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Abstract— The advent of host virtualization has increased the
number of management attribute classes and instances. At the
same time an additional degree of heterogeneity has been intro-
duced, due to different hypervisor products coupled with multiple
guest operating systems. These changes obviate provisionary
methods of harmonising management information.
We analyse the problem dimensions of attribute harmonisation
according to a common management scenario and show why
heterogeneity at hypervisor and VM level is difficult to deal with
at present. In response, we present a classification of bottom-
up attribute matching patterns and propose a methodology
for the systematic processing of management attributes. As a
proof-of-concept, we describe our implementation of an attribute
normalising framework extending the libvirt library.
Keywords: management attribute, heterogeneity, virtual
machine, hypervisor

I. INTRODUCTION

Management attributes are the foundation of any management
operation, be it in virtualized infrastructure, or in traditional
service provisioning based purely on physical systems. With-
out current information about the managed objects, their ag-
gregations, and the system they compose, sensible and useful
management actions cannot be executed.
Yet, even very similar objects are described by their creators
with attribute sets that differ in syntax, value ranges, semantics,
and the manner in which they can be accessed. Management
integration requires us to bridge this heterogeneity in order to
create a consistent view on the information base.
Two fundamental avenues of approach lend themselves to this
task:

1) the top-down specification of attributes, that should be
implemented by all vendors and products, in order to
adhere to the common specification

2) the bottom-up analysis of existing management infor-
mation, and the creation of a normalisation layer that
“translates” between the heterogeneous attribute sets
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With respect to effectiveness, both of these strategies carry
their risks: the bottom-up approach might be plagued by
frequent changes in products and in the arrangement of the
provided management information with respect to a given
object class; the top-down approach may be implemented
in a sketchy manner, and be merely declared to have been
respected, in order to stipulate adherence to a standard.
We have examined basic attribute sets of common host vir-
tualization products, and found that, while they do provide
useful management information, this management information
is presented in different forms, on different value scales,
distributed among several attributes or consolidated into a
single value, and accessible by means of different protocols
and programming interfaces.
An examination of adherence to a common representation
shows, indeed, that similarity alone is insufficient in practise.
On the other hand, the common abstraction mechanisms
(libraries, management system plug-ins) constrain themselves
to equalise the method of access to management attributes and
function on different systems, but fall short of providing true
normalisation mechanisms.

A. Increase in the number of inter-related attributes

Before virtualization changed the data centre landscape, man-
agement attributes of hosts were solely associated to the
hardware, and to the single operating system running on each
given machine. Due to the introduction of hypervisors, and in
consequence of the possibility to operate multiple, different
OSs on each machine, the number of accessible attribute
instances (values) has grown significantly. At the same time,
the introduction of a virtualization layer has increased the
number of attribute classes, as well.
Any improvised approach to the harmonisation of attributes
across different systems and vendors is increasingly impaired
in its effectiveness. We require a systematic approach to the
classification of attributes in order to enable the normalisation
of their values for the benefit of management and operations.
Thus, a practical solution should account for all harmonisation
dimensions, while taking into consideration as many of their
facets as possible.978-1-4577-1811-3/11/$26.00 c© 2011 IEEE



B. Contribution and structure

On the basis of fundamental attributes of the VMware ESXi
and Xen hypervisors, we examine the requirements on nor-
malisation of attributes, develop a classification scheme and
present a generic normalisation extension for libvirt (a well-
known access library for hypervisors) that allows access to
hypervisor and VM attributes in a consistent manner, with
common value metrics, and common semantics.
We detail our problem statement and stipulate the requirements
on the normalisation procedure and software in Section II. In
accordance to our analysis of a set of selected attributes, we
propose a classification scheme instrumental for normalisation,
as well as a methodology for the classification and normali-
sation of attributes, in Section IV. For a small set of example
attributes, we discuss an architectural extension of libvirt in
Section V, that allows normalised access to these attributes.
We discuss and evaluate this solution from a conceptual as
well as a practical perspective before concluding the paper in
Section VI.

II. PROBLEM ANALYSIS

The problem at hand is illustrated by means of a typical man-
agement scenario, serving as a basis of the detailed analysis
of exemplary attributes. Based on the differences encountered,
we formulate the dimensions of our problem.

