
This	 paper	 introduces	 CMDB	 pa4erns	 as	 an	 approach	 to	 help	 address	
conceptual	 issues	 in	 CMDB	 implementa7ons	 and	 provide	 prac77oners	 with	 a	
common	 set	 of	 terms	 for	 useful	 designs.	

Configura7on	 Management	 Database	 (CMDB)	 is	 one	 of	 the	 most	 central	 concepts	 in	
IT	 Service	 Management	 (ITSM).	 the	 CMDB	 is	 a	 tool,	 maintained	 by	 the	 ITSM	 process	
Configura)on	 Management,	 that	 provides	 informa7on	 about	 Configura)on	 Items	 (CI)	
which	 contribute	 to	 the	 delivery	 of	 an	 IT	 service,	 as	 well	 as	 the	 rela7onships	 between	
CIs	 and	 between	 CIs	 and	 IT	 services.	 Descrip7ons	 and	 discussions	 of	 the	 majority	 of	
ITSM	 processes	 defined	 in	 ITIL	 [1]	 or	 ISO/IEC	 20000	 [2]	 refer	 to	 the	 CMDB	 as	 source	
of	 informa7on,	 vital	 for	 the	 process	 to	 func7on	 effec7vely.	 	

978-1-4799-0913-1/14/$31.00 ©2014 IEEE

The	 leading	 ITSM	 publica7ons	 and	 standards	 describe	 it	 in	 rather	 general	 terms.	 ISO/
IEC	 20000	 defines	 a	 CMDB	 as	 a	 data	 store	 used	 to	 record	 a3ributes	 of	 configura)on	
items,	 and	 the	 rela)onships	 between	 configura)on	 items,	
throughout	 their	 lifecycle	 [1]	
(Unfortunately,	 since	 its	 third	 versions	 published	 in	 2007,	 the	 ITIL	 books	 have	 started	
use	 the	 term	 CMDB	 to	 denote	 a	 single	 database,	 while	 newly	 introduced	 concept	
Configura)on	 Management	 System	 	 or	 CMS	 –	 a	 kind	 of	 „super	 CMDB“	 which	 includes	
tools	 for	 collec)ng,	 storing,	 managing,	 upda)ng,	 analysing	 and	 presen)ng	 data	
about	 all	 configura)on	 items	 and	 their	 rela)onships	 –	 now	 serves	 the	 same	 purpose	
as	 the	 original	 CMDB	 concept	 [2].	 For	 simplicity,	 we	 will	 s7ck	 to	 the	 term	 CMDB	 in	 its	
original	 meaning	 for	 the	 remainder	 of	 this	 paper.)	
	
In	 prac7ce,	 a	 CMDB	 is	 usually	 not	 a	 single	 database,	 but	 a	 tool	 that	 synchronizes	 and	
reconciles	 configura7on	 informa7on	 from	 various	 sources	 (management	 data	
repositories),	 and	 enables	 the	 mapping	 and	 visualiza7on	 of	 CI-‐rela7onships	 [4].	 	 As	 a	
piece	 of	 so[ware,	 it	 needs	 to	 be	 integrated,	 and	 in	 most	 cases	 also	 shares	 a	 common	
pla\orm,	 with	 other	 ITSM	 applica7ons	 to	 form	 an	 ITSM	 Suite,	 that	 allows	 CIs	 to	 be	
linked	 to	 ar7facts	 of	 other	 ITSM	 processes	 like	 incident	 records,	 problem	 records,	
change	 records	 etc.	
	
	
	

Despite	 its	 importance,	 the	 guidance	 of	 ISO/IEC	 20000	 and	 ITIL	 on	 implemen7ng	
CMDBs	 (or	 CMSs)	 remains	 surprisingly	 vague.	 	
As	 a	 consequence,	 the	 CMDB	 solu7ons	 that	 ITSM	 so[ware	 vendors	 and	 ITSM	
prac77oners	 come	 up	 with,	 differ	 quite	 significantly	 in	 scope,	 structure	 and	 content.	
	
