opera-
tors deploy personal applications on provisioned controllers to satisfy their network needs.
However, controller implementations do not seem to differentiate application priority and
authority. [56], [77], [83] Applications are neither restricted in their configuration scope, nor
are they limited in access based on authority.

50

3.3 Threat Summary

A client application can override administrative decisions and entries, assuming the controller
has access to the respective network slice.

Comparison to Traditional Architecture

The maturity of SDN poses a problem in identifying potential risks in shared service net-
works. Dominant enterprise applications or deployments have not yet emerged to evaluate
concrete design decisions. While Google did install a large-scale SDN datacenter [19], they
avoided the problem of conflicting applications using single application blocks and internal
conflict resolution. [56] Additionally, no actual mechanisms to share controller resources be-
tween different network users or entities are available yet. FlowVisor is a popular solution to
divide the network into various security or control domains, but already exposes a multitude
of design flaws. Overall, authorisation and proper permission distribution is a crucial corner-
stone in the deployment of large scale software-defined networks, which should be considered
in the development.

3.3 Threat Summary

SDN exposes several security flaws, which might hinder adoption or cause reservations in
network operators. The fact that a native TLS implementation is not a priority and op-
tional is a sizeable issue. Allowing controller developers as well as switch vendors to neglect
authentication measures is a dangerous decision in a central and dynamic design such as
SDN. The thesis exposed and evaluated a variety of attacks, which are possible if any trust-
boundary is not appropriately authenticated. An attacker can take over the network with
ease by simply gaining access to a host of the network. Even if TLS is implemented and all
switches and controllers are mutually authenticated, several issues are apparent. Data in-
tegrity gains significance, as a single device maintains the network view and state as opposed
to the distributed knowledge in the traditional network. Malformed and false information
impacts the network more than previously considered. Similarly, new Information Disclosure
and network mapping possibilities are enabled by probing switches or simply querying in-
formation from controllers. Traceability and unique identification of network elements such
as controllers and applications are optional and impede the swift identification of malicious
activity. There are no measures established to implement distinct trust levels and access
control in switches or controllers. Most notably and significantly grown, however, is the
risk of DoS attacks. The resilience of the network depends on a single device, which has
to be appropriately secured. The controller is dependent on information from applications
and switches while switches are entirely dependent on the controller. These dependencies
introduce a myriad of new attack vectors. Distributed controllers and multiple connections
can alleviate the risk but are optional and insufficiently specified. A dominated distributed
controller design has not emerged yet or is properly defined in standards or by SDOs.

In summary, the OpenFlow protocol and basic general design of SDN can not be considered
secure by default, particularly due to the lack of mandatory authentication and the the
fragility of the control plane. If network administrators deployed a generic software-defined
network as established by current standard literature, they would expose their network to a
multitude of new threats and dangers. A risk which is not acceptable in modern, large-scale
company networks. It is therefore necessary to develop a standardised secure design for SDN
operators and to mandate basic security implementations and applications.

51

3 Security Threats

Elevation of

Privilege

Obtain full control over

shared controller or

switch
Pose as authenticated

controller or switch

Out of the scope of Openflow

or mitigated using IPSec/TLS

authentication

Spoofing Tampering

Obtain access

to client

connection

Identify

virtualisation layer

(e.g. Flowvisor)

Exploit vulnerability

Spoof authorised

controller or

management

Measure

atypical

response times

Override shared

flow tables

Install rules which

dynamically rewrite

VLAN ID and other

fields

Override application

commands and policy

Install malicious

application

Pose as malicious

application

Figure 3.11: Attack Tree showing several methods to achieve Elevation of Privilege in SDN.

52

4 Threat Mitigation and Security
Opportunities

The breadth of security problems in SDN raises concerns and poses the question whether
any countermeasures are available at present. As evidenced in the preceding chapter, it is
mandatory to extend the generic OpenFlow network to guarantee sufficient reliability. In
the wake of the rising popularity of SDN and a recent shift of focus to security, researchers
have started to propose a multitude of single solutions to secure and even enhance sections of
the software-defined network. Nevertheless, a ubiquitous and dynamic security architecture
design for SDN is an eventual necessity to satisfy industry needs and gain acceptance. Two
noteworthy abstract architecture proposals and requirement definitions have been published
so far. Kreutz et al., 2013 [8] developed a threat vector concept and argue for a ”secure
and dependable” general SDN design to cover the ascertained threat vectors. As of April
2015, during the writing of this thesis, an ONF committee has audited the OpenFlow Switch
Specification Ver. 1.3.4. and published their own secure design and requirements, which are
likely to be incorporated into the future standard. [99] In context of the set of problems iden-
tified in Chapter 3, the thesis examines the two approaches and complements the concepts
with individual and suitable solutions. The feasibility and robustness are inspected and the
remaining open STRIDE threats are highlighted. Additionally, a selection of noteworthy
concepts, which do not match any of the previous aspects, showcases security opportunities.
For any of the principles new vulnerabilities or insufficient requirements are demonstrated.
It should be noted that potential implications on overall network performance and latency
are not taken into consideration, as the scope of the thesis does not exceed the security and
reliability aspect. The research and design solutions investigated in this chapter build the
foundation of the secure SDN blueprint of Chapter 5.

4.1 A Secure and Dependable Data Plane

In response to criticism and confusion concerning the OpenFlow protocol, the ONF has
chartered the ONF Security Project. The mission statement is to evaluate the current
protocol, to define security requirements, and to amend the OpenFlow standard with the
new definitions. In April 2015, the committee has published a first risk assessment of the
OpenFlow Switch Specification Ver. 1.3.4. The researchers identify concrete weaknesses
and failures in the protocol and attempt to solve the issues with specific solutions and
requirements. The ONF intended the publicised security analysis to be complementary to
a conventional threat analysis. Indeed, the identified STRIDE threats of Chapter 3 and
the concrete discussion of the ONF recommendation share criticism and identify common
security faults. Thus, the specified requirements are inspected and the solutions are mapped
against the constructed STRIDE attack tree paths in order to assess the extent of the
solution. Table 4.1 summarises the proposed requirements for the OpenFlow protocol v1.3.4.
Each of the eight security principles is discussed and compared to suitable STRIDE threats.

53

4 Threat Mitigation and Security Opportunities

Clearly Define
Security Dependencies
and Trust Boundaries

REQ 4.1.1 Mutual authentication between SDN components must be
supported.

REQ 4.1.1 The protocol must provide access control solution to limit
the available set of operations.

REQ 4.1.2 During connection negotiation the components should agree
on a minimum of security associations.

REQ 4.1.3 The security of the protocol should provide and define in-
tegrity protection of exchanged packets.

Assure Robust
Identity

REQ 4.2.1 Any SDN entitiy must have a verifiable unique ID.

REQ 4.2.2 Generation, distribution, and revocation of IDs should be
considered in the OpenFlow protocol.

Build Security Based
on Open Standards

REQ 4.3.1 Existing security solutions must be applied first.

REQ 4.3.2 The protocol should explicitly advice against deprecated al-
gorithms and standards.

REQ 4.3.3 Handling of malformed packets by SDN devices has to be
specified.

Protect the Security
Information Triad

REQ 4.4.1 Security solutions should span over multiple OSI layers.

REQ 4.4.2 The protocol should provide mechanisms to limit potential
DoS threats.

REQ 4.4.3 The OpenFlow protocol must be freely extensible in order to
be able to address future attack types.

REQ 4.4.4 All protocol messages should be equipped with integrity
check data.

REQ 4.4.5 Any possibilities for amplification attacks in the protocol
should be considered and patched.

REQ 4.4.6 In general, any new security design should be inspected for
the potential introduction of new issues.

Protect Operational
Reference Data

REQ 4.5.1 All policies, keys or certificates should be stored securely to
preserve the integrity and confidentiality of the data.

Make Systems Secure
by Default

REQ 4.6.1 Default security behaviour should be specified for all major
configuration and deployment scenarios.

REQ 4.6.2 Mandatory cryptographic algorithms must be specified.

Provide Accountability
and Traceability

REQ 4.7.1 All critical events should be logged and reported to affected
entities.

REQ 4.7.2 All logging information must be protected from Tampering.

REQ 4.7.3 OpenFlow counters and device status are to be continuously
monitored in order to detect suspicious activity.

Properties of
Manageable Security

Controls

REQ 4.8.1 The security mechanisms should support multiple security
algorithms in order to satisfy personal preferences.

REQ 4.8.2 All protocol mechanisms should be extensible to adapt to
new solutions or challenges.

REQ 4.8.3 Key and credential distribution in SDN devices should be
automated to simplify security management.

Table 4.1: The OpenFlow requirements developed by the ONF Security Project. [99]

54

4.1 A Secure and Dependable Data Plane

4.1.1 Clearly Define Security Dependencies and Trust Boundaries

The first security principle demands a precise clarification of trust-boundaries between the
single elements and a corresponding adaptation of security mechanisms. All elements running
the protocol should support mutual authentication and have to be able to agree on minimal
security associations and mechanisms. Integrity protection algorithms (e.g. SHA-3) should
be attached to any protocol exchange message to verify its legitimacy. Proper and mandatory
authentication and integrity measures solve a large section of Tampering and Spoofing. The
ability of attackers to inject messages into the network, tamper switch, or controller data
and reconfigure the devices is limited to a great extent. The ONF assumes that the use
of mutual authentication impedes fingerprinting and identification of controller servers as
demonstrated in [73]. However, a timing attack on switches is still a possibility, as it is
unrelated to the authentication of switches and controllers.

4.1.2 Assure Robust Identity

The second principle corrects the problem of Repudiation and proper traceability. According
to the security research team, any SDN element must possess an ID which uniquely identifies
the current device owner or performer of operations, and thus greatly simplifies the tracking
of malicious devices. However, it does not seem that the researchers demand unique IDs
for controllers or applications and do not address traceability in the case that a device is
malicious but operated by a allegedly legitimate owner. Repudiation is therefore not fully
mitigated. Another proposal to assure trustworthiness protects the datapath ID of auxiliary
connection from being imitated, a problem which has been discussed in Chapter 3. In order
to prevent the injection of harmful UDP packets, the ID of the auxiliary connection should
be padded to 96 bits and randomised.

4.1.3 Build Security based on Open Standards

If the third principle is applied, insecure or immature security measures are not used, en-
suring a better base security and utilisation of the most robust and tested algorithms in
the network. The problem of deprecated authenticity mechanisms or fall-back vulnerabili-
ties is consequently addressed at best effort. The team also requires a clearly defined and
strictly enforced procedure to handle corrupted packets for all entities using the OpenFlow
protocol, including the control plane. As demonstrated in Section 3.2.6 malformed packets
denote a substantial threat for controllers or switches in SDN. The implementation of a clear
development guide in the OpenFlow protocol could mitigate this Denial of Service attack
vector.

4.1.4 Protect the Information Security Triad

The fourth principle draws attention to the fundamental ”information security triad” Confi-
dentiality, Integrity, and Availability and suggests a constant review process and identifica-
tion of any design choices in the standard which might foster Denial of Service or enable new
STRIDE threats. Additionally, the protocol has to be able to incorporate the latest security
solutions or mechanisms in order to be future-proof and flexible. Concrete suggestions in-
clude the automatic notification of other controllers as soon as a controller has requested a
master role change or the use of unique keys or certificates for any active connection. While

55

4 Threat Mitigation and Security Opportunities

these requirements do not explicitly mitigate a STRIDE threat, they propose a reviewing
process for the entire specification which could reduce the risk of future DoS, Spoofing or
Tampering.

4.1.5 Protection Operational Reference Data

The fifth aspect concerns the issue of exposure of important data in SDN devices and the
subsequent Elevation of Privilege. All policies, keys, certificates, or similar security relevant
information should be protected with integrity checking and optional encryption mechanisms
to prevent or, at the very least, slow the effective Information Disclosure (a measure similar
to the encryption and protection of password data). If relevant OpenFlow assets are checked
for integrity or encrypted, the second layer of security might prevent an easy extraction of
network information and privilege escalation on vulnerable servers.

4.1.6 Make Systems Secure by Default

Designing technology to be secure by default is a well known Saltzer and Schroeder design
principle [64] and applicable to software-defined networks. The ONF task force demands
secure default deployments, regardless of configuration or network design. The requirement
is held vague, but examples such as cryptographic algorithms, preconfigured access control
lists, and support for mandatory security mechanisms as standard features are suggested.
The deficiency of information regarding the use of TLS [42] and the handling of connection
interruption are cited as a point of criticism for the OF-Switch specification and require
clarification. It can be assumed that a TLS-by-default configuration is implied in a secure
by default network. Similar to the need to clearly define trust boundaries, a secure by default
protocol effectively solves a significant portion of the first two STRIDE threats, Spoofing
and Tampering.

4.1.7 Protect Accountability and Traceability

The penultimate aspect is the provision of accountability and traceability of the individual
interactors and processes of the system, a trait which is closely linked to Repudiation and
forensic analysis. Any SDN device must maintain logs and, in case of a neighbouring network
event, immediately inform all connected devices or the SIEM. Cryptographic algorithms
ensure confidentiality and integrity and protect the logs files from harmful influence. If an
attacker attempts to spoof the ID of a main or auxiliary connection, the system should
be notified. Similarly, all controllers connected to a switch must be aware of role changes
and external flow table modifications, unless they explicitly unsubscribed from receiving
notifications. This extended logging and monitoring functionality averts the ability to deny
or hide device actions and provides forensic tools in order to prepare for future attacks.

4.1.8 Properties of Manageable Security Controls

Lastly, a manageable security control is recommended which focusses on automatic key dis-
tribution, free choice of security mechanisms, and customisability of security systems. The
ONF committee criticises the lack of proper controller policy conflict resolution and insuffi-
cient description of key distribution and management. Since pre-shared key mechanisms are
not mentioned in the protocol, the research teams assumes that only certificates are available

56

4.2 The Secure ONF Network

as authentication mechanism and criticises this lack of flexibility. The aspect itself does not
target a particular STRIDE threat but the amendment of the protocol may ease security
configuration and deployment in large networks.

4.2 The Secure ONF Network

The recommendations of the ONF committee sketch the first approach to a secure pro-
grammable network. All switches and controllers are mutually authenticated and secured
using the latest TLS standard. Certificates and keys are distributed securely and automati-
cally in the network and every device maintains several keys for each connection. It is deemed
impossible to inject falsified, malformed or spoofed messages into the network as the protocol
messages are checked for integrity and authenticity. If multiple controllers are used, every
controller is authenticated and a potential rule conflict of equal-role devices is avoided. All
events are instantly logged and reported and are secured over integrity mechanisms, which
prevent direct topology or data tampering. The approach tackles a large amount of problems
in current SDN and prevents ambiguous definitions. However, there are still several secu-
rity issues present, even when using a secure OpenFlow protocol. The ONF team does not
propose out-of-band control channels and the overall secure by default design is held vague.
It is desirable to separate management and the automated control messages of the network
from conventional data traffic. If a network link is incapacitated, either inadvertently or
intentionally, control messages to automatically remedy the problem might not pass through
and the incident management capability is limited. Secondly, while several issues of multiple
controllers are addressed, the lack of clearly specified coordination and load-balancing func-
tionality is not. It is not precisely defined how a switch distributes control or PACKET IN
messages among the connected equal controllers. It can be assumed that, if conventional
controllers (e.g. NOX or the OpenFlow reference controller) are used, the switch will send
the majority of asynchronous messages to a single device or to all connected devices equally.
In both cases a resource consumption attack is feasible. Assuming the main control channel
is overloaded, the switch does not change to a less occupied controller as the exhausted
connection is still active. Furthermore, the constant replication of OpenFlow coordination
messages might burden the switch CPU and generate significant traffic overhead in the over-
all network. A stricter definition of load-balancing and distribution functionality, as it is the
case with auxiliary connections, might be required. Thirdly, the exhaustion of switch flow
tables is still possible despite authentication and integrity checking algorithms. Modified
headers sent by a malicious host are presumable seen as legitimate and passed on to the
controller. The ONF security evaluation of the 1.3.4 version of the protocol does not address
flow table exhaustion. Since the release of OF-Switch 1.4 (outside the scope of the ONF
security document) the protocol specifies an automatic eviction mechanism based on flow
table priority, a measure which could successfully secure important flows. Still, the feature
is optional and not a required mechanisms in OF-switches. Due to the flow table exhaus-
tion attacks demonstrated in Section 3.2.6 and in order to be secure-by-design, the eviction
mechanism must be a required feature. Additionally, Information Disclosure based on re-
sponse times is still predictable and not prevented. It is unreasonable to demand proactive
flow installation to prevent timing attacks and randomisation could introduce unacceptable
delays in the network. [63] The OpenFlow protocol itself can not prevent the reveal of flow
table entries in a switch, a design flaw which has to be solved by external applications.

57

4 Threat Mitigation and Security Opportunities

Threat Unique to SDN STRIDE Threat

Forged or faked traffic flows. No ST

Attacks on vulnerabilities on switches. No SID

Attacks on control plane communications. Yes STID

Attacks on vulnerabilities in controllers. Yes TID

Lack of mechanisms to ensure trust between the
controller and management applications.