A. Scenario

Consider the exemplary use-case of a teaching environment
illustrated in Figure 1, that comprises two virtualized compute
clusters running the VMware and Xen hypervisors, respec-
tively.
The Xen-based cluster is managed by Eucalyptus to offer
cloud-like infrastructure services. The VMs operated in this
cluster are intended for short term use and perform, in gen-
eral, very compute-intense operations. On the other hand, the
VMware cluster comprises less resource-demanding VMs, that
typically function as web servers, CVS repositories etc. for
longer-term projects.
From an administrative point of view, the management of
the two clusters does not allow for any synergies, as every
cluster requires its own management procedures and tools.
Consequently, the same work to keep a clusters operational
needs to be carried out using two completely different man-
agement models and front-ends. Obviously, harmonization of
the clusters from a management perspective—while keeping
the internal separation of VMs (namely the compute-intense,
short-lived VMs versus the longer lasting, but less demanding
VMs— is highly desirable.
Equivalent management information is fundamental to any
consolidation of management effort. Thus, to harmonise the
management of the two virtualization-enabled clusters, one
has to take a closer look at the management attributes of their
respective virtualization layer. However, even basic operations
and information representations like VM power states, virtual

machines’ or the hosts’ main memory differ from one vendor
to the other. Section II-B provides a more in-depth examination
of these examples.
A unified management view is achievable in two principal
ways (top-down and bottom-up), supported by different frame-
works and pre-existing resources. Top-down data models like
the Common Information Model (CIM, also refer to Sec-
tion III-A for more detailed information) try to abstract generic
scenarios and build a foundation to suit every given use-case.
To accommodate the broadest possible range of products, the
CIM (and every other model attempting specification down to
the attribute level) is obliged leave a lot of degrees of freedom
to the hypervisor implementers; this, in turn, may entail non-
interoperability among some CIM-compliant implementations,
as a consequence of different use of those degrees of freedom.
On the other hand, bottom-up data models as in this scenario
given by the VMware ESXi and Xen hypervisors are devel-
oped in isolation from each other. Thus, their harmonisation
must take place externally, in the context of the (integrated
management) system, while no changes at the hypervisors’
level are necessary. A possible architecture that facilitates this
approach is for example given by the Service Monitoring
Architecture (SMONA, refer to Section III-A.3 for more
details).

B. Attribute examples

We have analysed a number of significant management at-
tributes that should be part of an integrated management view
in the scenario with respect to their semantics and syntax.
We juxtaposed the attribute definition for the Xen hypervisor
with that of VMware’s, but also with the corresponding
definition given by the Common Information Model (CIM).
The following two examples demonstrate similarities but also
significant differences in the presentation and semantics of the
attributes.
1) Virtual machine power state: Our first example is the
power state of a virtual machine. This is an attribute we expect
every hypervisor to have.
The CIM models many power states as optional and supports
an vendor defined state to match many hypervisors. The
modelled states are as following [18] (optional states are
denoted by *):

• defined: does not consume any resources of the virtualiza-
tion platform, except persistent storage. Virtual machine
is inoperable (not able to perform tasks)

• active: Virtual Machine is instantiated at the virtualization
platform and in general able to perform tasks. But some
virtual resources may not be enabled to perform tasks
for various reasons, for example given a missing resource
allocation.

• paused *: Virtual Machine is not able to perform tasks,
but resources and resource allocations remain as in the
active state.

• suspended *: Virtual Machine state and resources are
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Fig. 1. A use-case scenario as given at University

saved on non-volatile storage.
• Vendor Defined *: The CIM gives the possibility of

defining further vendor defined states.
• unknown *: Pseudo-state — tells that the state cannot be

determined, e.g. there is no connection to the virtualiza-
tion platform because of networking problems

In Xen the power state of a virtual machine has an data-type
of enum vm power state. On the wire format the enum is
represented by the string identifier of the enum element. The
enum lists the following possibilities [20]:

• Halted: The virtual machine is not executed
• Crashed: Hypervisor detected a crashed guest OS; Virtual

Machine has to be transitioned into the halted state
• Paused: Virtual machine is paused, machine state is hold

in the host’s working memory
• Running: Virtual machine is running
• Suspended: Virtual machine is paused, system state is

stored on background storage
• Unknown: Some other unknown state

A VMware ESXi Server exposes a VirtualMachinePowerState
enumeration type with three possible states, via the VI-SDK
to the manager:

• poweredOn: Virtual Machine is powered on
• poweredOff: Virtual Machine is powered off
• suspended: Virtual machine is suspended, which means

that its execution is paused and the machine’s states are
saved on a datastore

The vendor defined state in the CIM gives the possibility to
match every single hypervisor, for example Xen’s crashed
state. The underlying issue is that these values represent
different vendors’ state machine models for VM status. Thus, a
mapping of the attribute entails the establishment of semantic
equivalence between those state machines.