The	 expecta7ons	 for	 what	 a	 CMDB	 should	 offer	 are	 o[en	 unrealis7cally	 high,	
resul7ng	 in	 too-‐ambi7ous	 projects	 of	 which	 quite	 a	 large	 por7on	 fail	 [3],	 and	 leading	
some	 ITSM	 experts	 to	 ques7on	 the	 prac7cality	 of	 the	 whole	 concept	 [6].	
Gartner	 sees	 the	 CMDB	 currently	 heading	 downwards	 in	 its	 IT	 opera7ons	
management	 hype	 cycle	 [5].	
	
Clearly,	 more	 concrete	 guidance	 on	 implemen7ng	 CMDBs	 is	 needed.	 	

A very common obstacle towards a successful CMDB implementation are
unrealistic expectations.
Most IT staff wish for access to better and more detailed documentation. As
the CMDB concept is so vaguely defined, there is – almost as with a
Rorschach inkplot – much room for interpretation and many envision a tool
that will finally address all their documentation needs (and is thankfully
provided, paid for and maintained by an ITSM project team).It is therefore
important to manage these expectations and to clarify which requirements a
CMDB solution will have to fulfill, and which functionalities are maybe nice-to-
have, but non-essential.

The CMDB is a tool to be used in the context of ITSM processes. The use
cases (or query cases) it needs to address, and which should be prioritized,
are in the context of ITSM processes,, e.g. problem management or change
management. Fulfilling all IT administrators’ requirements for a documentation
tool with a single solution of is an unachievable goal. It is important to convey
that in most cases, introducing a CMDB solution at an IT service provider
organization will replace only very few, if any, existing tools for documenting
configuration information.

There is an abundance of very varied software that claims to support
Configuration Management or CMDB implementation.
Still, almost all leading commercial solutions share the same basic
characteristics:
They support the definition of templates (or class definitions) for CI records,
which can contain typed (int, char, boolean…) attributes. CI-relationships are
almost always limited to be binary and directed, but can otherwise be freely
defined or adapted. Samples are provided, but generally the definition of the
CI record templates and CI-relationship types is up to the organization that
wants to implement the CMDB.
This is a quite demanding task for most organizations, that do not specialize in
ITSM, and usually requires extensive third party consulting.

Our goal is to introduce CMDB patterns – doing for CMDB design what
Fowler‘s Analysis Patterns [7] did for the design of business information
systems: Start to provide higher-order designs that can be reused across
projects and types of infrastructures and thereby facilitate the future reuse,
discussion and sharing of good CMDB design ideas.

In the following, we will discuss our first three patterns, which evolved while
facing design issues during the development of a CMDB for services of the
Leibniz Supercomputing Centre.

The first pattern is called Collective CI and is, of the patterns presented in this
paper, probably the most commonly used.

The idea is simple: If sets of components are either kept at an identical
configuration or are not configurable (e.g. keyboards, monitors…), a single CI
(Collective CI) can act as a placeholder for many components.

Of course, some information is lost when this pattern is used. If a set of
components is configured identically, but the documentation of the
relationships for each individual component is still essential, this pattern
should not be used.
However, quite often the most important CMDB use cases can still be
addressed using one CI for many components, and the reduction in
complexity actually enables a simpler and more effective analysis.

In this only slightly simplified example based on a real-world scenario (cp.
http://www.lrz.de/services/compute/supermuc/systemdescription/), the
Collective CI pattern is used to provide a very simple CMDB model of a
supercomputer.
The first idea for creating a CMDB model of this supercomputer was to mimic
the system architecture, creating one CI for each of the 900 hardware nodes
and linking them to the CIs of the “islands” in which they are arranged.