Yes SE

Attacks on and vulnerabilities in administrative
stations.

No SE

Lack of trusted resources for forensics and re-
mediation.

No R

Table 4.2: The seven threat vectors and their corresponding STRIDE threats. [8]

Lastly, the ONF team does not extend their security demands beyond the OpenFlow
protocol. Inter-controller and application interaction is not covered. There are no measures
to protect the control plane, to identify and isolate attackers, to automatically adapt and
restore network state, or to mitigate controller failure. The identified STRIDE attacks
related to higher planes still apply, as the ONF is only concerned with the communication
protocol and the data plane. A network based on a secure OpenFlow protocol can not be
considered secure-by-design or default. Consequently, the thesis leverages the secure design
proposal by Kreutz et al., 2013 [8], which defines custom security requirements for the entire
SDN paradigm, and attempts to introduce full network security based on concepts and
practical design approaches.

4.3 A Secure and Dependable Control Plane

In order to draw attention to security deficiencies in SDN, Kreutz et al., 2013 [8] define
seven default threats, which they assume to be prevalent in a software-defined network. The
research team hypothesises that the new standard changes the nature of network security re-
quirements. They designate centralisation and programmability as ”attractive honeypots for
malicious users and a source of headaches for less prepared network operators” [8]. Overall,
seven potential attack vectors are found. Three of which are entirely new in SDN, whereas
the impact of the remaining four weaknesses is amplified. Each threat targets a different
architectural component and broadens the overall attack surface of the network. As op-
posed to STRIDE, the vectors do not indicate goals of an attacker but highlight potential
weak spots. Nevertheless, it is possible to associate the threat vectors with the respective
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service or Elevation
of Privilege aspect. Table 4.2 summarises the defined vectors and maps appropriate STRIDE
elements.

To mitigate these deficiencies the researchers investigate nine potential solutions and pro-
pose a personal vision of a secure and dependable software-defined network (see Table 4.3).
Although the concept is designed to be implemented without the need of additional security,
middleboxes or dedicates servers are considered beneficial. It is likely that middleboxes have
to cooperate with the controller to reduce overall load on the device and enhance the security
functionality in the network. The team did not introduce specific practical solutions for any

58

4.3 A Secure and Dependable Control Plane

Solution Description STRIDE

Replication Provide control and application plane redundancy. D

Diversity Implement diverse controller/application solutions. TD

Self-Healing Automatically isolate or replace faulty devices. TD

Dynamic Switch
Association

Implement flexible switches and control message ver-
ification.

SD

Trust between
Controllers &

Devices

Implement switch authentication and fault detec-
tion.

SRI

Trust between
Controllers & Apps

Implement application authentication and fault de-
tection.

SRI

Security Domains Isolate control software from the OS. E

Secure Components Install secure network components. T

Fast and Reliable
Update & Patching

Introduce dynamic and automatic data and control
plane security updates.

TID

Table 4.3: The proposed solutions and their respective STRIDE aspects. [8]

of the principles and only sketches a design. Since the proposal of the concept in 2013, a
wide range of potential solutions has been published or used the publication as basis for an
application or controller framework. This thesis inspects the approach of the research efforts
and attempts to incorporate practical, existent implementations to fulfil the postulations.
The OpenFlow Switch Specification Ver. 1.3.5 [100] has already been updated to incorporate
selected requirements of the ONF security assessment Principles and Practices for Securing
Software-Defined Networks [99]. In order to adapt to the fast-paced changes of the specifica-
tion, the evaluation is fully taken into consideration and forms the new OpenFlow protocol
basis when assessing the necessity of further security solutions or workarounds. To evaluate
the current security of SDN the feasibility and the availability of the individual mechanisms
are summarised.

4.3.1 Replication

Any large system dependent on a single entity can not be considered reliable. As a conse-
quence, the first proposed requirement is the replication of any essential network asset and
the introduction of fall-back mechanisms.

The controller needs to be duplicated to assure fast failure recovery and resilience in SDN.
Although switches and physical connections have to be secured as well, available measures
such as link aggregation or detour paths are conventional and not a new challenge in SDN.
The control channel itself is secured using supplementary connections. A concern is the fact
that the main link is another single point of failure. If an attacker successfully injects a
TCP FIN packet to interrupt the main communication, all previously established auxiliary
connections are terminated. The switch is not able to automatically select a new main link.
The problem of connection interruption is addressed in the ONF security publication, but a
remedy for the failure of a main link is not suggested.

The focus of availability and resilience is on the distribution of controllers, a central prob-
lem in SDN. Not only due to security but also due to scalability and performance concerns.

59

4 Threat Mitigation and Security Opportunities

Physically Centralised Physically Distributed

Logically
Centralised

Standard single controllers
(e.g. NOX, Floodlight)

Clusters with shared database (e.g.
Onix, OpenDaylight),
orchestration layer (Hyperflow)

Logically
Distributed

Separation layer (FlowVisor),
Synchronised cluster for each
domain (e.g. Onix, OpenDaylight)

Network partitioning
(e.g. DISCO, Kandoo)

Table 4.4: Controller types.

Consequently, a vast amount of research about controller and application designs has been
published to this day. As discussed in Section 2.4 and Section 4.2, the ONF definition of
multiple controllers is incomplete. Switches are able to maintain several connections with
controllers and provide a rudimentary Replication functionality. However, topology infor-
mation has to be maintained for every single device and load-balancing mechanisms are not
suggested. Large-scale networks might impose a heavy burden on every single connected
controller. Controllers are therefore extended to function as natively distributed devices,
which are capable of managing various sections of the network over shared databases. Com-
plex controllers either operate as cluster incorporating a horizontal communication interface
or are orchestrated by a proxy layer or SDN application. Generally, four types of distributed
control systems are present, depending on the logical and physical distribution of the device
(see Table 4.4). For the purpose of Replication, the physically distributed, but logically
centralised approach with fallback-mechanisms is the most relevant philosophy. It is neces-
sary that the controller architecture implements the master/slave concept of the OpenFlow
protocol properly and provides minimal fault tolerance.

The first noteworthy and historically relevant example of inherent control distribution
is the Onix controller. [53] Onix can be deployed on one or several server clusters, with
each server running single or multiple instances of the controller. If one Onix device fails,
neighbouring controllers automatically assume control over the unmanaged sections of the
network. Distribution of the NIB and verification of consistency is delegated to the appli-
cations. Onix is a closed source controller and does not provide insight into its internal
mechanics. It is unclear how the OpenFlow master/slave concept or validation of peer con-
trollers is implemented. Further details about the highly influential Onix controller have not
been published and are likely to remain undisclosed, as Google deploys the system in its B4
data centres. [19] Nonetheless, the controller serves as a suitable demonstration of a reliable
distributed deployment of OpenFlow controllers. Major projects, which are open-source and
support distribution techniques, are OpenDayLight [49] and ONOS [50]. The network op-
eration systems are well documented and consist of a similar architecture. Both controllers
run on a cluster of servers for high availability, use a distributed data store with optimal
TLS authentication mechanisms, and employ leader election, i.e. the master/slave concept
of the OpenFlow protocol. [50] Still, as demonstrated in Section 3.2.6, the controllers suffer
from various vulnerabilities which might lead to device failure. Using software and parsing
exploits it is possible to incapacitate the controllers. Consequently, it might be feasible for
an attacker to take down every single backup instance in the network one after another by
abusing a specialised exploit. The ONF addresses the vulnerability of the OpenFlow pro-
tocol regarding the handling of malformed packets in their security publication. If a strict

60

4.3 A Secure and Dependable Control Plane

procedure is defined, the risk of malformed packets could be solved, but software faults are
out of the scope of the protocol. While DoS flooding and resource consumption attacks are
mitigated in the distributed controller design, resilience to software faults remains an issue.
Additionally, the new peer controllers might introduce new attack possibilities (see Section
3.2.3). All of the three discussed controller software delegate the responsibility to verify
topology consistency and malicious devices to the application plane are thus still vulnerable
to Tampering or Spoofing, if authentication is bypassed.

Several smaller proposals are currently in the development or concept stage and are not
readily deployable, but nevertheless offer insight into valuable reliability concepts.

DISCO [101] is a fully distributed controller deployed on top of Floodlight, which assumes
control over a domain of switches and computes end-to-end paths by exchanging network
information messages. The controller is designed to be adaptable to any underlying network
design and offers the capability to connect various network domains. In case of controller
failure, neighbouring controllers are informed and recompute their domain traffic path ac-
cordingly, similar to the behaviour of legacy routing protocols. DISCO does not provide
replication or fault tolerance mechanisms and the affected domain is effectively taken out of
service. DISCO, while it does reduce load on controllers by partitioning the network into
single domains, is therefore only a partial solution to avert DoS and guarantee robustness.

The Kandoo framework [102] proposes hierarchical layering to reduce the load on the
controller. A single centralised controller regulates several sub-controllers, which only possess
knowledge about their assigned domain. The segmentation of the control responsibility
provides robustness against heavy control channel load and reduces the impact on a network
under attack. Kandoo faces a similar problem as DISCO, as it does not seem to offer
replication and failure recovery mechanisms. While it is theoretically possible to assign the
main controller as slave listener in cooperation with various sub-controllers to provide a
recovery measure, the single point of failure simply shifts to the top device. Tootoonchian et
al., 2014 [103] identified a problem in current distributed controller designs. Onix and similar
architectures do not address high load on single controllers, which is also identified as a
security negligence in the OpenFlow protocol. To approach the problem of load-balancing the
team presents Elasticon, a distributed controller which dynamically shares the network load
among a set of controllers. Using the elastic approach a DoS attack might be significantly
weakened when sharing the workload among several devices. The controller design is heavily
centred around the master/slave concept of the OpenFlow protocol. As additional devices
are connected to the switch, sufficient fault tolerance of the control plane is assured. A
drawback of the design is the horizontal TCP connectivity of the controllers and the resulting
lack of authentication. The controllers maintain a distributed data store over the TCP
connection, which a malicious device is able to manipulate. Secondly, Elasticon is proposed
as autonomous but highly specialised controller. An approach to integrate the design into
existing, popular controller structures is desirable to prevent a fragmentation of controller
architectures. As ONOS is partially inspired by Elasticon, future integration of the load-
balancing feature is a possibility.

Applications which coordinate standard controllers are another method to achieve distri-
bution. Hyperflow [54] is an example of a flexible distribution platform. The application is
installed on every controller and connects to a distributed data store via a publish/subscribe
mechanism. Upon connection the controllers periodically advertise their existence and store
or fetch information in the database. If a controller ceases to advertise itself, the Hyper-
flow application assumes device failure and reconnects the switches to the next available

61

4 Threat Mitigation and Security Opportunities

Solution Description Fault Tolerance -
Project Status

Onix Distributed and functional control
systems, which coordinate actions
over a horizontal interface and
share network information in a
distributed database server.

Strong -
Deployed, but undisclosed.

OpenDaylight Strong -
Actively maintained controller.

ONOS Strong -
Actively maintained controller.

DISCO One controller pro network domain,
which exchanges messages with peer
controllers over a horizontal inter-
face.

Weak -
Proof of concept.

Kandoo Local controllers coordinated by a
single top controller.

Weak -
Proof of concept.

Elasticon Adaptive distributed controller
framework, which dynamically
removes or adds controllers based
on network load factor.

Strong -
Proof of concept.

Hyperflow Integration of a coordination ap-
plication on top of standard con-
trollers.

Strong -
Proof of concept

Table 4.5: Projects to achieve Replication and fault-tolerance by distributing controllers in
a software-defined network.

controller. The research team implemented the application on a NOX controller with only
minor changes. It can be assumed that the application is flexible enough to be implemented
on other controller builds. Again, the proposal addresses failure recovery but not the au-
thenticity of the connected devices.
Overall, a crucial aspect of SDN Denial of Service, the failing of the control plane, can be
solved by deploying multiple synchronised controllers in the network. Practical and available
controller solutions are the open-source projects ONOS and OpenDaylight. Additionally,
applications such as Hyperflow can coordinate and secure multiple controllers for added reli-
ability. Overloading of the control channel can be solved using the Elasticon load-balancing
approach. Two aspects of DoS remain unsolved thus far. Software exploit attacks on the
entire control plane are still feasible due to homogeneous controllers and an unauthenticated
horizontal communication introduces the risk of topology falsification and blackhole routing.
A secure design must verify inter-controller communication or automatically overrule the
decisions of single rogue devices.
Table 4.5 shows an overview of the relevant proposals, their security properties, and overall
deployability.

62

4.3 A Secure and Dependable Control Plane

Controller B

App A

Controller C

App A

Controller A

App A App B

Common Northbound API

Diversity	 of	 controllers	 requires	 a	 common	 Northbound	 API	

East/Westbound API (data distribution service)

Figure 4.1: Securing the networking with Replication and Diversity as envisioned by Kreutz
et al., 2013 (Figure devised by [8]).

4.3.2 Diversity

A major incentive for the introduction of SDN is to relinquish vendor dependency and the
adoption of open standards. Networks consisting of a wide-ranging set of hardware and
software are less vulnerable to specific development or device faults. [8] Operators could
leverage the vast choice of software and operating systems to implement an optimal net-
work configuration. The focus on open-source solutions in Software-Defined Networking
demonstrates great potential to deploy a wide range of specialised and diverse solutions
to increase robustness and security in the network. However, apart from the ONF south-
bound interface specification effort, the amount of attempts to promote interoperability is
marginal. Controller developers only address distribution of the same device and do not
cooperate to achieve a horizontal interoperability. An example is DISCO [101], which does
emphasise the support of diverse network architectures and supports inter-domain commu-
nication, but distributes the same controller type in the network. Different infrastructures
might require specialised controller designs for performance as well as security features. The
lack of northbound interface standardisation hinders the development of flexible and ubiq-
uitous hypervisor applications for any controller type. Major network equipment vendors
are on the move to develop proprietary and inflexible controller solutions to retain network
dominance. [104], [105] If the development of network applications and controllers diverges
further, SDN might face a challenge of dependability and vendor lock-down reminiscent of
legacy networks.

Few attempts and possibilities to facilitate controller diversity in the network exist. In an
IETF draft researchers propose the Software-Defined Networking interface (SDNi) [106] as a
message and synchronising protocol. The purpose of the protocol is to enable inter-domain

63

4 Threat Mitigation and Security Opportunities

communication between different controllers and to implement a true east-/westbound in-
terface which does not rely on distributed databases. The informational draft has been
published in 2012, but has expired since then. No further developments regarding SDNi are
apparent and it seems that the proposal has been abandoned. The cause is unclear, possible
reasons are high development complexity or lack of demand or motivation.

OpenDaylight and ONOS were selected as examples of viable distributed controllers in
Section 4.3.1, yet they do not support Diversity. OpenDaylight implements SDNi as a hori-
zontal interface since the Helium release [47], but communication is only available between
OpenDaylight controllers thus far. ONOS has plans to implement an ONOS east-west in-
terface, but details are not available yet. [107] It is likely, that coordination falls under
the responsibility of the SDN applications. With the northbound interface not being stan-
dardised, the next viable solution is the insertion of a proxy plane between the southbound
interfaces of the data and control plane.

The previously discussed FlowVisor [55], which separates the network into disjunct slices
for controllers to manage, is a viable and practical approach. Although the presentation of
the software was performed with homogeneous NOX controllers, FlowVisor is theoretically
agnostic of the controller design due to the standardised OpenFlow communication protocol.
It might be feasible to implement diverse controllers as proposed in the threat vector ap-
proach (see Figure 4.1). Using distributed controllers for a single FlowVisor network slice it
is also possible to integrate further DoS robustness and the Replication aspect. FlowVisor,
however, is not able to operate multiple controller types on the same network slice without
introducing rule conflicts.

The hypervisor proposal CoVisor [108] addresses this problem and specifically focusses on
the deployment of different controller platforms and applications in the network in order to
provide administrators with the ability to select the best network applications and functions.
Using detailed access control the modification capabilities of the controllers are limited to
their dedicated purposes. Additionally, administrators can customise the control and topol-
ogy view of the controller to limit the power of malicious or faulty devices. The project has
been published very recently in May 2015. Albeit an feasible concept, a full assessment of
its practicality is not possible yet.

If Diversity is present in the network the impact factor of individual vulnerabilities is
significantly reduced. Diversity specifically addresses the Denial of Service threat by reducing
the overall availability of switch and controller bugs to an attacker. The amount of security
holes and the resulting Tampering risk in the software might increase with different controller
types, but a software failure will not affect all network components. If a switch or controller
is incapacitated due to an attack, an immune device could theoretically take over the load in
the network and prevent Denial of Service. Additionally, Elevation of Privilege is limited as
the concurrent devices are restricted to only perform certain actions, as proposed in CoVisor.
It is achievable to utilise the FlowVisor mechanism to construct an architecture as described
in this chapter. However, the lack of current practical implementations impedes a proper
evaluation of the concept. Overall, negligence of controller interoperability and northbound
interface standardisation poses a potential future problem, which is currently circumvented
with the use of application hypervisors.