2) Virtual machine and host memory: Another example for
attributes in an virtualization environment are the total and free
host memory and the total and free virtual machine memory.
In the CIM the total virtual machine memory is modelled by
a CIM Memory class and can be a composition of more than
one memory size attribute modelled by the same class. This
class has among others the following properties quoted from
[15]:

• StartingAddress: Starting address of an memory extend,
in the case of total virtual machine / host memory this
shall be 0.

• EndingAddress: Ending address of the highest memory
extend compositing this memory slice

• BlockSize: Size of a memory block
• NumberOfBlocks: Number of memory blocks
• ConsumableBlocks: Number of available memory blocks,

shall be 0 if unknown

Units shall be kilobyte (byte ∗ 210).
Neither Xen nor VMware expose information about memory
sizes via their SDKs. Instead, some memory attributes describe
total and free memory of hosts and virtual machines.
Xen exposes the following attributes for host memory via the
host metrics class:

• memorytotal: total memory of the host, in bytes
• memoryfree: free memory on the host system, in bytes

and among others the following attribute for virtual machine
memory via the VM metrics class:

• memoryactual: memory actually assigned to a virtual
machine’s guest OS in bytes

VMware exposes the following attributes concerning host
memory:

• memorySize: Total size of host memory in bytes, for



example exposed via the HostHardwareInfo object
• overallMemoryUsage: Actual consumed memory in

megabytes, exposed via the HostListSummaryQuickStats
object

and among many others the following attribute concerning
virtual machine memory:

• memorySizeMB: Configured memory size in megabytes,
exposed via the VirtualMachineConfigSummary object.

It is obvious, that mapping these attributes is not trivial. A
detailed account of the aspects pertaining to such mappings is
given in the following Section II-C.

C. Dimensions of harmonisation

Attributes constitute mere representations of management
information, and they differ in the manner in which they
represent the same piece of information. The differences may
be syntactic, semantic, related to the access to their values.
Their harmonisation, as a prerequisite to the normalisation of
attribute values, must cover all three dimensions in order to
be effective.
1) Semantic differences: Attributes can be different in their
semantics, even though they seem to represent the same item
of management information.
A simple example is an attribute describing the size of a
hard drive in megabytes: given only a value, this value may
represent the size

• in units of 220 bytes of raw disk capacity, i.e. before
partitioning an file-system creation

• in units of 106 bytes of raw disk capacity
• after partitioning, subtracting some space, either in pow-

ers of two or ten
• after partitioning, available in a created file-system, again,

in powers of two or ten
• available in a file-system, minus an arbitrary space re-

served by the operating system

Certainly, one might point out that “megabytes” represent val-
ues in powers of ten, and that there is a proposed convention to
call the power of two approximation “mebibyte” [1]. However,
there is nothing to compel an attribute provider to adhere to
such conventions. Short of a precise definition of attribute
semantics, it is impossible to ascertain their exact meaning
from their names or from their context.
This issue is exacerbated when the semantics of an attribute
not only needs to be understood, but values of (seemingly)
the same attribute originating from different providers need to
be compared, on the same scale of units, assuming the same
value bounds.
In addition to the meaning of the attribute, we must thus
define:

• the bounds and the scale of its values,
• its dependence on other attributes, and
• the unit of its values.