However, all the nodes fall into one of just two hardware types, so-called thin
nodes (with two 8-core processors each) and fat nodes (with four 10-core
processors each). All nodes of each type boot from one of two software
configurations, as a Compute Node or as a Login Node.
Consequently, for managing software-related incidents, problems, changes
and releases, the nodes of each type are interchangeable. As hardware
failures of individual nodes are relatively easy to diagnose and the nodes
easily exchanges, only little value is gained from distinguishing identically
configured nodes.
The model using the Collective CI pattern contains only 4 CIs compared to the
over 9000 that would have been required for the more straight-forward
approach. Still, the utility for the ITSM processes is almost as high and quite a
few typical use cases – e.g. analysing if a number of similar incidents has
occurred on all types of nodes or just one – are actually more easily
addressed.

In most commercial CMDB solutions, CI-relationships are point-to-point (1-
to-1) and are defined by direction (source, destination) and type („depends
on“, „is part of“, „is backed up by“ etc.) only.

Especially for the documentation of complex network topologies this often
results in models that are either very complex – or miss representing essential
information.

Above	 Screenshots	 show	 the	 visualiza7on	 of	 two	 models	 of	 the	 same	 infrastructure,	
as	 rendered	 with	 an	 "auto	 layout"	 func7on	 of	 a	 commercial	 CMDB	 solu7on	 (iET	
Solu7ons	 CMDB).	
	
A	 requirement	 was,	 that	 the	 physical	 interconnec7on	 –	 “which	 port	 of	 the	 switch	 is	
the	 connected	 to	 interface	 e6a	 of	 the	 NAS	 filer?”	 –	 should	 be	 documented	 in	 the	
model.	
Model	 1,	 created	 with	 the	 out-‐of-‐the-‐box	 data	 model	 of	 the	 CMDB	 solu7on,	 achieves	
this	 by	 defining	 NAS	 interfaces	 and	 switch	 ports	 as	 CIs	 and	 using	 simple	 (a4ribute-‐
less)	 “network	 connec7on”	 rela7onships.	
Model	 2	 uses	 an	 adapted	 data	 model,	 realizing	 the	 rich	 CI	 rela)ons	 pa4ern,	 adding	 a	
“source	 port”	 and	 “des7na7on	 port”	 a4ribute	 to	 the	 network	 connec7on	
rela7onship.	 It	 would	 also	 be	 rela7vely	 easy	 to	 add	 other	 informa7on	 like	 VLAN	
numbers,	 link	 capacity	 etc.	 without	 introducing	 more	 CIs.	
	 	 	
When	 visualized,	 model	 2	 is	 obviously	 simpler	 and	 more	 intui7ve	 to	 understand.	
One	 of	 the	 most	 interes7ng	 features	 of	 the	 modeled	 network	 topology	 –	 	 that	 the	
NAS-‐filers	 are	 connected	 redundantly	 via	 switches	 SWP1-‐2WR	 and	 SWP2-‐2WR	 –	 is	
more	 readily	 apparent	 by	 looking	 at	 the	 representa7on	 of	 model	 2.	 	

In out-of-the-box state, most CMDB solutions support CI records with simple
attribute types (integer, char etc.) only. Modeling of interdependencies – e.g.
“what IP addresses are bound to which MAC addresses?” – would require the
creation of many more CIs (e.g. one CI for each network address on each
layer) with many relationships.
Having multi-value attributes (aka an attribute type “record”) offers a much
more efficient solution.
Typical applciations are the documentation of the network configuration (e.g.
<DEV>;<MAC>;<IPv4>;<IPv6>;<DNS>) or the mass storage configuration
(e.g. <TYPE>;<DEVICE>;<SIZE>;<MOUNTPOINT>) of server systems.

CMDB patterns are documenting “good practice” (or “best practice”) in CMDB
design.
In the long term, they should not remain the product of a small number of
authors, but be used, discussed, refined and extended by a community of
CMDB practitioners.

The first step in the further development of a CMDB pattern catalogue would
therefore be promoting the use of existing patterns, and disseminating the
“pattern idea” for CMDBs in general, e.g. by integrating CMDB patterns in a
future guide on Configuration Management in FitSM-5 [8].