It might be a matter of debate, if a diverse system is a necessity when designing for secu-
rity or if a homogeneous approach is not sufficient. In risk assessments such as CVSS [66]
homogeneous systems increase the severity of the environmental risk factor. On the other
hand high diversity might violate the Saltzer & Schroeder [64] principle of keeping the system

64

4.3 A Secure and Dependable Control Plane

simple. Many different controllers and switches in the network increase the complexity and
overall fault probability that SDN attempted to solve. A counterargument is the choice of
”best of breed applications” [108] to achieve maximum security and reliability. In summary,
Diversity is currently neglected in SDN and is not mandatory for security, but provides addi-
tional reliability, which could work in favour of the network. Nevertheless it is unlikely that
this principle can be fulfilled, as controller interoperability requires the same standardisation
process as the southbound interface. At this moment true diversity is not practical.

4.3.3 Self-Healing Mechanisms

Self-Healing Mechanisms are the third and most complex building stone of the secure design.
The research team does not clearly define concrete measures or solutions and resorts to
the statement that ”to explore diversity in the recovery process, strengthening the defence
against attacks targeting specific vulnerabilities in a system” [8] is a necessary action. It
can be assumed that Self-Healing Mechanisms heavily rely on the previously defined security
aspects Replication and Diversity. Backup and watchdog controllers should be able to isolate
and replace compromised devices or divert traffic attacks to robust stations. In the original
design principle the scope of Self-Healing in the network is not clearly defined. Therefore
thesis extends the definition to applications or controllers, which are capable of replacing,
repairing, and verifying network data or can recognise and mitigate DoS attacks. Self-Healing
Mechanisms attempt to treat the Denial of Service and Tampering threats of the STRIDE
assessment. The discussed solutions are automatic reactive approaches and only apply to
already detected failures and inconsistencies in the system. They do not focus on Spoofing
and the identification of suspicious behaviour.

Replacing Failed Components

The first aspect of failure recovery and Self-Healing is the automatic treatment of device
outage in the data plane of the network, e.g. after the discovery of failed switches or links an
attacker has incapacitated. Controllers constantly maintain a complete view of the network
and are able to deploy the recovery mechanisms of traditional routing and reliability protocols
in an improved and efficient manner. However, due to the fact that switches have to await
controller commands before being able to forward on a backup path, OpenFlow faces the
challenge of achieving a carrier-grade 50 ms recovery time. The controller has to be able to
notify all affected switches within the recovery range, placing a heavy load on the device. [109]

One practical method to solve this problem in large networks is the proactive installation
of fail-over protection entries in the switches. The flow is linked to a specialised group
table, which supports the ability to match packet flows based on current associated port
status. Once a direct link goes down, the switch instantly resorts to the less prioritised,
albeit matching, backup path and provides instant recovery without any need for additional
computation. Although the path protection scheme proposed by Sharma et al., 2012 [109] is
a viable method to assure quick recovery, it might burden the already very limited TCAM
address space of switches. Secondly, as the matching is performed based on port status,
OpenFlow switches might not recognise or be notified of any downstream failures and forward
traffic into a dead-end until the control plane has recomputed the topology. Adrichem et al.,
2014 [110] build on the proactive protection and introduce crankback routing. In crankback
routing, the dead-end switches simply return the packet until a switch, which is connected

65

4 Threat Mitigation and Security Opportunities

to a backup path is reached or the controller has updated the detour path. Packet loss is
prevented, but the limited TCAM table size remains an unsolved issue.

The controller communication channel is sufficiently secured, if the Replication property is
fulfilled. In case of controller failure, the affected switch is able to select a backup controller
as new master or is instructed by the remaining equal controllers. Once the main link has
failed, auxiliary connections are vulnerable due to the lack of a backup connection.

A new consideration is the verification and repair of malformed flow tables or topologies
in the network. As deploying switch intelligence would contradict the OpenFlow and general
SDN design, switches do not have any means to check the installed entries for Tampering ex-
cluding the technique of sending of resource database information to responsible controllers.
While the ONF security publication does demand authenticity and integrity verification for
any protocol message, hijacked devices can still inject malicious data into controllers or
switches.

A concept to assure automatic correctness is the implementation of a democratic configu-
ration process of applications and controllers. If multiple devices are present, only majority
decisions are performed, eliminating the possibility of an attacker who is capable of installing
single malicious or nonsensical configurations. To address the issue of Byzantine faults in dis-
tributed control systems (see Section 3.2.3). Li et al., 2014 [76] developed a Byzantine fault
algorithm to override single malicious controller decisions. The controllers form a cluster
and are abstracted into a single big controller. In case of PACKET IN message or a network
event, the new configuration is computed by every controller and the votes are collected.
The majority choice is selected to be deployed on the switch, essentially overriding any sin-
gle attacker decision and preventing Tampering of the switch flow tables. The researchers
presented the algorithm and several successful use-cases but did not publish a practical and
modular solution. The proposal thus far is purely theoretical and still in development.

An other democratic approach on a higher-level is Fleet [111], a fault-tolerant distributed
controller design to identify and correct malicious administrator configurations. As soon as
a network event occurs, one of the internal distributed controllers of Fleet can propose a
reconfiguration based on a previously agreed proposal sequence. The remaining controllers
sign the configuration with a cryptographic sequence to verify their vote. If the majority
agrees, the policy is enacted in the network. If not, the next controller proposes a modifica-
tion, which is voted upon. The Fleet controller design focusses on the possibility of malicious
administrators but can be reduced to the controller itself based on the voting behaviour. A
malfunctioning or compromised controller is overruled by majority vote and at the same
time it is not possible to add more malicious controllers due to previously distributed con-
troller keys. Nevertheless, similar to the algorithm developed by Li et al. [76], Fleet has not
been tested in real network environments or is published as a well documented, practical
solution. A new controller introduces further control plane fragmentation, but the concept
could potentially be integrated intro prevalent distributed controllers (e.g. OpenDaylight,
ONOS) to add extended security and Tampering resilience.

Solving the Denial of Service

The largest field of study in OpenFlow is the mitigation of Denial of Service, since the attack
can be seen as the most severe threat in the network. It is preferable to implement features
capable of autonomous limiting or blocking of packet floods to provide a network ”healing”
mechanism without any administrator interference. While the SDN concept introduces mul-

66

4.3 A Secure and Dependable Control Plane

Problem Solution Description

Sub-50ms Failure
Recovery

Proactive installation of
table entries.

Traffic engineering application of the con-
troller installs failover entries and routes
on the switches, which are instantly acti-
vated as soon as a port goes down.

Malicious
controllers and

Byzantine faults

Redundancy and demo-
cratic policy decisions.

In case of relevant events, multiple au-
thenticated controllers vote on a decision
in order to override single malicious or fail-
ing devices.

Flooding attacks
on the control

channel

AVANT-GUARD,
Lineswitch,
conventional IDS.

Dedicated protective switches cooperating
with the controller to repel and filter TCP
SYN attacks on the control plane.

Flooding in the
general network

Cooperation with moni-
toring and intrusion de-
tection systems.

Monitoring and IDS inform the controller
about suspicious events, which then recon-
figures the network accordingly.

Detection of anomalies
based on PACKET IN
messages.

The controller identifies network anoma-
lies based on the switch packets it has re-
ceived and blocks the responsible flows.

Table 4.6: Approaches to repair failed network components or to avoid service failure in the
network.

tiple DoS risks, most notably the control plane saturation and resource consumption attacks
(see Section 3.2.6), it also provides many opportunities to quickly stifle flooding. The first
and foremost priority of DoS mitigation in SDN is to assure an undisturbed control plane
communication process in order to retain control over the network.

To protect the controller from packet flooding the concrete solution AVANT-GUARD [112]
is proposed, which implements additional security features in the switches and thus the data
plane. Shin et al., 2014 [112] develop the new connection migration module in OpenFlow
switches, which effectively acts as proxy to shield the control plane from TCP SYN floods.
The switch stores SYN cookies, drops unfinished handshakes, and forwards legitimate con-
nection attempts to the controller, acting as protective wall for vulnerable network servers.
Secondly, if certain predefined conditions are measured or fulfilled, the switch utilises a newly
implemented actuating triggers module and actives a flow table which handles the new net-
work event and drops, redirects, or limits traffic. DoS attacks are prevented and handled
without any manual interference. A bonus feature is the hampering of port scans, as the
AVANT-GUARD switch responds to every TCP SYN packet. A malicious scan identifies
all possible ports as opened, effectively clouding any existent active ports for an attacker.
Simultaneously, the scan is reported to the SIEM or controller. Nevertheless, there are sev-
eral flaws in the protective SDN switch approach of AVANT-GUARD. The framework itself
is elaborate and costly to implement, since virtual or actual hardware switches have to be
modified to incorporate the module. Similarly, the OpenFlow standard has to be extended
to support new messages and controllers must be modified accordingly. The proxy layer is
only able to prevent TCP requests, not ICMP or UDP flooding. Furthermore, Ambrosi et
al., 2015 [113] highlight the switch itself as significant weakness and demonstrate new attack

67

4 Threat Mitigation and Security Opportunities

methods. It is possible to disturb any TCP communication that is passing the switch by
establishing legitimate TCP connections and filling the proxy buffer of the device. Any new
clients are then rendered unable to establish a connection over the targeted switch.

It can be argued, that these attacks are easily identifiable by intrusion detection systems
as it denotes unusual behaviour. Nevertheless, the team has been able to implement their
theory and exhausted the AVANT-GUARD switch in short time. As an extension they
propose Lineswitch, a switch modification which distinguishes packets based on IP address
and proxies packets only until the first successful TCP handshake. All subsequent TCP
SYN packets are forwarded to the server but selectively proxied by the AVANT-GUARD
mechanism based on a defined probability value. If an attacker establishes a legitimate con-
nection beforehand and starts a subsequent SYN flood the attempt is eventually discovered
after inspection and the whole IP is automatically temporarily blacklisted by the switch.
Consequently, the attacker has to use real IPs in order to be able to respond to SYN-ACK
packets, but is blocked as soon as a flooding attempt has started. Although an extension to
AVANT-GUARD, Lineswitch faces the same practicality issues and relies on active modifi-
cation of OpenFlow switches and controllers. Both of the aforementioned designs are able
to protect the control plane and particular sensitive servers similar to an IDS or firewall,
but do not provide automated mechanisms to regain control over the entire network during
an attack. Additional solutions, which automatically recognise and prevent malicious traffic
based on local anomaly detection, have been published.

Mihai-Gabriel & Victor-Valeriu, 2014 [114], rely on external intelligence and developed a
SDN intrusion detection system. They utilised sFlow, a high-speed, sampling-based mon-
itoring interface supported by several switch types and vendors. The OpenFlow switches
export sample traffic to a separate virtual machine, which computes a risk threshold. If
the machine identifies a risk, it sends a command to the controller to either block or divert
traffic to the machine for traffic inspection purposes. The team has only developed a proof of
concept and plans to develop a native Floodlight application to replace the virtual separate
machine. Gkounis, Kotronis & Xenofontas, 2014 [115] are investigating a solution to prevent
crossfire attacks, a recent attack technique which accumulates undetectable and legitimate
low-bandwidth flows to flood and overload essential network links.

Lastly, OpenDaylight incorporates the optional DDoS application Defense4All [47] as a
viable and practical solution to protect the network. The application cooperates with the
OpenDaylight controller and separated attack mitigation systems or scrubbing centres. After
installation, the system installs flow entries on specified switches to continuously monitor
traffic and learns normal network behaviour from a central position. Once an attack is
identified, the controller is instructed to redirect flows into the scrubbing or attack mitigation
centres to cleanse the traffic. This model presents a potential path to leverage the central
position of the SDN controller and simultaneously provide thorough protection against DoS
in the network.

All of these designs, however, rely on external dedicated machines to support their tech-
niques. It is desirable to install native detection and mitigation applications in the controllers
in order to reduce capital and operational cost of the network and to prevent traffic flow
amplification. A selected attempt to incorporate native IDS applications and to protect
cloud provider networks in the controller is DaMask, developed by Wang et al., 2014 [116].
The Floodlight application inspects unknown packets, which the controller has received, and
identifies potential anomalies using the open-source IDS software Snort as a basis. If an at-
tack is detected, the system installs FORWARD, DROP or MODIFY table entries on the

68

4.3 A Secure and Dependable Control Plane

affected switches, depending on a pre-defined administrator policy.

While the integration of IDS network applications in the controller does not require addi-
tional stations or monitors, a possible trade-off is the lack of monitoring of default network
flows and the substantial load of the applications on controller latency and performance.
To address the problematic latency impact of traffic monitoring, Giotis et al., 2012 [117]
integrated sFlow into the controller server. The experimental tests showed a significant de-
crease in CPU and performance impact when using sFlow and demonstrate the possibility of
a performant monitoring and automatic intrusion reaction system coupled into the control
plane.

To the author’s knowledge, the inspected proposals do not utilise the OpenFlow meter
bands, which were added in the OpenFlow Switch Specification 1.3 in April 2012. A potential
reason is the lack of adoption of newer OpenFlow protocols by controller developers. The
flow rate measurement and limiting tools can provide significant DoS prevention capabilities
to reduce traffic originating from certain network sections without cutting off the complete
communication.

SDN is able to leverage the potential of Self-Healing Mechanisms in the network. The
centralised view and control facilitates quick reconfiguration and rectification of network
failures, assuming they are detected. Several solutions to prevent distributed Denial of
Service are already proposed and the control plane can be protected using special switches
or applications. Similarly, verification mechanisms to prevent injection of malicious controller
messages can be used. Overall, Self-Healing Mechanisms is a viable design principle and a
promising aspect of software-defined networks.

4.3.4 Dynamic Device Association

The fourth security mechanism centres around the principle of Dynamic Device Association.
According to the research team, switches should be able to freely associate with multiple
controllers in order to be able to tolerate faults and failures and to increase the overall
robustness of the network. This approach, however, is largely covered with the introduction
of Replication and Self-Healing Mechanisms and is thus a redundant proposal. A new aspect
is the suggestion to provide switches with programmable multi-purposes CPUs or specialised
attachable boxes. The purpose is to induce switch intelligence, capable of detecting malicious
controllers and automatic control channel load-balancing. The team deems generic data
plane intelligence helpful in the provision of security and fault-tolerance. [8]

The introduction of low-level configurable switch intelligence is a point of debate, as it
could bring back complexity and security issues into the software-defined network. Reminis-
cent of the active networking project [28], programmable switches could be subject to new
attack vectors, misconfiguration or software faults. Switching devices might need to be con-
figured individually to function properly, leading to a step back in the OpenFlow paradigm.
Additionally, the development of programmable switches or compatible dedicated devices
has to rely on vendor acceptance, a hurdle, which several network designs failed to overcome
in the past [2] (see Section 2.3).

On the other hand, an emerging belief is that ”a ’smart controller, dumb switch’ model is
too näıve” [118]. Switches might need to be customised in order to adapt to the new model
and be capable of providing self-reports of the topology, black holes or critical nodes in the
network. [119] Indeed, a considerable amount of measures and switch designs that address
automated load-balancing and selective routing on the data plane has been published [12].

69

4 Threat Mitigation and Security Opportunities

The previous Section 4.3.3 discussed AVANT-GUARD and Lineswitch, two designs which
require custom switch modification. They focus on security measures inherent to the switch,
but only target DoS prevention and control plane protection. To the authors knowledge, no
extensive projects, in which the data plane can detect malicious controllers or switches in
the network, have been proposed so far.

The question remains, if data plane programmability does not actually introduce more
security and reliability difficulty than it solves. Dumb devices are an easy target, but are
less vulnerable to the configuration and software faults of complex systems. Large sections
of this design proposal are covered by preceding mechanisms and overall effectiveness is
yet unclear. The dependence on vendor support and adoption is high and no solutions are
present yet. Consequently, this principle might be superfluous at this moment or in the
future and is not considered in the final design of this thesis.

4.3.5 Trust Between Devices and Controllers

A fundamental requirement is to establish trust between controllers and switches in the
network. The research team therefore proposes a consistent and reliable relationship be-
tween controllers and switches while the control plane should manage a list of authenticated
devices in the network. It should be noted that the fifth design principle does not explic-
itly demand mutual authentication, a potential negligence in the team’s design. If switches
do not authenticate controllers, attackers are able to connect their own devices to perform
operations.

Section 4.2 extensively covers trust management and authentication of the OpenFlow
devices. If the OpenFlow protocol is updated according to the released security specifications,
and strict mechanisms are predefined and mandatory, reliable authentication is expected to
be present in any network design and does not need to be further addressed. This design
principle therefore focuses on an aspect which would be mitigated if the OpenFlow protocol
is secure-by-design.