2) Syntactic differences: Attributes that carry the exact same
meaning can still obviate their own effective use in manage-
ment by differing syntactically, i.e. in aspects pertaining to
form. They are sketched in the following.
a) Names and namespaces: attributes can differ in their own
names, as well as in the namespace within which they may
be referenced. While the name signifies the attribute itself,
its namespace states the context in which it has meaning.
Often, the namespace can be mapped to an object representing
the owner of the attribute. For example, VMware’s attribute
memorySize represents by this identifier the total memory size,
while its namespace, the class HostListSummaryQuickStats
denotes the context of the value to be with respect to the
physical host.
b) Data structure and attribute position: Attribute values are
organised in data structures that may be scalar or compound.
For example, the size of a storage unit may be given as “100”
or, at the whim of an API designer, as “{100}”. Potential
compound data structures include vectors and lists, as well as
heterogeneous structures and objects.
While this simple case will not impede the use of the attribute
much, in some more difficult cases, attribute values are ar-
ranged in an array, to be retrieved via the correct index value.
Obviously, the position of the attribute value within a data
structure can differ among implementations.
c) Data type and precision: The data type of an attribute is to
some extent given by the quantity it represents, however it can
differ in representation: in our example, the size of the storage
unit may be represented by an integer, or a double precision
integer, or by any variant of floating point values.
Thus, the use of such attribute values must take into the
account the data type and, consequently its syntax. In some
particular cases (e.g., for timer values), the precision of the
value may be significant as well (e.g. float, double).
3) Access-related differences: The practical use of manage-
ment attributes requires effective access to their values. Even
attributes equal in semantics and syntax may afford different
manners in which their values are retrieved.
a) Access protocols, function calls and parameters: Hypervi-
sor vendors equip their products with different management
protocols that may be employed to request attribute values.
In the same manner, the programming interfaces they provide
are different in the functions they provide, and in the manner
in which theses function are used: they may (as the attributes
themselves) differ in semantics and syntax, as well as in the
formal parameters they require.
b) Access location: Due to some properties of virtual compo-
nents (e.g. migration of VMs) but also as a side-effect of the
quick and flexible configuration of virtualized infrastructure,
the location of attributes may vary. This location denotes the
position of the object harbouring the attribute values, within
the infrastructure.
c) Validity in dependence of context: Some attributes are only
valid in specific situations, depending on other non-permanent



properties of the system. For example, it is meaningless to
evaluate an attribute describing the interface properties for a
network interface not configured in the system. This context
of attribute validity may differ among attribute providers.
d) Rate of change: The validity of an attribute value is also
dependent on its rate of change, which may differ from one
attribute provider to the other.
In this paper, we address the semantic and syntactic differences
by means of classification in Section IV. The access-related
differences are highly implementation specific. We show how
they can be overcome in the discussion of our implementation
in Section V.

III. STATE OF THE ART

In the area of management concepts and their implementation
in regard to virtualization, one finds management models on
the one hand and management interfaces and their implemen-
tations on the other hand. In the following, we discuss a num-
ber of relevant representatives of these conceptual resources.

A. Management models

In the context of this paper, resources focusing on attributes
per se are relevant, as well as those with specific reference
to virtualization. Section III-A.1 discusses the Virtualization
Management working group’s popular Open Virtualisation
Format (OVF), Section III-A.2 gives an overview of the rel-
evant Common Information Model Profiles while Section III-
A.3 takes a closer look at the Service Monitoring Architec-
ture (SMONA).
1) Virtualization Management Initiative (VMAN): The Virtu-
alization Management Initiative’s work is an extension to the
Common Information Model. VMAN aims at managing the
entire lifecycle of virtual appliances, starting with the devel-
opment, packaging and distribution, deployment, management
during runtime up to the final retirement of an appliance.
The Open Virtualisation Format (OVF) [10] probably is one
of the most relevant specifications coming from the VMAN
working group. The OVF basically consists of two parts. On
the one hand, OVF specifies an XML-based description format
for virtual machines (VM). This description contains details
about the VM’s properties such as amount of main memory,
number of network interface cards etc. On the other hand, OVF
specifies an open disk image format. This image file contains
the images for the VM’s hard disk drives, i.e. block devices.
2) CIM Profiles: As the Common Information Model (CIM)
allows for extensions, the CIM Profiles do specify such exten-
sions. Under the umbrella of the Virtualization Management
Initiative, ten relevant CIM Profiles have been specified:

• The Resource Allocation Profile [12] on the one hand
defines the resource-pool-lifecycle management and rela-
tionships, on the other hand it defines the basic resource
allocation pattern for resource pools.

• The System Virtualization Profile [16] defines an object-
oriented model for representing host systems and for

discovering virtual machines. In addition, basic manage-
ment operations on virtual machines as for example their
creation, deletion and modification are specified.

• The Allocation Capabilities Profile [7] is specified as
an extension to referencing profiles and adds the ability
to represent the property values for resource allocation
requests for a resource.

• The Processor Resource Virtualization Profile [11] again
is an extension to referencing profiles. It adds the ca-
pabilities to describe and manage CPU-like resources to
virtual machines.

• The Memory Resource Virtualization Profile [9] in ac-
cordance to the aforementioned Processor Resource Vir-
tualization Profile, this profile adds the capabilities to
describe and manage main memory-resources to virtual
machines.

• The Storage Resource Virtualization Profile [14] is the
third of four profiles extending the possibilities to de-
scribe and manage virtual machines’ resources. In this
case, the management of storage of virtual machines (i.e.
virtual hard drives) is targeted.

• The Ethernet Port Resource Virtualization Profile [13] as
the fourth profile is to represent and manage the allocation
of Ethernet ports to virtual machines.

• The Virtual System Profile [18] is an autonomous profile.
It specifies an object-oriented model to inspect virtual
machines and their components. It also specifies a basic
set of control operations as for example pausing or
suspending a virtual machine.

• The Generic Device Resource Virtualization Profile [8] is
similar to the Processor, Memory, Storage and Ethernet
Port Resource Virtualization Profile. It comes into play
when an unusual device type is to be described or
managed and no more specific profile exists.

• The Virtual Ethernet Switch Profile [17] is an autonomous
profile again. It defines an object-oriented model to
inspect virtualized Ethernet switches.

In [6] it is concluded that “there are DMTF schemas con-
cerning the management of virtual machines, but no vendor
actually implements them correctly”.

3) The Service Monitoring Architecture: The Service Moni-
toring Architecture (SMONA) [5], [4], [3] addresses the basic
requirement to an architecture supporting synthesis of service
management information to reuse existing data sources, such
as already deployed management tools. The SMONA defines
a 5-layer architecture.
The resource layer allocates the resources of relevance to the
management tasks and describes the management information
available and the interfaces to access them in their “raw” form.
The relevant information is then passed on to the platform
specific layer. This layer represents the existing management
tools that are employed to manage the resources located on
the resource layer. Management information available on this
layer (still vendor-specific) is gathered by adapters (agents)
and relayed to the next-higher layer.



The information gathered on the platform specific layer is
passed on to the platform independent layer. This layer
provides unification of the data format and basic configura-
tion options. The adapters are configured by the next higher
integration and configuration layer, which also comprises a
control component, the rich-event composer. This composer
aggregates and correlates the adapters’ data.
The architecture’s clients are found on the top-level applica-
tion layer. The clients in general are the management applica-
tions. The Service Information Specification Language (SISL)
allows the specification of the attributes to be queried, the
manner of their aggregation and correlation and the conditions
governing their provisioning to management applications.

B. Management interfaces and their implementations

In the following, three major vendors’ management prod-
ucts for virtualized IT-infrastructure are briefly introduced.
Section III-B.1 will focus on the VMware vSphere API,
Section III-B.2 describes the XenAPI in more detail, and
Section III-B.3 introduces the libvirt programming library.
1) VMware vSphere API: The current management interface
to the VMware product line (i.e. VMware vSphere and the
VMware hypervisor ESXi) is called VMware vSphere API,
which sometimes is also referred to as Virtual Infrastructure
SDK or VI-SDK [21]. The VMware vSphere API specifies a
Web service that is offered by VMware’s hypervisors. It con-
forms to the Web Services Interoperability Organization Basic
Profile 1.0 and thus makes use of SOAP 1.0, WSDL 1.1 and
XML Schema 1.0. The data transport is conducted under the
use of HTTP/S and thus may be authenticated and encrypted.
VMware’s data model is organized in a tree-like structure.
The tree’s root is called the ServiceInstance. The tree’s nodes
represent objects, while the leaves hold the attributes and their
values. Figure 2 illustrates the tree-like structure. In order to
access any managed object, the so-called Managed Object Ref-
erences (MOR) are employed. The underlying, object oriented
information model implies support for inheritance.
2) XenAPI: The XenAPI [20] – sometimes also referred to
as Xen Management API – is a library intended for the
management of Xen-based host systems over the network. It
specifies an interface for configuring and controlling virtual
machines remotely, that are executed on a Xen host. The
XenAPI has been introduced with Xen in its version 3.0.3 and
was officially released with version 3.1.0. The XenAPI exists
in two slightly different, but unfortunately not compatible
variants: libxen for the management of the free/open source
Xen, while libxenserver comes with Citrix’s commercial Xen
products.
The XenAPI is specified as a collection of remote procedure
calls based on XML-RPC. It grants access to a large variety
of management attributes. For this purpose, get()-methods as
well as set()-methods are implemented.
The data model is build of a collection of classes which
are referenced among each other. Each class then comprises