However, Kreutz et al., 2013 [8] assume that controller-managed authentication of any
device would stifle the flexibility of the network (an issue which could be solved with the
automated certificate and key management suggestion of the ONF Security Project). Addi-
tionally, the possibility of an OpenFlow device of the network being hijacked and misused is
always present. The researchers suggest intrusion and anomaly detection mechanisms to find
and trace suspicious behaviour in the network. Switches and controllers maintain a trust-
worthiness threshold of any device. Once it has reached a limit, the device is automatically
isolated, disregarding if it is authenticated or not. While it does not seem that a concrete
implementation of this particular concept has emerged yet, a multitude of algorithms, appli-
cations, and controllers to detect and report anomalous behaviour in the network are being
developed. The inherent design of SDN provides a great opportunity to realise network-scale
intrusion detection and a remedy of the identified Spoofing threats. The Topoguard solu-
tion of Hong et al,. 2014 [78] demonstrated that it is possible to prevent the Host Location
Hijacking and Link Fabrication Attack of the Tampering threat 3.2.3, if the controller is
equipped with the basic algorithm to monitor inconsistent port state and the verification
of message integrity and authenticity of LLDP or ARP response messages. Nonetheless,
further available methods are not in the scope of this security mechanism. Several projects
to deploy middlebox functionality in software-defined networks are discussed in Section 4.3.3
and 4.4.

70

4.3 A Secure and Dependable Control Plane

4.3.6 Trust Between Application and Controller Software

In contrast to the southbound interface, applications and their variety of interfaces are
not standardised. At the present time, no group is devoted to define strict requirements
and security mechanisms for the northbound interface. The ONF security committee does
not extend their scope beyond the southbound interface. However, due to the variety and
configuration power in the network, applications are one of the most sensitive weak spots
of software-defined networks. Security mechanisms to verify and track the legitimacy of
applications in the network are a must. For this very reason, the fifth design principle
demands a trust relationship between application and controller software.

Section 4.3.3 addressed the automatic resolution of application policy conflicts an at-
tacker could induce. Nevertheless, limiting the command set of insecure or new applications
by default or denying access based on lack of credentials is a preferable course of action.
Since the controller is treated as the operating system of the network, introduction of role-
based permission models and access control implemented in the controller itself are common
suggestions. Ongoing and detailed projects to enforce security in controllers are Security-
Enhanced-Floodlight (SE-Floodlight) [56] and the ONOS Security Mode [120].

SE-Floodlight (see Figure 4.2) is a controller extension, which provides a multitude of
application and network security mechanisms. The developers specifically focus on appli-
cation access control and rule conflicts. In SE-Floodlight the northbound API is secured
using OpenSSL authentication. Any application integrated directly into the controller has
to be signed by an administrator and packaged with credentials before they can be executed.
All applications are divided into privilege levels, currently consisting of APP (default), SEC
(security applications) and ADMIN. Depending on the role of the application, it is permitted
to perform a particular set of rule modifications or requests. Operations, which are beyond
the assigned privilege are rejected. If a rule-conflict arises due to commands stemming from
different applications, SE-Floodlights selects the higher privilege operation, effectively pro-
viding privileged applications with the ability to override the flow rules of a lower tier. The
registered applications are uniquely identifiable and all activity is logged for auditing and
forensic purposes.

A very similar extension to Floodlight is OperationCheckpoint [83]. As opposed to a static
and ubiquitous role-based functionality, the applications are granted individually selected
configuration permits in order to keep flexibility in access and assure dynamic permission
changes. Members of the research team that has proposed SE-Floodlight are working on
the ONOS Security Mode. In comparison to SE-Floodlight, the functionality of the secu-
rity mode is narrowed and only specifies access control. Nevertheless, applications are also
grouped into admin and non-admin mode based on their authentication and have to request
permission for various tasks beforehand. If the role does not match, the request is denied.
Application IDs and activity logs are a native feature of ONOS and can most likely be
utilised for forensic analysis.

The authentication and role-based approaches significantly reduce the threat of bad ap-
plications in SDN. As long as credentials are not compromised, it is impossible to force false
policies into the network, preventing another aspect of Spoofing. Furthermore, the different
access levels inhibit the risk of an Elevation of Privilege. Unique application identification
and the possibility to trace malfunctioning controller applications address concerns in regard
to Repudiation.

71

4 Threat Mitigation and Security Opportunities

Permission))
Mediator)

Aggregate'Flow'Table'

Administrator))flow)rules)

Security)Service)flow)rules)

Applica8on)flow)rules)

Security Enforcement Kernel

Role:based)Source)Auth)

State)Table)Manager)

Switch)Callback)Tracking)

RCA)–)Conflict)Analyzer)

Floodlight))
controller)

with)
security)

extensions)

Northbound*
Proxy*Server*

Security*
Audit*

Subsystem*

App*Creden8al*
Management*

Java*Class*
OF@App*

App*Creden8al*
Management*

To*Applica8on*Layer*

To*Data*Plane*

Security*
Audit**
Trail*

Role/based'Segrega3on'

Network*applica8on*
as*controller@resident*

Java*class*

Fig. 2. High-level overview of the SE-Floodlight architecture

notification is an exception, in that it is received in response
to flow rule insertions (vetted through RCA) that trigger the
switch to notify that application when packets are received that
match the flow rule criteria or when no matching flow rule is
found.

The third class of operations involve those that require
explicit permissions (Rows 4, 7-11, 13, 15, 17, and 18). These
operations either perform direct alterations to the network flow
policies implemented by the switch, or enable the operator to
control switch configuration or to test switch accessibility. The
intent is to grant an application permissions to the minimum
set of operations necessary for it to perform the its expected
functions. Custom permission sets can be granted to applica-
tions by creating additional authorization roles. Note that each
permission is associated with a minimum authorization role,
such that roles hierarchically above the minimum role are also
granted permission to the operation. For the APP authorization
role, permissions are granted for those operations that do not
provide methods for altering network security policy. One
exceptional operation is Packet-Out. SE-Floodlight restricts
Packet-out to the SEC authorization role because this operation
is used to formulate custom packets that are sent directly to
the switch, bypassing flow table evaluation within the switch.
For this operation, SE-Floodlight requires the administrator to
specifically grant this permission to individual non-security-
related traffic engineering applications.

IV. DESIGN OF A SECURE CONTROL MEDIATION LAYER

Figure 2 illustrates the components integrated into SE-
Floodlight, which extend baseline Floodlight to implement
our security mediation service. Not shown in Figure 2 is a
set of critical software patches which we introduce to alter
and extend key elements of Floodlight. These alterations are
necessary to ensure that our added components can perform
full mediation of all data exchanges between the control layer
and data plane. The extensions are also necessary to en-
able source-credential validation of each application message,
and to enable our permission extensions to restrict certain
application-layer interactions with the data plane.

From the bottom of Figure 2, the SEK empowers an
OpenFlow stack to support multiple applications in parallel,
introduce control-layer arbitration when apps produce
conflicting flow logic, and imposes the application permission
constraints described in Table I. The SEK extends Floodlight
with five major components.

• A Role-based Source Authentication module provides digital
signature validation for each flow-rule insertion request to
provisionally limit a candidate flow rule’s priority based upon
the application’s operating role (Section IV-A).

• A Conflict Analyzer is responsible for evaluating each
candidate flow rule against the current set of flow rules within
the Aggregate Flow Table (Section IV-C).

• The State Table Manager and Switch Callback Tracking
components enable the SEK to maintain a locally accurate
snapshot of the switch flow table (Section IV-E). This local
representation is essential for enabling the Conflict Analyzer
to determine whether a new candidate rule is in conflict with
one or more flow rules already resident in the flow table.

• The Permission mediator mediates the non-flow-rule-based
messages that are exchanged between the application layer
and data plane. The Permission mediator denies access to
an operation unless the application is authenticated under a
role for which the administrator has granted permission to the
operation.

An application may be run in two possible modes. First,
in Section IV-B we present an application authentication
scheme, which support author identity linkage for every SEK-
mediated message. We present a module authentication ser-
vice, which enables a Java class to be integrity-checked and
assigned a cryptographically-signed operating role. Floodlight
implements network applications as Java classes, as do other
Java-based controllers; there is a substantial legacy base of
OpenFlow applications implemented in this manner. Thus,
a key pragmatic feature of SE-Floodlightis to validate the
integrity of an OF app loaded as a class module at load time,
and then to assign all messages it produces to the module’s
signed authorization role.

However, in secure deployments of SE-Floodlight, to ad-
dress the challenge of privilege separation one should employ
the digitally authenticated Northbound remote API, with per-
message credential assignment. In Section IV-F, we discuss
the benefits of using this API to enable the security mediation
service to operate as a truly independent mediator between the
application layer and the data plane. This is the method that
secure deployments of SE-Floodlight would use to ensure the
integrity of the security mediation service.

Finally, Section IV-G presents the first OpenFlow security
audit subsystem, which tracks all security-relevant events
occurring within the OpenFlow control layer. This audit sub-
system satisfies an important prerequisite for environments
that must address security compliance specifications pertaining

Figure 4.2: An overview of the architecture of the Security-Enhanced-Floodlight and its au-
thentication mechanics (Figure devised by [56]).

These research efforts, however, are limited to the development of a designated controller.
If a dominating controller does not emerge, a flexible application layer or sandbox securing
the controller kernel must be an achievable option. It does not seem that any projects are
dedicated to authentication between the application and control plane. In 2013, PermOF [80]
has been suggested as a platform which introduces an additional authentication and access
layer on top of the control operation system. However, presumably because of a lack of
interest or demand, development on the project has come to a halt.

Access control is a central issue in SDN, especially admission to the control platform. SDN
emulates the structure and composition of a conventional operating system and exposes a
similar weakness to custom applications. If role-based access, credential query, and authen-
tication are applied to the control software, security could be vastly improved. Applications
express as much power in the network as the control plane itself. As they could harbour
software bugs, are prone to vulnerabilities and are installable by attackers, controllers have
to utilise methods and measures to restrict permissions and the impact of configurations.
The obtainable solutions proposed in this chapter focus on enhancing an strengthening the
controller itself, an approach which is limited to the particular controller software and could
restrict diversity. Nevertheless, a control operation system that is capable of restraining ap-
plications and utilising the secure OpenFlow protocol of the ONF also mitigates a significant
amount of the security threats of conventional OpenFlow networks.

72

4.3 A Secure and Dependable Control Plane

4.3.7 Security Domains

Security Domains are only tangentially covered in the ONF security evaluation, but a differ-
entiation of authorisation levels in the Openflow protocol itself is postulated. [99] Although
the Architecture Recommendation [36] discussed methods to restrict access and provide ser-
vices to different user levels, detailed mechanics are not proposed and not part of the scope of
the document. The OF-Protocol itself is currently not able to differentiate between various
trust and authentication levels. In the data plane, separation of Security Domains is not
possible and has to be handled by proxy applications such as FlowVisor or Hyperflow.

Two aspects can be classified as approaches to develop Security Domains. Kreutz et al.,
2013 [8] focus on the control platform and the need to isolate the software from the underlying
system. Failures of the controller should not affect the remaining programs on the server
and vice versa. While team does not further specify the term ”Security Domains”, a second
definition may be the partitioning of the network into various restricted domains. Control
systems such as RADIUS and Kerberos could restrict access to the sensitive control plane
services or limit the extent of an attack from a compromised host in the network.

Concerning the protection and isolation of the control software, the previous section ad-
dressed the risk of equal security levels of applications. However, applications are often
coupled to the controlling operating system and risk operation shut-down as evidenced in
Section 3.2.6. As a result, Shin et al., 2014 [79] developed Rosemary, a controller specialised
in isolation and robustness. The team highlights the problem of poor resource separation
and control of applications residing on current software designs. The proposed controller
implements the design philosophies of SE-Floodlight and Fort-NOX of role-based access and
application authentication. Applications are outsourced to external processes independent
of the main control software and are thus unable to accidentally or intentionally terminate
the controller. The memory consumption of applications is limited by a resource monitor,
which restricts the CPU and memory usage based on a predefined threshold.

The controller design has been deployed and tested successfully. Nonetheless, the proposal
contributes to the aforementioned problem of controller fragmentation. It would be recom-
mendable to integrate the robust and independent architecture into well-maintained and
dominating network control systems (e.g. OpenDaylight, ONOS, Floodlight). As several
members of the research team that has developed Rosemary contribute to ONOS, advanced
security developments are a possibility. A further and potentially controller-agnostic solu-
tion to protect the controller from application failures is LegoSDN [121]. The prototype
integrates a hybrid of an application hypervisor and rollback-mechansism to isolate the con-
trol kernel from the custom applications, while enabling quick recovery to stable state in case
of faulty configurations. Potentially failing and memory-exhaustive application processes are
also separated from the sensitive controller.

Approaches such as Rosemary and LegoSDN heavily decrease the destructive capabilities
of applications and thus Tampering and Denial of Service in the system. Nearly all dangers
stemming from rogue applications and spoofed authentication are addressed in this design.
Albeit a very robust architecture, performance could be a limiting factor.

The second significant aspect is the separation of network hosts and sections into Security
Domains with restricted view and access. Accessing vital network services, particularly the
OpenFlow configuration service, has to be limited to authenticated hosts and network parti-
tions to reduce the range of attackable devices in the network. As discussed in Section 3.2.7
and 4.3.2 the network slicing of FlowVisor and similar approaches are not mature enough to

73

4 Threat Mitigation and Security Opportunities

provide secure network restrictions yet. However, OpenFlow is able to leverage the 802.1X
mechanisms and protocol for Authentication, Access, and Accounting (AAA). If 802.1X is
not supported by OpenFlow devices, the controller could integrate the authentication pro-
tocol or communicate with a dedicated authentication server using standardised commodity
switches. As the flow matching is capable of dropping packets based on port, EtherType and
source addresses, it is possible to filter service access from certain network regions. Mattor
& Ferraz [122] utilise this mechanism and augment the OpenFlow network with a RADIUS-
based authentication to install fine-grade access control. The team develops the AuthFlow
mechanism to match credentials and service access to flows and restricts admission based
on individual host credentials and network location. Access to sensitive services and the
control plane from insecure hosts or network section is effectively impeded. This aspect does
not prevent a specific STRIDE threat, but it considerably diminishes the risk of infected
conventional hosts or personal devices of the network.

In summary, the two interpretations of Security Domains are viable techniques to limit
the open access to software-defined networks. Specific to SDN is the need to segregate the
controller from applications and the remaining network services to establish a proper isolation
of the operation and management planes. Extraction of controller application and general
services processes coupled with tight access control reduces the risk of software failure and
prevents several STRIDE threats of the control plane. On a larger scale, the adaptation and
enhancement of conventional network access control, host verification, and service restriction
in SDN is one viable way to fully secure important components of the network.

4.3.8 Secure Components

In order to retain confidentiality and data integrity, the internal components of the SDN
devices need to be safeguarded individually. The research team suggests the use of a Trusted
Computing Base, a separated and secured hardware and software section of system. The
concept of Rosemary (see 4.3.7) fulfils this requirement as it separates the control software
from applications and requires access credentials. Moreover, the ONF extensively covers the
demand for data protection in their fifth principle, ”Protect Operational Reference Data”[99].
However, only sensitive data such as policies, credentials, and service descriptions are listed.
The ONF does not explicitly require a security mechanism for the NIB of the controller or
the forwarding tables of the switch. A disclosure attack on these databases could reveal an
ample amount of information about the network. As it can be assumed that TLS and SSH
have to be used to acquire this data due to the ONF security requirements, a two-factor
authentication measure might be superfluous. A second detriment is the negative impact of
an encrypted lookup table on flow latency and performance.

Consequently, this security principle might be redundant in the overall scheme. The indi-
vidual benefits are covered by similar suggestions or the effective and secure implementation
of the OpenFlow protocol and the protocol itself can thus be considered a secure compo-
nent of the system, if the requirements are fulfilled. Extending the principle, the control
topology of the controller and the flow tables of switches may be considered parts of the
network which have to be secured or securely assembled. Several tools to verify the network
policy, topology and overall correctness of the network system are already available. The
algorithms check and examine network configuration based on invariants and models and
alert the administrator if violations occur while providing concrete examples. [12], [59]

As evidenced by the Denial of Service threat, TCAM table sizes are a significant and

74

4.3 A Secure and Dependable Control Plane

(a) Flow with SRC A and DST B. (b) Flow graph for flow A→B at t1.

(c) Flow graph for flow A→B at t2. (d) Flow graph for flow A→B at t3.

Fig. 1: Example flow, and construction of corresponding flow graph.

B. Flow graphs

A flow is a directed traffic pattern observed between two
endpoints with distinct MAC addresses over specified ports.
A flow graph is a graph theoretic representation of a traffic
flow with edges as the flow metadata and switches being the
nodes in the graph. SPHINX uses these flow graphs to model
both network topology and data plane forwarding in SDNs.
It gleans flow metadata from OpenFlow control messages and
incrementally builds the flow graphs to closely approximate
the actual network operations, thereby enabling validation of
all network updates and constraints on every flow graph in
the network in realtime. Thus, flow graphs provide a clean
mechanism that aids detection of diverse constraint violations
for both network topology and data plane forwarding in SDNs.

Flow paths are constructed only using FLOW_MOD messages
because they are issued by the trusted controller. Untrusted
STATS_REPLY messages from each switch only update flow statis-
tics of the corresponding switch, and do not affect the flow
graph structure. Hence, the flow-specific network topology and
data plane forwarding state as embodied in the flow graph
remains uncorrupted even in the presence of untrusted switches
and hosts. Further, as will be described later in § VI-B2, the
presence of an honest majority of switches along the flow path
enables SPHINX to precisely detect any malicious updates to
flow statistics at any switch in the flow path.

As an example of the incremental construction of a flow
graph, consider a flow between hosts A and B as shown in
Figure 1a, that gets rerouted by the controller at different
time steps. Figures 1b, 1c and 1d depict the state of the
corresponding flow graph at each reroute, with the current path
in black. The flow is first established at time-step t1, with the
path as S 1 → S 2 → S 5. At t2, the flow is rerouted by the
controller along S 1 → S 3 → S 5, and the current path is
updated accordingly. Finally at t3, the flow is rerouted once
more along S 1 → S 2 → S 3 → S 5. Note that expired nodes
and edges are never deleted from the flow graph, enabling
SPHINX to accurately determine the updated current path
during reroutes. This allows for the possibility that a reroute
might not result in the issuance of fresh FLOW_MOD commands
to all the switches on the new current path, as is the case
during the reroute at t3 (where switches S 1 and S 2 receive
fresh instructions from the controller while S 3 does not).

Flow graphs exploit the predictability and pattern in both
topological and data plane forwarding inferred from con-
trol messages to detect attacks originating within the SDN.
While flow graphs are an effective tool to verify normal

Fig. 2: SPHINX flow diagram.

and predictable network operations, they are limited in their
capabilities by the nature of messages sent over the control
plane and the dynamism in the topology. If there is a majority
of tampered or untrusted messages, then flow graphs will
perceive incorrect messages as normal behavior and not raise
any alarms. Further, if the network topology changes very
frequently, then several of the learned invariants may be
violated, resulting in alarms.

C. High-level approach

KEY IDEA. SPHINX gleans topological and forwarding state
metadata from OpenFlow control messages to build incre-
mental flow graphs and verify all SDN state in realtime,
including detection of security attacks on topology and data
plane forwarding (such as those listed in § III-A and later in
§ VIII) or violations of administrative policies. Any deviant
behavior is flagged and reported.

Figure 2 shows SPHINX’s workflow, which involves three
stages. First, SPHINX monitors all controller communication
and identifies relevant OpenFlow messages required to build a
comprehensive view of the network. Second, SPHINX analyzes
these OpenFlow messages and extracts topological and for-
warding state metadata to incrementally build a network graph
complete with traffic flows. Specifically, SPHINX maintains
topological and forwarding state metadata captured from (i)
incoming OpenFlow packet headers, (ii) outgoing flow path
setup directives, and (iii) actual flow traffic measurements
over the network links, respectively. Third, SPHINX verifies
the flow’s current metadata against (i) a set of permissible
values of metadata gathered over the lifetime of a flow,
and (ii) administrative policies. SPHINX flags known attacks
using administrator-specified policies, while it leverages flow-
specific behavior acquired over time to detect unforeseen and
potentially malicious activity.

SPHINX does not raise alerts when it discovers new flow
behavior. Instead, SPHINX raises alerts when it detects un-
trusted entities triggering changes to existing flow behavior,
or the flow violates any administrator-specified security policy.
For example, SPHINX does not raise alarms when a switch
learns its neighbors. However, if any of the neighbors change
on any switch port, SPHINX will immediately flag the incident
since it alters the network topology and subsequently the flow
graph. Additionally, SPHINX will not raise alerts on flow re-
routes since they are triggered by FLOW_MOD messages from the
trusted controller. This significantly lowers alarms that may
be generated if detection of every new behavior is flagged,
which is possible in evolving networks. Such suppression of
alerts also implies that any malicious activity that precedes

4

Figure 4.3: The detection mechanism and data flow of the SPHINX security layer (Figure
devised by [123]).

exploitable issue in the current SDN design.

The application module SPHINX [123] is a comprehensive project to protect the controller
and the table size of switches. The framework operates as a intrusion detection system and
is able to detect a multitude of attack types, including TCAM exhaustion attacks, topology
spoofing, blackhole routing, and general DoS traffic targeting the controller. The application
is inserted as a proxy layer between the control and data plane and monitors incoming switch
packets. Based on the metadata of the packets, a network graph and traffic database are
constructed (see Figure 4.3). Any deviations in the trusted topology, attempts to exhaust
the limit of table entries in switches, or excessive traffic patterns are instantly reported to the
administrator. As it does not solve the raised alerts, SPHINX can not be considered a Self-
Healing Mechanism. Nonetheless, its inherent and controller-agnostic intrusion detection
functionality aptly illustrates a general concept to protect the integrity of data stores in
SDN.

4.3.9 Fast and Reliable Software Update and Patching

The centralisation aspect of SDN faces further hurdles concerning deployment and mainte-
nance procedures. The controller is a central element in the network. As soon as a security
flaw or an attack opportunity in the control software is detected, the systems need to be
updated and repaired. If it is necessary to shut down the controller for an update, the entire
network is left in an insecure and restricted state. Similarly, migration of control servers
or full updates could affect policy or security decisions or introduce incompatibilities with
installed and developed applications.

Current controller updates rely on total replacement of the software. [124] The traffic and
topology history and computed policy are deleted, leading to a clean-slate controller. If the
subsequent policy and forwarding decisions are incorrect, security configurations might be
reverted. Distributed control planes reduce the problem, as controller can be incrementally
updated and the load is redirected to the functioning peer devices. However, architectural
changes or differences in message handling might lead to inconsistencies or potential incom-

75

4 Threat Mitigation and Security Opportunities

patibility issues. An update or migration of controllers should not affect the network in any
way. As a consequence, the new controller has to possess the same applications configuration
and network knowledge as the old, flawed device.

A proposal to address these update considerations is HotSwap [124], which modifies
Flowivsor and inserts a proxy plane in the southbound interface. During the recording and
replay phase, the proxy layer effectively mirrors selected network events and policy decisions
of the old controller, which are then forwarded to the new device. The process continues
until the network view and information of the new controller is consistent with the data of
the older model and achieves a deployable state. As soon as correctness is verified, the older
device is detached and the new controller assumes the main role. The update does not affect
packet loss and latency and the network remains unaffected. As the mechanism builds on
FlowVisor and the standardised OpenFlow protocol, it is adaptable to any controller type
and does not require extensive customisation. HotSwap is a feasible mechanism to quickly
and safely substitute deprecated control software, although the replication and mirroring
might generate significant load on the CPU. However, it does not cover a comprehensive
roll-back mechanism. Common security guidelines and best practices of OS and software
development should apply to the control plane. It is necessary to validate the compliance
and security of the entire new configuration. If miss-management occurs, roll-back and re-
store points need to be available. Lastly, the complete setup should be tested in capable and
extensive virtual environments before actual deployment.

As a future potential solution Kreutz et al., 2013 propose ClearView [125], a project that
is capable of automatically patching identified errors in the software and refusing malformed
or dangerous patches. It has been developed for Windows x86 binaries, but its mechanism
and design philosophy are helpful for securing and debugging the highly sensitive controller.
While powerful and comprehensive, the application has to be rebuilt and customised by
all controller developer teams individually. The concept itself, although preferable, seems
currently infeasible.

Independent of control software and SDN protocol requirements, the availability problem
of server shut-down in live networks may be aggravated in the central design. If the un-
derlying OS has to be restarted, the controller is still unavailable despite proper patching
flexibility. As control software commonly resides on Linux servers, Kernel Live Patching,
which has been released for the Linux 4.0 kernel in April 2015 [126], may alleviate this
problem by abolishing the need to reboot during updates.

The inherent properties and principles of SDN additionally enable the use of checkpoints
in the system. Network topology is virtualised, flow tables can be queried, and policies are
saved in the controller. The abstraction of the network facilitates mechanisms to save the
complete state of the network in a database. If an attacker has damaged the network view
or configuration, a saved checkpoint can quickly revert the network into a secure state.

LegoSDN, which has been presented in Section 4.3.7, provides a method to undo failures
and configuration error but only targets the application plane. To extend the scope to trou-
bleshooting of faults and misconfiguration to the entire network, NetRevert [127] has been
published as a solution. The concept is similar to HotSwap and inserts a new plane, which
intercepts OpenFlow messages and saves the controller state and its processes periodically.
If a system failure occurs, the saved security points of the past are ready to be restored until
a correct configuration has been reached.

The last aspect of secure and fast deployments is to establish a safe testing environment
for new security updates and configurations. To fulfil this principle Mininet [91] may be

76

4.3 A Secure and Dependable Control Plane

of service. It is fully customisable and is capable of simulating a real OpenFlow network
environment and its switches. Mininet is limited in its scale due to space and resource costs
on a single server, but can be extended and distributed with Maxinet [128] to support the
emulation of large-scale data or regional networks.

The emphasis on software in SDN is a major new risk factor. As it is difficult to fully
prevent exploitable bugs or faults in applications and controllers, an administrator should
possess tools to quickly, securely, and reliably update the individual network elements. If
mechanisms such as HotSwap, ClearView, or NetRevert are present and usable, the risk of
Tampering or subsequent attacks could be significantly reduced.

4.3.10 Selected Additional Research Efforts

In the following section, several selected security mechanisms are presented. The solutions
can not be categorised into a definite secure design principle and do not necessarily address
a particular STRIDE threat, but nonetheless present a noteworthy approach or innovative
concept to ensure security and enhance overall robustness in OpenFlow networks.

OpenFlow Random Host Mutation

A new way to block reconnaissance attempts is the OpenFlow Random Host Mutation
(OF-RHM) algorithm [129]. Attackers and network worms frequently utilise port scans to
identify the IP of vulnerable hosts in the network for future actions. In order to protect
the network from the consequences of successful port scans, OF-RHM clouds the real IP of
network hosts and maps the address against virtual, continuously changing IPs. The only
device aware of the virtual addresses is the controller, which installs temporary forwarding
rules to translate and hide the real address. If a legitimate host of the network attempts
to communicate, the switch sends a PACKET IN message to the controller, which assigns
a virtual address for temporary communication. Only packets from an authorised source
are constantly forwarded to real destinations. Even if an attacker succeeds in scanning a
host with a virtual IP address, the IP is changed after a short period and thus voided. The
team reports an invalidation rate of up to 99% of scans. OF-RHM can replace the security
bonus of NAT middleboxes, which hide the real IP address of internal hosts. However, due
to computational overhead and flow table limitations (every legitimate connection requires
two forwarding table entries in a switch), the application might only be suitable for smaller
networks.

Location-Based Authentication

Bifulco & Karame, 2014 [130] leverage the central design of SDN to develop the Network
Proofs of Location (NPoL) protocol, a location based access control mechanism. If a new
host connects to the network, its identity has to be verified by sending a signed proof of
location message to the controller. The controller approves the key and maps the identity
of the host to the IP and port it is connected to. A corresponding forwarding entry is
installed on the switch and the host device is permitted to communicate in the network. If
the location changes and the host relocates, the connection is blocked until it is confirmed
again by a signed message. This mechanism effectively prevents internal IP spoofing of
stationary hosts. Secondly, it is possible to map stationary devices interacting with the
controller, e.g. an application or administration server, to a particular switch port in order

77

4 Threat Mitigation and Security Opportunities

to prevent the spoofing of configuration messages in the network. If the location of an
IP changes, the controller could theoretically warn the SIEM and alert an administrator
of unusual behaviour. Although user authentication is guaranteed using AAA mechanisms
such as RADIUS, the location-based approach can potentially provide a second layer of
authentication for vital stationary servers or hosts without requiring additional devices or
servers.

Stateful Firewalls and Flowguard

It is possible to implement a distributed, stateful, and scalable firewall in OpenFlow natively
as demonstrated in a patent submitted by Google. [131] The central controller maintains
information about the state of flows for every individual switch in a stateful firewall appli-
cation. While the network is active, the controller monitors and collects information about
particular flows and sends sample packets to the application. If the state of the connection
violates a predefined policy or rule, the application informs the controller, which installs a
flow entry to drop the corresponding traffic on the switch. If the state of the connection is
legitimate, the controller may install a permanent forwarding flow entry. The goal of this
solution is to reduce the performance impact of stateful firewalls and to monitor the entire
network. However, the performance effect on the controller side is not considered in this
patent proposal.

Although OpenFlow is capable of distributing the firewall in OpenFlow switches over the
network, inconsistencies and policy violations may arise during the automatic configuration
and deployments of rules in the network. As demonstrated by STRIDE Tampering (see Sec-
tion 3.2.3), it is possible to circumvent firewalls by abusing switch flow table inconsistencies.
Flowguard [132] extends the generic firewall mechanism of OpenFlow to detect and resolve
any policy violation in the network. The application tracks every flow path of the network
and identifies potential detour tracks bypassing the firewall. If a rule conflict is detected,
the firewall patches the hole, while only minimally altering the remaining network flow. As
SDN strives to supersede hardware security appliances, Flowguard and similar correctness
models are necessary to validate the overall consistency of the specified policy.

FRESCO & OrchSec

An other security product of the research team that is dedicated to SDN security projects
such as SE-Floodlight, AVANT-GUARD, and Rosemary is the FRESCO language. [133]
FRESCO is intended as a development framework to accelerate and ease the deployment of
security applications. The framework abstracts the imperative of security functions such
as isolating, redirecting or forwarding traffic and exposes a simplified API for develop-
ers. Scripts in the FRESCO language are designed to report or handle network threats
autonomously using the information of legacy or SDN monitoring devices and cooperate
closely with the controller to enact the specified actions. To demonstrate the effectiveness of
the application framework, the team developed several use cases. The first examples builds
on custom-made modules written in the FRESCO scripting language. The script is able to
identify port scans based on failed TCP connection attempts and automatically instructs
the controller to redirect traffic to a honey pot. The second demonstration utilises legacy
intrusion detection software (here: Bothunter) and reacts to its reports. As soon as Both-
unter identifies an attack or malicious code and reports it to the controller, the FRESCO

78

4.4 Outlook on Software-Defined Middleboxes

script is triggered to activate an automated quarantine mechanisms on the affected host.

A similar concept is OrchSec [134], an architecture presented by the Fraunhofer Institute
for Secure Information Technology. OrchSec is specifically designed to address several of
the secure design principles of Kreutz et al., 2013 [8]. In order to realise the Diversity and
Replication property, the research team has developed an orchestration application, which
can be installed on any controller type and is able to coordinate multiple controllers. The
orchestration layer exposes a northbound API and cooperates with network monitors (e.g.
sFlow) to enhance the security functionality of the network. Generic security applications,
which are controller agnostic and may utilise the network monitor and controller informa-
tion, can be developed on top of the orchestration layer in order to provide a sophisticated
intrusion detection functionality separated from the controller. In order to demonstrate
the effectiveness of the approach, the team developed an application which automatically
detects and prevents DNS amplification attacks based on controller messages and reported
monitoring events.

While FRESCO and OrchSec do not implement any security applications and mechanism
per se, they demonstrate a viable practice to simplify and enable the composition of extensive
security applications. An approach that is possible due to the general layer abstraction of
software-defined networks and a new opportunity and chance in SDN.

In addition to the research presented in the secure design principles, these efforts extend
or enhance the security of OpenFlow. OF-RHM and NPoL demonstrate sophisticated, ex-
panded methods to implement defence against attackers, Flowguard ensures a robust use of
the distributed OpenFlow firewall and FRESCO and OrchSec ease deployment and interop-
erability of security applications for developers, a move which might facilitate the spread of
open-source security in SDN.

4.4 Outlook on Software-Defined Middleboxes

The design principles of the research team do not specifically demand the use of extended
security functionality, but recommend the use of added hardware as final suggestion [8].
Whether it is social engineering or the hijacking of BYOD devices, an attacker has many
possibilities to find a way to access the internal network hosts. Although the controller
may be able to detect attacks based on patterns in PACKET IN messages as demonstrated
in the preceding chapters, securing the entire network traffic and individual hosts poses a
challenge. Redirecting all traffic through the controller itself consumes resources and stresses
the control plane. The data plane on the other hand lacks the intelligence to detect and repel
attacks, unless highly specialised modifications such as AVANT-GUARD (see Section 4.3.3)
are implemented. Although firewalls are possible in the native OpenFlow design, the lack of
inherent ability to perform intrusion detection or prevention, control-independent stateful
firewalls, and deep-packet-inspection risks exposure to sophisticated attacks. Anomalous
traffic and single packets must quickly be identified and eradicated to avert actual asset
damage. As a consequence, at least one instance of middleboxes and UTM is yet still required
to fully protect the software-defined networks. The SDN structure provides an opportunity
to significantly amplify the reach and features of security appliances, as the controller can
quickly enact or prepare reactive measures. A further advantage is the ability to construct
security paths and redirect traffic to specialised inspection centres, thus avoiding the need
to carefully consider the placement of middleboxes. [135] Depending on its properties and

79

4 Threat Mitigation and Security Opportunities

tags, traffic could be carried dynamically through a chain of service boxes distributed in the
network, instead of having to pass through a physically static demarcation point. [135]

This thesis demonstrated several methods where the controller can leverage the informa-
tion of security software installed on generic servers, yet these approaches are experimental
or still rely on the reports of traditional security hardware. Although a valid temporary
solution for hybrid deployments, the use of classic middleboxes might violate the long-term
intent of SDN to abolish proprietary and complicated devices in the network. [2]

An ongoing and promising project parallel to SDN is Network Function Virtualization
(NFV) [136]. NFV aims to abolish the use of specialised hardware and attempts to integrate
the middlebox functionality into commodity hardware in order to reduce costs and provide
flexibility and customisability. The approach is complementary to SDN and both projects
might eventually merge, as they intersect in principles and share common traits. Indeed,
several solutions proposed in this thesis, e.g. the DDoS protection mechanisms utilising
external intelligence of the Section Self-Healing Mechanisms (4.3.3), can be categorised into
a type of NFV. In theory, a network utilising both SDN and NFV would instruct selected
switches to reroute traffic to the NFV servers, which in turn perform deep-packet-inspection
and intrusion detection and report events to the controller. The controller reacts according
to the threat at hand and automatically reconfigures the network state. In the vision of NFV
and SDN, the controller is able to create dynamic security paths by quickly modifying the
flow of the switches to pass through inspection centres seated at any place in the network.
As a result, the appliances can be freely moved in the infrastructure. The details of NFV,
a research effort distinct from SDN, are not covered in this thesis, but offer insight into the
future integration and the replacement of proprietary security hardware.