several attributes.
The XML-RPC transfer is performed using HTTP/S and
thus authenticated and encrypted, and it allows access to the
XenAPI from within every programming language. Among
others, there are library implementations for C, Java and
Python.
3) libvirt: The libvirt-project provides a library for abstracting
the management of host virtualization and to hide the under-
lying heterogeneity of the hypervisors. libvirt is distributed
for several hypervisors, among them Xen, VMware ESXi
and GSX, KVM, Microsoft’s HyperV and VirtualBox.
Mainly, libvirt focuses on the management of VMs during the
execution phase of their life-cycle. Consequently, great parts
of libvirt’s specification are on operations on the operational
state of VMs (e.g. starting, pausing, stopping a VM), but scarce
on monitoring and/or manipulating status information and the
VMs’ configurations.
For describing VMs, libvirt specifies an XML-based data
format. These documents always have the same structure, but
(probably to conserve implementation effort) libvirt’s descrip-
tions of a VM are product-specific in part. In addition, they
cannot be shared between different libvirt distribution (as the
output is only interpreted correctly by the same driver that
created it), which prevents interoperability among the different
hypervisors.

IV. NORMALISATION PROCEDURE

Based on our observations with regard to the Xen and VMware
hypervisors and management interfaces, we propose a generic
procedure for the normalisation of attributes.

A. Methodology for attribute harmonisation

We employ a bottom-up methodology applicable to single
attributes in order to facilitate their harmonisation. This
methodology has been instrumental in the implementation of
normalised variants of the attributes of different hypervisors.
It consists of the following main steps:

1) Collect attributes and assess attribute semantics
2) Identify corresponding attributes in all relevant hypervi-

sors.
3) Classify and map attributes
4) Define normalisation function
5) Implement mapping and normalisation

Once a useful attribute has been identified, its meaning is
analysed in all relevant hypervisor implementations. The asso-
ciations between the attribute in one hypervisor and its peers in
other hypervisors create pairs of mappings in our classification
scheme. After the classifications and mapping have been
found, for each pair of hypervisors, normalisation functions
for the attribute are defined, according to the mapping class.
In our work, these functions are implemented as an extension
framework for the libvirt library.
While the normalisation functions ensure the mapping of
semantics and syntax, their practical implementation can, in



Fig. 2. VMware’s tree-like data model [21]

addition, take into account access-related differences between
the different representation of an attribute. In the following,
we highlight the most important steps of this methodology by
example.

B. Classification

As stated in Section II, to harmonise management information
and its modification, we need to overcome differences in
the syntactic and semantic representations in the underlying
information models. As a generic mapping between man-
agement attributes could not be found, in this section we
propose attribute mapping classes as a method of finding
semantic matches between a hypervisor specific data model
and the CIM. When the mapping class of a CIM attribute is
determined, a corresponding projection of hypervisor attributes
can be realised.
In a CIM based view onto managed systems, CIM elements’
attributes are projections from attributes selected from the
hypervisor-specific data model. Hence, the subset of repre-
sentable CIM attributes is defined by the underlying data
model and the correlation of its attributes. Further, normal-
isation of attributes in terms of syntactic differences is part of
the projection. Sensible selections and projections are based on
semantic equivalence between a CIM attribute and a projection
of a set of attributes provided by a hypervisor H . Let ACIM

be the host of all CIM attributes and AH the host of all
attributes provided by H . The projection πa,H of a selection
of attributes b ∈ 2AH is semantically equivalent to an attribute
a ∈ ACIM , if a deterministic function on b yields a result
that semantically matches the specification of a in the CIM.
Semantic equivalence of a and πa,H(b) is denoted as:

a ≡s πa,H(b).

C. Mapping classes

With b ∈ 2AH the definition of semantic equivalence allows
for multiple πa,H . For consistent mapping and consideration
of all hypervisor attributes, a single πa,H for each a must be
selected. As demanding that all members of b must be required
is not sufficient if there is redundancy in the hypervisor’s data
model, we define πH as a set of hypervisor-specific projections
πa,H as:

πH := {πa,H : b 7→ a |
∃a ∈ ACIM , b ∈ 2AH : a ≡s πa,H(b) ∧
∀c ⊆ b, a ≡s πa,H(c) :
∀d ⊆ c, a ≡s πa,H(c) :
d = c }