The following chapter summarises the research findings and solutions presented in this
thesis and presents the final sketch of a secure SDN architecture. The design is matched
against the general traditional architecture presented in Section 2.1 and compares drawbacks
and advantages.

80

5 Summary and Evaluation

An integration of the security requirements and the secure design principles establishes a
comprehensive security framework. If these concrete approaches are implemented as envi-
sioned, the attack paths of the STRIDE threats may be sufficiently averted.
The security amendments of the ONF document Principles & Practices for Securing
Software-Defined Networks ensure a reliable communication and secure data plane of the
network. Authentication such as TLS enforces trustworthy communication and the guide-
lines for switches and controllers clearly build a minimal data plane baseline security.
The Replication principle ensures resistance to Denial of Service and software-faults, while
building a basis for Diversity, Dynamic Switch Association, and Self-Healing Mechanisms.
Diversity, albeit an optional and possibly controversial principle, lowers the overall impact
factor of a technical vulnerability and augments the protective capabilities of the overall
system using the best possible applications.
Self-Healing Mechanisms enacted by the central intelligence are a promising feature of
SDN and an inevitable necessity in the software-defined network. Utilising the Replication
property, the various algorithms guarantee correctness of the network information base and
flow table entries and verify the behaviour of controllers. If high security and control plane
trustworthiness is required, the democratic approach and the automatic overriding of un-
usual decisions diminishes the influence of single rogue devices and prevents the abuse of
Byzantine faults. As the controller is aware of the entire network state, fast-failure recovery
is readily available over pre-installed backup flow entries, and reactive recomputing. Via
the integration of detection applications, the controller itself is also capable of recognising
Denial of Service attacks on the control plane and can install instant protective measures in
the switches. Additionally, the controller can cooperate with specialised OpenFlow switch
designs to shield the server from packet flooding.
The principle of Dynamic Device Association is closely linked to Self-Healing and Repli-
cation and covered by a rigorous specification of the ONF Switch protocol. However, provid-
ing the data plane with intelligence and verification mechanisms could violate the abstraction
property of software-defined networks.
The trust principles are significant cornerstones of the secure network. Trust between
Devices and Controllers reduces the threat of Tampering and Spoofing significantly and
fosters the reliability of the network. The authenticity of single OpenFlow devices is largely
dependent on the specifications of the OpenFlow protocol. If the rigour of the ONF Security
Evaluation is applied and controllers are able to identify and isolate malfunctioning switches,
Spoofing and Tampering in the data plane are effectively prevented. In the higher applica-
tion and control plane, an advisable course of action is to apply operating system principles
of access control, role-based authentication, and trust management. These measures limit
the malicious extent of a single application and enable the categorisation into applications
of varying authority. Furthermore, entities and clients may be held accountable for their
actions.
Security Domains either protect and isolate the controller or separate the overall com-

81

5 Summary and Evaluation

pany into zones of varying trust. The controller is independent of its applications and their
memory consumption and is thus unaffected by malicious or malfunctioning code. Further-
more, isolating the controller from the remaining network and only accepting connection
from authenticated domains in the network limits the breadth of access possibilities for an
attacker. The mechanics of AAA servers may be enhanced by cooperating with the central
SDN controller.
Secure Components guarantee an optimal security base and increase the overall robust-
ness of SDN. The internal components of a switch and controller should be checked for
integrity and need to be resilient to overflows. Code reviews, protection, or cleaning algo-
rithms, which warrant the dependability of the code and memory space, secure the network
components from falling prey to simple Denial of Service and Elevation of Privilege abuse.
Fast and Reliable Software Update and Patching as a reactive approach to vulnerabil-
ities protects the network from future attacks. The vulnerable controller has to be updated
quickly without affecting the network and could either be swapped or segmented into inde-
pendent exchangeable components. Similarly, the controller could deploy firmware updates
on switches automatically from a central position in the network.
Lastly, the Selected Additional Research Efforts enhance the network security and com-
plicate attack preparation such as reconnaissance or the infection of a suitable host while
easing the deployment of security algorithms and applications in the network.

5.1 Constructing the Secure Software-Defined Network

Combining the recommendations of the Open Networking Foundation and the nine design
principles with the implementation strategies presented in this thesis it is possible to sketch
the design of a secure, large-scale software-defined network (see Figure 5.1).

The first and absolute prerequisite in this secure design is the use authenticity and in-
tegrity for any device communication in the network. Any and all communication between
applications, controllers and switches is mutually authenticated while sensitive messages such
as topology reports and modification messages checked for integrity. The database of the
controller itself is signed to guarantee the use of intact server data. Optionally, the control
channel may be deployed out-of-band either physically or virtually in VLAN configurations
enacted by the controller. The requirement of authenticity is fundamental in SDN to en-
sure a minimal amount of security and protection of the control flow. To avoid dependency
on a single device, at least two independent controllers should be deployed in the network,
which may coordinate or take over neighbouring networks in case of a malfunction. For
added security and to overrule malicious or defect controllers, every switch may connect
to multiple logically centralised controllers. In this design, every domain should employ a
minimum of three replicated controllers, which communicate directly or indirectly over a
distributed network database, to minimise the threat of a compromised device. As diverse
implementations are horizontally incompatible yet, all controllers conform to the same type.
If different controller types are to be implemented in the network, proxy layers might sup-
port the distribution and interoperability of the devices, while also reducing the load on
single controllers in the network. The control plane resides in a protected area, similar to
a vital database in a conventional network. Only authenticated hosts, which are part of a
physically and logically secured domain, are able to access and configure the servers. Any
traffic which is not a switch PACKET IN or OpenFlow communication message is filtered

82

5.1 Constructing the Secure Software-Defined Network

Extranet
Internet

DMZ

SIEM &

administrator

AAA Server

Protective switch

or middlebox

Orchestration and

management

application

Separated security applications

(e.g. firewall, controller IDS)

cooperating with network sensorsNetwork sensor

First controller

domain

Second controller

domain

Logically centralised

network control

Servers

TLS 1.2
TLS 1.2

Figure 5.1: Sketch of a secure SDN design.

using the integrated flow table firewalls. Additionally, specialised DoS guard switches may
shield the control centre from attacks. Albeit potentially costly, out-of-band access of ma-
nagement or security applications is recommended. Remote applications and hosts trying
to access the server zone are verified based on location and identity using AAA servers and
control algorithms. They are also limited in rights, network view and action scope. Security
and latency-intensive applications may be packaged directly on the control server but are
strictly executed in a separate process and memory space. Higher-privileged applications are
able to override lower-tier decisions, with the administrator applications possessing complete
configuration rights. Administrator applications report the state and log of all controllers
and switches in the network and track actions of the single devices and applications. As
middleboxes are yet irreplaceable, the control servers may be protected over intrusion de-
tection or stateful firewall systems. Nevertheless, to quickly identify and resolve attacks in
the entire network, switches can mirror traffic to selected inspection servers. The detection
systems report the results to the controller, which swiftly reconfigures the network to isolate
the affected sections. Additionally, the controller is capable of identifying suspicious network
behaviour based on PACKET IN patterns and reports any events and network anomalies to
the management application or SIEM over the management interface.

In general, the network is blocked off from the extra- and internet and divided into varying
protective zones by distributing a fine-grained firewall in the network and authenticating any
new host in the network. However, firewalls might still be required, as the flow table space

83

5 Summary and Evaluation

of switches is limited and stateful firewalls are only functional via the control intelligence.
Port scans could be thwarted using intrusion detection systems and virtual IP addresses to
mask real internal communication. To guarantee longevity and the latest secure firmware,
controller can be exchanged using the HotSwap methods or live-patched by replacing single
modules.

5.2 Evaluation

After discovering security threats in the conventional SDN architecture, establishing basic
secure design requirements and compiling necessary defence mechanisms, it is possible to as-
sess the inherent and potential security of SDN in comparison to the standard network. Each
of the STRIDE aspects is summarised in its current threat potential and the vulnerability
of the data flow components is assessed.

5.2.1 Spoofing

Although new elements which may be spoofed are introduced, Spoofing is entirely pre-
ventable via authentication and access control mechanisms between every trust boundary.
Considering the design postulations of the ONF Security Project, it can be assumed that a
deployment-ready software-defined network will utilise TLS or similar authentication as ba-
sic countermeasure. Furthermore, SDN provides an opportunity in recognising and removing
spoofed devices as the controller can identify irregularities in the network. The lack of ap-
plication authenticity is a threat which is not considered by many developers, but functional
countermeasures area already being developed by researchers. While attacks to spoof the
host topology and redirect traffic are already present and published, they are preventable
with the use of message integrity and various security applications installed in the control
plane.

5.2.2 Tampering

Since the virtual network view and databases can be modified, Tampering is a greater risk in
SDN. However, authentication and data integrity algorithms as demanded by the ONF [99]
may protect the control traffic and data sufficiently. Additionally, democratic approaches in
the control plane, as presented in the Section Self-Healing Mechanisms (see Section 4.3.3),
may override the decisions of a mislead or malicious device. It is crucial to avoid depen-
dence on a single control station in SDN, if security and network availability are valued.
Lastly, harmful influence from applications and clients may be restricted using authorisation
and role-based access control in the northbound interface while simultaneously isolating the
controller from the underlying system and applications.

Tampering is a significant danger in environments such as SDN which relies on a virtual
view and central database. A slight change substantially affects the network and this threat
must be addressed accordingly. The mechanisms and design choices highlighted in this thesis
are capable of shielding and verifying the database and policy consistency of SDN and can
adequately defend the control and data plane from poisoned data.

84

5.2 Evaluation

5.2.3 Repudiation

This threat is not exacerbated in software-defined networks. Although, many new deniable
actions of the autonomous applications and controllers emerge, an automatic and instant
logging mechanism, unique identification of individual behaviour, and monitoring of control
processes reduce the possibility to hide or deny malicious actions. Furthermore, the overview
of the entire network state, traffic flow, and access control establishes a comprehensive tool set
for attack forensics. These surveillance possibilities are an advantage of the new architecture.

5.2.4 Information Disclosure

Similar to Tampering, the risk of Information Disclosure gains new significance in SDN.
The network relies on a central information base that stores ample data about topology,
QoS policy, and forbidden areas and can be accessed over various interfaces and queries.
Extracting this information, as demonstrated in Section 3.2.5, provides an attacker with
substantial knowledge about assets, security appliances, and the location of sensitive data.
However, if access to the control plane and channel is safely restricted, the sensitive infor-
mation is moved out of reach. Relocating the controller into a secure and restricted zone
is a core design choice. Access has to be limited to physical and authorised applications or
administrative stations and the control channel should be secured using dedicated VLAN
or out-of-band communication. These implementations are achievable and prevent the con-
trolling software from unintentionally leaking information. Switches of the data plane may
expose their flow tables over side-channel attacks, but the large amount of traffic needed to
acquire this information is easily detectable by an integrated controller IDS (e.g. SPHINX).
If the controller is secure and detached from the data network, it is also capable of reducing
the transparency of the network by using dynamic proxy approaches such as OF-RHM (see
Section 4.3.10).

In summary, Information Disclosure is preventable in the secure SDN design if the control
channel and plane are appropriately guarded and entirely separated from the intranet and
generic data traffic.

5.2.5 Denial of Service

Denial of Service is the main problem of SDN, as an attack on the control plane paralyses
the entire network. The countermeasures presented in this thesis and the secure design,
i.e. restricting the access to the controller, implementing a dedicated IDS, and building
a protection ring, may shield the device but could be circumvented. Due to the focus
on software and the control bottleneck, a multitude of possibilities arise to incapacitate a
central switch or controller, ranging from simple flooding to the use of poison packets or
malicious applications. The key to protection is isolation, replication of essential assets, and
synchronisation, all of which assure fall-back guarantee and a sufficient degree of availability
and reliability. The use of distributed data stores is problematic, as these may be susceptible
to service failure or abuse. A currently prevalent problem is the limitation of the amount
of flow table entries in OpenFlow hardware switches. SDN requires many specific entries
on a single switch for fine-grained network management. Therefore, switches may operate
on the brink of table exhaustion in large networks and thus become an easy target for
attackers. Denial of Service as a threat is amplified in SDN and is still a ubiquitous risk in
the secure design. Although it is possible to prevent most of the dangers with the methods

85

5 Summary and Evaluation

discussed in this thesis, these new measures might again introduce new vulnerabilities. The
threat requires sophisticated protective measures and careful consideration in order to fully
protect the sensitive controllers and the simple switches in the network and to guarantee
high availability.

5.2.6 Elevation of Privilege

The last aspect is an entirely new factor, which has to be observed and studied when de-
ploying the software-defined networks and component as a service. Due to the OS principle
of SDN it is possible for unauthorised applications and clients to access the virtualised and
shared network resources to enact configurations which they are not entitled to. Role- or
permission based access control, verification, and separation mechanisms such as FlowVi-
sor address these concerns. Nevertheless, breaking out of the virtualised, restricted box and
traversing prohibited domains is a constant hazard when providing network services. Clients
must not be trusted and have to be restricted and strictly monitored when accessing the
public control plane. Research on SDN and NaaS is still in its infancy and solutions may risk
neglect or miss security flaws during this development process. In order to prevent security
leaks, the same rigour and meticulous process as in the development of current operation
systems has to be applied to the controller and virtualisation deployment.

5.2.7 Concluding remarks

Summarising these thoughts, the secure SDN design is able to provide satisfactory security
to meet the demands of a company network operator. Nonetheless, the security entirely
depends on the choice of implementation and security mechanisms. The standard baseline
OpenFlow network exposes many vulnerabilities and attack possibilities and is not a secure
infrastructure. However, the current research and design concepts display extensive viable
solutions and efforts to prevent these risks when adopting the new paradigm. It is mandatory
for SDOs and control software developers to integrate security into the default deployment.
Overall, despite all these security mechanisms, Denial of Service on the controller and El-
evation of Privilege remain as prime threats and gain more significance when compared to
conventional networks. New security software and solutions (e.g. a distributed database or
misconfigured applications) might introduce new attack possibilities. As bugs or mistakes
are always possible in development, the introduction of software and programmability also
increases the intensity of the constant race between network offence and defence. Neverthe-
less, the benefits may outweigh the risks of the two threats, as centralisation and automation
of administrative responsibilities lead to a quick and clean identification and mitigation of
anomalies. New problems which have not been considered in this thesis are performance,
latency and stability. Running many security solutions and applications, coordinating the
distributed devices, and managing large network security paths could severely impact the
controller and introduce unacceptable latency metrics, a risk which has to be calculated
carefully.

86

6 Conclusions and Future Work

SDN and the vision of a future network architecture rapidly gain ground in both media
and research, with the OpenFlow protocol representing a main component and fuel for this
evolution. However, network operators are still sceptical, and their security concerns are
warranted. This thesis has performed an extensive survey of security in software-defined
networks and provided a concrete overview over general emerging problems and their solu-
tions. The first chapter established the basic traditional architecture, its security framework
and the division of the logical network into data, control and management plane. The moti-
vation and history of SDN has been elucidated and the OpenFlow protocol has been identified
as a main driver of SDN adoption by tracing the history of programmable networks. Subse-
quently, the thesis summarised and detailed the mechanisms of the SDN paradigm and the
OpenFlow protocol in particular. Relevant controller designs were compiled and abstracted
into design basics of SDN.

Chapter 3 utilised the technical framework of Chapter 2 and applied the STRIDE method-
ology of the Microsoft Security Development Lifecycle to the SDN architecture. Three
data-flow-analyses of the general network, the controller and the switch were developed
and examined. Based on these data-flow-diagrams, each of the STRIDE aspects has been
summarised in an attack tree to visualise and demonstrate the security deficiencies of the
software-defined network. For each threat, several attacks, security flaws and negligences
in the protocol were found. Denial of Service and the lack of compulsory authentication
emerged as the most crucial flaws of current SDN.