Consequently, the host of CIM attributes representable by a
specific hypervisor ACIM,H is:

ACIM,H := {a ∈ ACIM | ∃πa,H ∈ πH}

We have identified five projection classes of πa,H , based
on the calculation effort required to adequately express CIM
elements: n:1 mappable attributes, n:1 invertible mappable
attributes, 1:1 bijective mappable attributes and unmappable
attributes.
1) n:1 mappable attributes: An Attribute a is n:1 mappable,
if there exists a selection b ∈ 2A,H and a projection πa,H in
such a way, that the projection of b is semantically equivalent
to a. By definition ACIM,H are the n:1 mappable attributes.
2) n:1 invertable mappable attributes: For supporting manip-
ulation of a CIM attribute a by a management system, the
projection πa,H must be invertible to propagate a change to a
back to the hypervisor’s managed objects. This is not a general
property of projections in πH . If such an inversion of πa,H



(a) n:1 mappable (b) n:1 invertable mappable (c) 1:1 bijective mappable (d) Unmappable attribute

Fig. 3. Attribute matching classes

exists, a is a n:1 invertable mappable attribute, a ∈ ICIM,H .
Formally ICIM,H is defined as:

ICIM,H = {a ∈ ACIM |
∃πa,H ∈ πH : a ≡s πa,H(b) ∧
∃i ∈ 2ACIM,H : ∃π−1

a,H : i 7→ b }

It’s trivial to prove that ICIM,H ⊆ ACIM,H applies.
3) 1:1 bijectively mappable attributes: Attribute a, mappable
selecting only one hypervisor attribute so that |b| = 1, is a 1:1
bijectively mappable attribute a ∈ BCIM,H . In this special
case either a ≡s b and no projection is required, or πa,H is
bijective and the attribute mapping is possible mutually.

BCIM,H = {a ∈ ACIM |
∃πa,H : a ≡s πa,H(b) ∧
|b| = 1 ∧
πa,H is bijective }

Let a ∈ BCIM,H , then there exists a bijective function πa,H :
b 7→ a, so there is a subset of 2ACIM,H namely a, and a
function π−1

a,H so that a = π−1
a,H(b). Therefore applies

BCIM,H ⊆ ICIM,H ⊆ ACIM,H .

4) Unmappable attributes: Unmappable attributes UCIM,H

are CIM attributes not representable by a specific hypervisor
H .

UCIM,H = ACIM\ACIM,H

D. Normalising projections

Information required to represent a CIM model attribute is
selected as a set of information attributes from a hypervisor’s
data model. Projecting this data to form a meaningful value
for the CIM attribute may involve correlation as well as
transformation of the information provided by the hypervisor.
Projection serves the purpose of eliminating semantic differ-
ences, e.g. by defining Units, an compensates for syntactic
divergence by aligning the data to a common data model.

E. Mapping of the Example Attributes

1) Virtual machine power state: Using the semantics as
described in II-B the following mapping is used to map Xen’s
power states to the CIM.

• Crashed: Can be mapped to the CIM by a vendor defined
state.

• Halted: Maps to the CIM’s defined state
• Paused: Maps to the CIM’s paused state
• Running: Maps to the CIM’s active state
• Suspended: Maps to the CIM’s suspended state
• Unknown: Maps to the CIM’s unknown state

Also VMware’s power states are mappable to the CIM:

• poweredOn: Maps to the CIM’s Running state
• poweredOff: Maps to the CIM’s Halted state
• suspended: Maps to the CIM’s Suspended state

Using our classification scheme this attribute is 1:1 bijective
mappable.
2) Virtual machine and host memory: As stated before neither
Xen nor the VMware ESXi expose information about memory
extends over their SDKs, so cannot map them properly to the
CIM. Assuming having only one memory extend it’s possible
to map memory information about the total memory of Xen
or VMware ESXi hypervisors to the CIM. This assumption is
essential also, if we only care about total memory, because else
it could span Memory gaps that are not covered by a compos-
ing memory extend. Without this assumption EndingAddress,
BlockSize, NumberOfBlocks would be unmappable attributes.
The mapping to the StartingAddress can be easily done in
both cases, host and virtual machine memory, from both
hypervisors by a constant 0-function.