To solve the identified problems, the thesis presented two secure design approaches. It
inspected the recently published security best practice guide of the ONF Security Project and
presented the nine design principles proposed by Kreutz et al., 2013. While the requirement
of the ONF Security Project may improve OpenFlow, a reliable protocol was found to
be insufficient to ensure a secure by default SDN. Thus the nine design principles were
evaluated critically and amended as necessary. The thesis compiled research and mapped
security solutions to fulfil every design principle at best effort. Additionally, mechanisms and
projects of interest were presented and an outlook on network function virtualisation and the
use of generic middleboxes and network sensors in cooperation with SDN has been provided.
On the foundation of the research findings and results of the preceding chapter, Chapter 5
constructed a template of a secure SDN design and compared its risks and opportunities to
legacy networks. Denial of Service remains as a central point of concern while Elevation of
Privilege on the controller emerges as new threat in the context of NaaS deployments. The
secure design of SDN can adequately prevent and even improve defence against the dangers
of Spoofing, Tampering, Repudiation, Information Disclosure and Denial of Service in the
general network. Latency and performance of the network itself have not been considered in
this thesis and might pose a limitation in the deployment of security. Overall, the concept
of SDN itself may be a viable option for a company to supersede conventional architecture,
if and only if security is given the appropriate amount of attention by all involved parties.

87

6 Conclusions and Future Work

6.1 Future Work

The main findings of this thesis may be interesting for three future projects.
As the purpose of this thesis was to assess the state of security of SDN, it is desirable

to test the full conditions and environment in deployment scenarios. A standard OpenFlow
network could be installed over Mininet or real hardware to estimate the actual threat level
of the encountered vulnerabilities and attacks. This approach is able to highlight the real
extent of the identified security threats and could provide a more accurate and elaborate
assessment. An approximation of the secure design, which has been constructed in this
thesis, would be implemented to mitigate the vulnerabilities. The network is then examined
based on the impact regarding performance and interoperability while evaluating the overall
potential or deficiencies of the security mechanisms. The limitations of the measures will
showcase upcoming design flaws or potential hurdles in the deployment of a high security
software-defined network. As most security solutions are scattered and individual projects
rely on proof-of-concept methods, which may or may not be feasible in the installation, a
comprehensive security case study could potentially be of value.

Secondly, as a literature review of the integration of intrusion detection and comprehensive
security solutions in cooperation with the control plane would have exceeded the scope of
this thesis, an inspection of network function virtualisation and the cooperation with SDN
based on security could be of further interest.

Furthermore, hybrid deployments and the emerging security risks in corresponding sce-
narios were not considered in this thesis. As many companies, research networks, and service
providers will not install SDN in greenfield deployments and would have to migrate from
conventional networks, an evaluation of possible hybrid security solutions and integration
may provide better insight into the actual state of security in SDN.

88

List of Figures

2.1 Distribution of logical planes in legacy networks. 6
2.2 A sample architecture of a modern network. 7
2.3 Timeline of programmable networks on the road to SDN. 10
2.4 In a software-defined network, the various logical planes are strictly separated.

The controller is the central element of the network, while the management
has logical access to all devices. 13

2.5 Internal mechanics of an OpenFlow switch. 14
2.6 The OpenFlow processing pipeline. 16
2.7 Internal mechanics of an OpenFlow controller. 19
2.8 The OpenFlow network. 22

3.1 An attack tree showing methods to incapacitate the main router of a network. 26
3.2 Data flow of a generic OpenFlow setup employing two synchronised and one

distributed independent controller. 27
3.3 Data flow of a SDN controller. 28
3.4 Data flow of a SDN switch. 29
3.5 Attack Tree showing several methods to achieve Spoofing in SDN. 34
3.6 As demonstrated by Porras et al an attacker is able to bypass the firewall due

to the inconsistencies in the policy of the controller (Figure inspired by [77]). 36
3.7 Attack Tree showing several methods to achieve Tampering in SDN. 38
3.8 Attack Tree showing several methods to achieve Repudiation in SDN. 41
3.9 Attack Tree showing several methods to achieve Information Disclosure in SDN. 44
3.10 Attack Tree showing several methods to achieve Denial of Service in SDN. . . 49
3.11 Attack Tree showing several methods to achieve Elevation of Privilege in SDN. 52

4.1 Securing the networking with Replication and Diversity as envisioned by
Kreutz et al., 2013 (Figure devised by [8]). 63

4.2 An overview of the architecture of the Security-Enhanced-Floodlight and its
authentication mechanics (Figure devised by [56]). 72

4.3 The detection mechanism and data flow of the SPHINX security layer (Figure
devised by [123]). 75

5.1 Sketch of a secure SDN design. 83

89

List of Tables and Abbrevations

2.1 Selection of valid actions in an OpenFlow flow entry. 17

3.1 The eight design principles as defined by Saltzer and Schroeder. [64] 24
3.2 Components of a typical data flow diagram. 25

4.1 The OpenFlow requirements developed by the ONF Security Project. [99] . . 54
4.2 The seven threat vectors and their corresponding STRIDE threats. [8] 58
4.3 The proposed solutions and their respective STRIDE aspects. [8] 59
4.4 Controller types. 60
4.5 Projects to achieve Replication and fault-tolerance by distributing controllers

in a software-defined network. 62
4.6 Approaches to repair failed network components or to avoid service failure in

the network. 67

List of Common Abbreviations

AAA Authentication Authorization and Accounting

ACL Access Control List

API Application Programming Interface

BYOD Bring-Your-Own-Device

DDoS Distributed Denial of Service

DFD Data Flow Diagram

IaaS Infrastructure as a Service

IDS Intrusion Detection System

ONF Open Networking Foundation

SDN Software-Defined Networking

SDO Standard Organisation

SIEM Security Information and Event Management

TCAM Ternary Content-Addressable Memory

TLS Transport Layer Security

90

Bibliography

[1] P. Baran, “On Distributed Communications Networks,” IEEE Transactions on Com-
munications Systems, 1964.

[2] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An Intellectual History
of Programmable Networks,” SIGCOMM Comput. Commun. Rev., 2014.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: Enabling Innovation in Campus Networks,”
SIGCOMM Comput. Commun. Rev., 2008.

[4] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and a Layered Taxonomy of
Software-Defined Networking,” IEEE Communications Surveys Tutorials, 2014.

[5] K. Greene. (2009). MIT Technology Review 10: Software-defined networking, [Online].
Available: http://www.technologyreview.com/article/412194/tr10-software-
defined-networking (visited on Jun. 24, 2015).

[6] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Uncover Security Design Flaws
Using The STRIDE Approach,” MSDN Magazine, 2006. [Online]. Available: http:
//web.archive.org/web/20150208212605/https://msdn.microsoft.com/en-

us/magazine/cc163519.aspx (visited on Feb. 8, 2015).

[7] B. Schneier, “Attack Trees,” Dobb’s Journal, 1999. [Online]. Available: https://
www.schneier.com/paper-attacktrees-ddj-ft.html (visited on Jun. 24, 2015).

[8] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards Secure and Dependable Software-
defined Networks,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN’13, 2013.

[9] RAND Corporation. (2015). Paul Baran and the Origins of the Internet, [Online].
Available: http://www.rand.org/about/history/baran.html (visited on Jun. 24,
2015).

[10] Internet Hall of Fame. (2015). Inductee: Donald davies, [Online]. Available: http:
//internethalloffame.org/inductees/donald-davies (visited on Jun. 24, 2015).

[11] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan,
J. Zhan, and H. Zhang, “A Clean Slate 4D Approach to Network Control and Ma-
nagement,” SIGCOMM Comput. Commun. Rev., 2005.

[12] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-Defined Networking: A comprehensive survey,” CoRR, 2014.

[13] J. Dong, Network Protocols Handbook, en, 4th ed. Javvin Technologies, 2007.

[14] IEEE Standard for Local and Metropolitan Area Networks– Station and Media Access
Control Connectivity Discovery, 2009.

91

http://www.technologyreview.com/article/412194/tr10-software-defined-networking
http://www.technologyreview.com/article/412194/tr10-software-defined-networking
http://web.archive.org/web/20150208212605/https://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://web.archive.org/web/20150208212605/https://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://web.archive.org/web/20150208212605/https://msdn.microsoft.com/en-us/magazine/cc163519.aspx
https://www.schneier.com/paper-attacktrees-ddj-ft.html
https://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.rand.org/about/history/baran.html
http://internethalloffame.org/inductees/donald-davies
http://internethalloffame.org/inductees/donald-davies

Bibliography

[15] N. Farrington, E. Rubow, and A. Vahdat, “Data Center Switch Architecture in the
Age of Merchant Silicon,” in Proceedings of the 17th IEEE Symposium on High Per-
formance Interconnects, ser. HOTI’09, 2009.

[16] M. Rhodes-Ousley, Information Security, 2nd ed. Mcgraw-Hill Osborne Media, 2013.

[17] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, Network Configuration
Protocol (NETCONF), RFC 6241 (Proposed Standard), Internet Engineering Task
Force, 2011.

[18] Open Networking Foundation. (2015). Member Listing, [Online]. Available: https:
//www.opennetworking.org/our-members (visited on Jun. 24, 2015).

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience
with a Globally-deployed Software Defined Wan,” in Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM, ser. SIGCOMM’13, 2013.

[20] VMware. (2012). VMware to Acquire Nicira, [Online]. Available: http://www.vmwar
e.com/company/news/releases/vmw-nicira-07-23-12 (visited on Jun. 24, 2015).

[21] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the Internet Im-
passe Through Virtualization,” Computer, 2005.

[22] T. Benson, A. Akella, and D. Maltz, “Unraveling the Complexity of Network Manage-
ment,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation, ser. NSDI’09, 2009.

[23] H. Kim, T. Benson, A. Akella, and N. Feamster, “The Evolution of Network Con-
figuration: A Tale of Two Campuses,” in Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, ser. IMC’11, 2011.

[24] J. Sherry and S. Ratnasamy, “A Survey of Enterprise Middlebox Deployments,” EECS
Department, University of California, Berkeley, Tech. Rep., 2012.

[25] H. Kim and N. Feamster, “Improving network management with software defined
networking,” IEEE Communications Magazine, 2013.

[26] T. Koponen, S. Shenker, H. Balakrishnan, N. Feamster, I. Ganichev, A. Ghodsi, P. B.
Godfrey, N. McKeown, G. Parulkar, B. Raghavan, J. Rexford, S. Arianfar, and D.
Kuptsov, “Architecting for Innovation,” SIGCOMM Comput. Commun. Rev., 2011.

[27] S. Shenker, M Casado, T. Koponen, N McKeown, et al., “The Future of Networking,
and the Past of Protocols,” in Proceedings of the 2011 Open Networking Summit,
Keynote, 2011.

[28] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active Network Architecture,”
SIGCOMM Comput. Commun. Rev., 1996.

[29] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A
Survey of Software-Defined Networking: Past, Present, and Future of Programmable
Networks,” IEEE Communications Surveys & Tutorials, 2014.

[30] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal, and
J. Halpern, Forwarding and Control Element Separation (ForCES) Protocol Spec-
ification, RFC 5810 (Proposed Standard), Updated by RFCs 7121, 7391, Internet
Engineering Task Force, 2010.

92

https://www.opennetworking.org/our-members
https://www.opennetworking.org/our-members
http://www.vmware.com/company/news/releases/vmw-nicira-07-23-12
http://www.vmware.com/company/news/releases/vmw-nicira-07-23-12

Bibliography

[31] J. Vasseur and J. L. Roux, Path Computation Element (PCE) Communication Proto-
col (PCEP), RFC 5440 (Proposed Standard), Internet Engineering Task Force, 2009.

[32] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe,
“Design and Implementation of a Routing Control Platform,” in Proceedings of the
2nd Conference on Symposium on Networked Systems Design & Implementation, ser.
NSDI’05, 2005.

[33] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown, and S.
Shenker, “Sane: A Protection Architecture for Enterprise Networks,” in Proceedings
of the 15th Conference on USENIX Security Symposium, ser. USENIX-SS’06, 2006.

[34] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane:
Taking Control of the Enterprise,” in Proceedings of the 2007 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications, ser.
SIGCOMM’07, 2007.

[35] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O. Koufopavlou,
Software-Defined Networking (SDN): Layers and Architecture Terminology, RFC 7426
(Informational), Internet Engineering Task Force, 2015.

[36] Technical Recommendation: SDN Architecture, 1st ed., Open Networking Foundation,
2014.

[37] ITU-T Study Group 13, Framework of software-defined networking, ITU-T Y.3300
(Recommendation), 2014.

[38] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation using OpenFlow: A
survey,” IEEE Communications Surveys Tutorials, 2014.

[39] IRTF. (2013). IRTF Software-Defined Networking Research Group (SDNRG), [On-
line]. Available: http://irtf.org/sdnrg (visited on Jun. 24, 2015).

[40] S. Raza and D. Lenrow. (2013). ONF Charter: Northbound Interfaces, [Online]. Avail-
able: https://www.opennetworking.org/news-and-events/press-releases/
1182 (visited on Jun. 24, 2015).

[41] J. Metzler. (2014). Where Do We Stand with SDN’s Northbound Interface? [Online].
Available: http://www.webtorials.com/content/2014/04/where-do-we-stand-
with-sdns-northbound-interface.html (visited on Jun. 24, 2015).

[42] Technical Specification: OpenFlow Specification 1.5.0, 0x06, Open Networking Foun-
dation, 2015.

[43] Technical Specification: OpenFlow Management and Configuration Protocol 1.2, Open
Networking Foundation, 2014.

[44] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically Central-
ized?: State Distribution Trade-offs in Software Defined Networks,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser. HotSDN’12,
2012.

[45] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.-n. Casado, N. McKeown, and S. Shenker,
“Nox: Towards an Operating System for Networks,” SIGCOMM Comput. Commun.
Rev., 2008.

93

http://irtf.org/sdnrg
https://www.opennetworking.org/news-and-events/press-releases/1182
https://www.opennetworking.org/news-and-events/press-releases/1182
http://www.webtorials.com/content/2014/04/where-do-we-stand-with-sdns-northbound-interface.html
http://www.webtorials.com/content/2014/04/where-do-we-stand-with-sdns-northbound-interface.html

Bibliography

[46] (2012). NOX Repo, [Online]. Available: https://github.com/noxrepo (visited on
Jun. 24, 2015).

[47] OpenDayLight Developer Guide, OpenDayLight, 2014.

[48] User Documentation: The Floodlight Controller, Project Floodlight, 2015. [Online].
Available: https://floodlight.atlassian.net/wiki/display/floodlightcontr
oller/The+Controller (visited on Jun. 24, 2015).

[49] R. G. Little. (2013). ONF to standardize northbound API for SDN applications?
[Online]. Available: http://searchsdn.techtarget.com/news/2240206604/ONF-
to-standardize-northbound-API-for-SDN-applications (visited on Jun. 24,
2015).

[50] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B.
O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “Onos: Towards an Open, Dis-
tributed SDN OS,” in Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN’14, 2014.

[51] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based Comparison of
Software Defined Networking (SDN) Controllers,” in Proceedings of the International
Conference on Computer Software and Applications, ser. ICSCA 2014, 2014.

[52] RYU Project Team, Ryu sdn framework: Using Openflow 1.3, 1st ed., RYU, 2014.

[53] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,
Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: A Distributed Control Platform
for Large-scale Production Networks,” in Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’10, 2010.

[54] A. Tootoonchian and Y. Ganjali, “Hyperflow: A Distributed Control Plane for Open-
Flow,” in Proceedings of the 2010 Internet Network Management Conference on Re-
search on Enterprise Networking, ser. INM/WREN’10, 2010.

[55] R. Sherwood, G. Gibb, K. Yap, M. Casado, N. Mckeown, and G. Parulkar, “FlowVisor:
A Network Virtualization Layer,” OpenFlow Switch Consortium, Tech. Rep., 2009.

[56] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran, “Securing the
Software-Defined Network Control Layer,” in Proceedings of the 2015 Network and
Distributed System Security Symposium, ser. NDSS’15, 2015.

[57] Y. Weingarten, N. Sprecher, E. Bellagamba, and T. Mizrahi, An Overview of Opera-
tions, Administration, and Maintenance (OAM) Tools, Informational, Internet Engi-
neering Task Force, 2014.

[58] Ovs-dpctl - administer Open vSwitch datapaths, Ubuntu Manuals, 2008. [Online].
Available: http : / / manpages . ubuntu . com / manpages / natty / en / man8 / ovs -

dpctl.8.html (visited on Jun. 24, 2015).

[59] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn Security: A survey,” in Pro-
ceedings of Future Networks and Services, ser. SDN4FNS, 2013.

[60] K. Benton, L. J. Camp, and C. Small, “OpenFlow Vulnerability Assessment,” in
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN’13, 2013.

94

https://github.com/noxrepo
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/The+Controller
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/The+Controller
http://searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-northbound-API-for-SDN-applications
http://searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-northbound-API-for-SDN-applications
http://manpages.ubuntu.com/manpages/natty/en/man8/ovs-dpctl.8.html
http://manpages.ubuntu.com/manpages/natty/en/man8/ovs-dpctl.8.html

Bibliography

[61] D. an Romão, N. van Dijkhuizen, S. Konstantaras, and G. Thessalonikefs, “SSN
Project Report: Practical Security Analysis of Openflow,” SSN Project Report, 2013.

[62] M. Brandt, R. Khondoker, R. Marx, and K. Bayarou, “Security analysis of software
defined networking protocols - OpenFlow, OF-Config and OVSDB,” in Proceedings
of the Fifth IEEE International Conference on Communications and Electronics, ser.
ICCE’14, 2014.

[63] R. Klöti, “Openflow: A security analysis,” Master’s thesis, Eidgenössische Technische
Hochschule Zürich, 2013.

[64] J. Saltzer and M. Schroeder, “The protection of information in computer systems,”
Proceedings of the IEEE, 1975.

[65] A. Shostack, Threat Modeling: DESIGNING for Security, 1 edition. Wiley, 2014.

[66] P. Mell, K. Scarfone, and S. Romanosky, A Complete Guide to the Common Vulner-
ability Scoring System Version 2.0, NIST and Carnegie Mellon University, 2007.

[67] O. El Ariss, J. Wu, and D. Xu, “Towards an Enhanced Design Level Security: Integrat-
ing Attack Trees with Statecharts,” in Proceedings of the Fifth International Con-
ference on Secure Software Integration and Reliability Improvement, ser. SSIRI’11,
2011.

[68] R. Rietz, A. Brinner, and R. Cwalinsky, “Improving Network Security in Virtualized
Environments with OpenFlow,” in Proceedings of the International Conference on
Networked Systems, ser. NETSYS, 2015.

[69] M. Antikainen, T. Aura, and M. Saerelae, “Spook in Your Network: Attacking an
SDN with a Compromised OpenFlow Switch,” in Secure IT Systems, ser. Lecture
Notes in Computer Science, vol. 8788, 2014.

[70] R. Izard. (2015). Does Floodlight Support SSL Connection, [Online]. Available: h

ttps://groups.google.com/a/openflowhub.org/d/msg/floodlight- dev/

2ZS0XHQPQzs/QVJwpSjzmgYJ (visited on Jun. 24, 2015).

[71] Trustwave, “2014 Global Security Report,” Trustwave Holdings, Tech. Rep., 2014.

[72] B. Möller, T. Duong, and K. Kotowicz, “This poodle bites: Exploiting The SSL 3.0
Fallback,” Google, Tech. Rep., 2014.

[73] G. Pickett, “Abusing Software Defined Networks,” in Proceedings of the 22st DEF
CON Conference, ser. DEFCON 22, Whitepaper, 2014.

[74] OpenDayLight Controller: MD-SAL:Architecture: Clustering, OpenDaylight, 2015.
[Online]. Available: https : / / wiki . opendaylight . org / view / OpenDaylight _

Controller:MD-SAL:Architecture:Clustering (visited on Jun. 24, 2015).

[75] Trustwave, “2012 Global Security Report,” Trustwave Holdings, Tech. Rep., 2012.

[76] H. Li, P. Li, S. Guo, and A. Nayak, “Byzantine-Resilient Secure Software-Defined Net-
works with Multiple Controllers in Cloud,” IEEE Transactions on Cloud Computing,
2014.

[77] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A Security
Enforcement Kernel for OpenFlow Networks,” in Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, ser. HotSDN’12, 2012.

95

https://groups.google.com/a/openflowhub.org/d/msg/floodlight-dev/2ZS0XHQPQzs/QVJwpSjzmgYJ
https://groups.google.com/a/openflowhub.org/d/msg/floodlight-dev/2ZS0XHQPQzs/QVJwpSjzmgYJ
https://groups.google.com/a/openflowhub.org/d/msg/floodlight-dev/2ZS0XHQPQzs/QVJwpSjzmgYJ
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering

Bibliography

[78] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility in Software-
Defined Networks: New Attacks and Countermeasures,” in Proceedings of 2015 An-
nual Network and Distributed System Security Symposium, ser. NDSS’15, 2015.

[79] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J. Noh, and B.
B. Kang, “Rosemary: A Robust, Secure, and High-performance Network Operating
System,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS’14, 2014.

[80] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a Secure Controller Platform
for Openflow Applications,” in Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, ser. HotSDN’13, 2013.

[81] M. Roe, “Cryptography and evidence,” University of Cambridge, Computer Labora-
tory, Tech. Rep., 2010.

[82] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN be your eyes:
Secure forensics in data center networks,” in Proceedings of the 2014 NDSS Workshop
on Security of Emerging Network Technologies, ser. SENT14, 2014.

[83] S. Scott-Hayward, C. Kane, and S. Sezer, “Operationcheckpoint: Sdn application
control,” in Proceedings of the 22nd International Conference on Network Protocols,
ser. ICNP 22, 2014.

[84] J. François and O. Festor, “Anomaly Traceback using Software Defined Network-
ing,” in International Workshop on Information Forensics and Security, ser. WIFS’14,
2014.

[85] Security Advisories, OpenDaylight, 2015. [Online]. Available: https://wiki.openda
ylight.org/view/Security_Advisories (visited on Jun. 24, 2015).

[86] S. Shin and G. Gu, “Attacking Software-defined Networks: A First Feasibility Study,”
in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN’13, 2013.

[87] Open Networking Foundation, “SDN Security Considerations in the Data Center,”
SDN Solution Briefs, 2013.

[88] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little, J. Van Reijen-
dam, P. Weissmann, and N. Mckeown, “Maturing of OpenFlow and Software-defined
Networking Through Deployments,” Comput. Netw., 2014.

[89] M. Kuzniar, P. Peresini, and D. Kostic, “What You Need to Know About SDN Flow
Tables,” Lecture Notes in Computer Science (LNCS), 2015.

[90] H. Nguyen Tri and K. Kim, “Assessing the impact of resource attack in Software
Defined Network,” in Proceedings of the International Conference on Information
Networking, ser. ICOIN, 2015.

[91] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid Prototyping
for Software-defined Networks,” in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, ser. Hotnets-IX, 2010.

[92] J. Dover, “A denial of service attack against the Open Floodlight SDN controller,”
Dover Networks LLC, Tech. Rep., 2013, Whitepaper.

96

https://wiki.opendaylight.org/view/Security_Advisories
https://wiki.opendaylight.org/view/Security_Advisories

Bibliography

[93] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advanced
Study of SDN/OpenFlow Controllers,” in Proceedings of the 9th Central and Eastern
European Software Engineering Conference in Russia, ser. CEE-SECR’13, 2013.

[94] J. Hart, “CVE-2015-1166: Exceptions thrown while deserializing truncated or mal-
formed packets,” ONOS, Tech. Rep., 2015. [Online]. Available: https : / / jira .

onosproject.org/browse/ONOS-605 (visited on Jun. 24, 2015).

[95] J. Dover, “A switch table vulnerability in the Open Floodlight SDN controller,” Dover
Networks LLC, Tech. Rep., 2014, Whitepaper.

[96] Q. Duan, C. Wang, and X. Li, “End-to-End Service Delivery with QoS Guarantee in
Software Defined Networks,” CoRR, 2015.

[97] V. Costa and L. Costa, “Vulnerability Study of FlowVisor-based Virtualized Network
Environments,” in Proceedings of the Second Workshop on Network Virtualization and
Intelligence for the Future Internet, ser. WNetVirt’13, 2013.

[98] W. You, K. Qian, X. He, Y. Qian, and L. Tao, “Towards Security in Virtualization of
SDN,” in Proceedings of the International Conference on Computer Communications
and Networks Security, ser. ICCCNS’14, 2014.

[99] Project Security, “Principles & Practices for Securing Software-Defined Networks
applied to OFv1.3.4 Ver 1.0,” Open Networking Foundation, Tech. Rep., 2014.

[100] Technical Specification: OpenFlow Specification 1.3.5, 0x04, Open Networking Foun-
dation, 2015.

[101] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain SDN con-
trollers,” in Proceedings of the Network Operations and Management Symposium, ser.
NOMS’14, 2014.

[102] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient and Scalable
Offloading of Control Applications,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ser. HotSDN’12, 2012.

[103] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Elasticon: An
elastic distributed sdn controller,” in Proceedings of the Tenth ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems, ser. ANCS’14,
2014.

[104] E. S. Roberto Doriguzzi Corin, “Netide: Removing vendor lock-in in SDN,” in 1st
IEEE Conference on Network Softwarization, ser. NetSoft’15, 2015.

[105] P. Hubbard. (2013). Bucking SDN controller interoperability will stifle innovation,
[Online]. Available: http://searchsdn.techtarget.com/opinion/Bucking-SDN-
controller- interoperability- will- stifle- innovation (visited on Jun. 24,
2015).

[106] T. Tsou, P. Aranda, H. Xie, R. Sidi, H. Yin, and D. Lopez. (2012). Sdni: A Message
Exchange Protocol for Software Defined Networks (SDNs) across Multiple Domains,
[Online]. Available: https://tools.ietf.org/html/draft-yin-sdn-sdni-00
(visited on Jun. 24, 2015).

[107] P. Joshi. (2015). Roadmap 2015: Distributed Core, [Online]. Available: https://

wiki.onosproject.org/display/ONOS/Roadmap2015:DistributedCore (visited on
Jun. 24, 2015).

97

https://jira.onosproject.org/browse/ONOS-605
https://jira.onosproject.org/browse/ONOS-605
http://searchsdn.techtarget.com/opinion/Bucking-SDN-controller-interoperability-will-stifle-innovation
http://searchsdn.techtarget.com/opinion/Bucking-SDN-controller-interoperability-will-stifle-innovation
https://tools.ietf.org/html/draft-yin-sdn-sdni-00
https://wiki.onosproject.org/display/ONOS/Roadmap 2015: Distributed Core
https://wiki.onosproject.org/display/ONOS/Roadmap 2015: Distributed Core

Bibliography

[108] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compositional Hypervisor
for Software-Defined Networks,” in 12th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’15, 2015.

[109] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Openflow: Meet-
ing carrier-grade recovery requirements,” Computer Communications, 2013.

[110] N. L. M. van Adrichem, B. J. van Asten, and F. A. Kuipers, “Fast Recovery in
Software-Defined Networks,” in Proceedings of the Third European Workshop on Soft-
ware Defined Networks, ser. EWSDN, 2014.

[111] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from Malicious Admin-
istrators,” in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN’14, 2014.

[112] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable and Vigilant
Switch Flow Management in Software-defined Networks,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS’13,
2013.

[113] M. Ambrosin, M. Conti, F. D. Gaspari, and R. Poovendran, “Lineswitch: Efficiently
Managing Switch Flow in Software-Defined Networking while Effectively Tackling
DoS Attacks,” in Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ser. ASIACCS’15, 2015.

[114] I. Mihai-Gabriel and P. Victor-Valeriu, “Achieving DDoS resiliency in a software
defined network by intelligent risk assessment based on neural networks and dan-
ger theory,” in Proceedings of the 15th International Symposium on Computational
Intelligence and Informatics, ser. CINTI 15, 2014.

[115] D. Gkounis, V. Kotronis, and X. Dimitropoulos, “Towards Defeating the Crossfire
Attack using SDN,” CoRR, 2014.

[116] B. Wang, Y. Zheng, W. Lou, and Y. Hou, “DDoS Attack Protection in the Era
of Cloud Computing and Software-Defined Networking,” in Proceedings of the 22nd

International Conference on Network Protocols, ser. ICNP 22, 2014.

[117] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris, “Com-
bining OpenFlow and sFlow for an Effective and Scalable Anomaly Detection and
Mitigation Mechanism on SDN Environments,” Comput. Netw., 2014.

[118] J. C. Mogul and P. Congdon, “Hey, You Darned Counters!: Get off My ASIC!” In
Proceedings of the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN’12, 2012.

[119] L. Schiff, M. Borokhovich, and S. Schmid, “Reclaiming the Brain: Useful OpenFlow
Functions in the Data Plane,” in Proceedings of the 13th ACM Workshop on Hot
Topics in Networks, ser. HotNets-13, 2014.

[120] P. Porras, S. Shin, M. Fong, and C. Yoon. (2015). Security-mode ONOS, ONOS,
[Online]. Available: https://wiki.onosproject.org/display/ONOS/Security-
Mode+ONOS (visited on Jun. 24, 2015).

[121] B. Chandrasekaran and T. Benson, “Tolerating SDN Application Failures with LegoSDN,”
in Proceedings of the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN’14, 2014.

98

https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS

Bibliography

[122] D. M. F. Mattos, L. H. G. Ferraz, and D. O. C. M. Bandeira, “AuthFlow: Authentica-
tion and Access Control Mechanism for Software Defined Networking,” Universidade
Federal do Rio de Janeiro, Tech. Rep., 2014.

[123] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting security
attacks in software-defined networks,” in Proceedings of 2015 Annual Network and
Distributed System Security Symposium, ser. NDSS’15, 2015.

[124] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “Hotswap: Correct and
Efficient Controller Upgrades for Software-defined Networks,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN’13, 2013.

[125] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M.
Rinard, “Automatically Patching Errors in Deployed Software,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser. SOSP’09,
2009.

[126] J. Poimboeuf, “Live Kernel Patching Update,” Red Hat Enterprise Linux, Tech. Rep.,
2015. [Online]. Available: http://rhelblog.redhat.com/2015/03/23/live-

kernel-patching-update/ (visited on Jun. 24, 2015).

[127] Y. Zhang, N. Beheshti, and R. Manghirmalani, “Netrevert: Rollback Recovery in
SDN,” in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN’14, 2014.

[128] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. Zahraee, and H. Karl, “Max-
inet: Distributed emulation of software-defined networks,” in Proceedings of the 13th

Networking Conference, ser. IFIP’14, 2014.

[129] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow Random Host Mutation: Trans-
parent moving target defense using software defined networking,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser. HotSDN’12,
2012.

[130] R. Bifulco and G. Karame, “Towards a Richer Set of Services in Software-Defined
Networks,” in Proceedings of the 2014 NDSS Workshop on Security of Emerging
Network Technologies, ser. SENT’14, 2014.

[131] A. Pani, “Scalable stateful firewall design in openflow based networks,” pat. US8789135
B1, U.S. Classification 726/1, 726/25, 726/24, 726/11, 370/235, 726/23, 726/13,
726/12, 370/229; International Classification G06F17/00; Cooperative Classification
H04L63/02, 2014.

[132] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: Building Robust Firewalls for
Software-defined Networks,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN’14, 2014.

[133] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson, “Fresco: Modu-
lar Composable Security Services for Software-Defined Networks,” in Proceedings of
the 20th Annual Network and Distributed System Security Symposium, ser. NDSS’13,
2013.

99

http://rhelblog.redhat.com/2015/03/23/live-kernel-patching-update/
http://rhelblog.redhat.com/2015/03/23/live-kernel-patching-update/

Bibliography

[134] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “Orchsec: An orchestrator-
based architecture for enhancing network-security using Network Monitoring and
SDN Control functions,” in Proceedings of the Network Operations and Management
Symposium, ser. NOMS’14, 2014.

[135] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying
Middlebox Policy Enforcement Using SDN,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, ser. SIGCOMM’13, 2013.

[136] European Telecommunications Standards Institute, “Network Functions Virtualisa-
tion,” in Proceedings of the SDN and Openflow World Congress 2012, 2012.

100

	Introduction
	Objective
	Outline

	Software-Defined Networking
	Traditional Network Architecture
	The Motivation for Software-Defined Networking
	Past and Present of SDN
	OpenFlow: A General Overview
	Standardisation Work
	OpenFlow Infrastructure
	Data Plane
	Control Plane
	Application and Management Plane
	Constructing a SDN Blueprint

	Security Threats
	General Adversary and Threat Methodologies
	STRIDE
	Attack Trees
	General Threat Modelling Methodologies

	STRIDE Assessment
	Data Flow Analysis
	Spoofing
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service
	Elevation of Privilege

	Threat Summary

	Threat Mitigation and Security Opportunities
	A Secure and Dependable Data Plane
	Clearly Define Security Dependencies and Trust Boundaries
	Assure Robust Identity
	Build Security based on Open Standards
	Protect the Information Security Triad
	Protection Operational Reference Data
	Make Systems Secure by Default
	Protect Accountability and Traceability
	Properties of Manageable Security Controls

	The Secure ONF Network
	A Secure and Dependable Control Plane
	Replication
	Diversity
	Self-Healing Mechanisms
	Dynamic Device Association
	Trust Between Devices and Controllers
	Trust Between Application and Controller Software
	Security Domains
	Secure Components
	Fast and Reliable Software Update and Patching
	Selected Additional Research Efforts

	Outlook on Software-Defined Middleboxes

	Summary and Evaluation
	Constructing the Secure Software-Defined Network
	Evaluation
	Spoofing
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service
	Elevation of Privilege
	Concluding remarks

	Conclusions and Future Work
	Future Work

	List of Figures
	List of Tables and Abbrevations
	Bibliography