πStartingAddress,H = 0;

The mapping to the EndingAddress can be done by the
following projections:

πHost.EndingAddr,Xen =
memorytotal

210

πVM.EndingAddr,Xen =
memoryactual

210

πHost.EndingAddr,ESXi =
memorySize

210

πVM.EndingAddr,ESXi = memorySizeMB ∗ 210



Because there is no information about block sizes available,
the only possibility not to let the rest of the attributes unmap-
pable will be another assumption: We assume a BlockSize of
one should fit most needs. Then the NumberOfBlocks will be
equivalent to the EndingAddress.
For the inversion of the mappings for the EndingAddress and
NumberOfBlocks, the BlockSize and the possibility of gaps in
the Memory area should be taken in account. So the best way
to calculate it should be via BlockSize and NumberOfBlocks.
So this attributes are n:1 invertable mappable, and particularly
not 1:1 bijective mappable. E.g.

π−1
Host.EndingAddr,Xen = BlockSize ∗ #Blocks ∗ 210

To map to ConsumableBlocks the two cases of host and virtual
machine memory have to be looked at separately. In the virtual
machine case we have no information and according to the
CIM Profile then 0 has to be used, therefore it would be n:1
mappable. In the host case we are 1:n invertable mappable
still using the assumptions:

πConsumableBlocks,Xen =
memorytotal − memoryfree

210

πConsumableBlocks,ESXi =
memorySize

210
− overallMemoryUsage ∗ 210

V. TECHNICAL REALISATION AND EVALUATION

For practical implementation of our harmonising method we
chose to extent the libvirt to provide unified presentation of
management information from the Xen and VMware ESXi
hypervisors. We first did an analysis of the data models and the
information provided by these hypervisors. By assessing this
information using the mapping classes introduced in Section 3
we developed a generalised data model, suited to model
management information of both hypervisors and their VMs.
Figure 4 gives an architectural overview of libvirt and also
shows where we added our extensions (bold borders). There
are three software layers: 1) the access layer is the user faced
part of libvirt, offering a unified API to multiple virtualization
implementations. 2) the abstraction layer includes libvirt’s
module management, where functions and data sources from
different drivers are combined to answer requests from the
access layer. 3) the instance layer with the actual functions.
With this three-layered architecture, libvirt’s actual functional-
ity is implemented as drivers in the instance layer. While most
drivers are interfaces to hypervisors and other virtualization
software, the same concept is applied for all other functional-
ity, hence the indication of miscellaneous drivers in Figure 4.
We use this driver facility to add normalization to libvirt.
Our generalised data model, offering normalised representa-
tion of hypervisors and virtual machines, is accessed via an
extension to the access layer of libvirt. Hypervisor specific
normalisation drivers implement the projections of attributes
to their generalised counterparts. The problems pertaining to
accessibility of management information is already addressed
in the hypervisor drivers provided by libvirt. The abstraction

layer allows us to combine these new drivers to retrieve the
necessary information if requested by a user through the access
layer.
As we constructed generic attributes from the information
available through the Xen and VMware management APIs,
this prototypical implementation of our concept is an implicit
comparison of these virtualizers’ data models. We have iden-
tified and mapped 32 attributes that are now presented in a
uniform manner.
Eight attributes are names and identifiers like hostnames,
MAC-addresses and UUIDs. Together with the numbers of
physical CPU cores and physical RAM available/allocated to
a host or VM, we identified 13 attributes belonging to the class
1:1 bijectively mappable attributes. It turns out that while the
data models are very different the managed objects are very
similar. As every object needs at least one identifier, there is
an overlap in the information models thus yielding this high
number of semantically equivalent attributes. Challenges in
normalising these attributes usually arise from access-related
differences (cf. Section II).
In our work, where the generic data model is based on
the implementations of VMware and Xen, we identified five
attributes from the n:1 mappable attributes class and eleven
members belonging to the n:1 invertible mappable attributes
class. Whether an attribute’s mapping is invertible or not is
mainly decided by the granularity of available management
information. For example, VMware ESXi only gives informa-
tion about the number of threads currently active on a host,
while Xen produces the number of currently active threads
for each core individually. There is not enough information to
reconstruct the value for each core from the unified attribute
runningThreads. All five not invertible mappings are due to the
divergence in granularity. This outcome shows that VMware’s
and Xen’s data models vary in their syntax and data structures,
but hardly in their granularity. Following this train of thought
this outcome is an indication, that mapping to a very detailed
model like the CIM is very likely to be not invertible. This
could be problematic if the generic model is supposed to
enable attribute changing management operations.
During the implementation of our method we discovered that
in this particular instance most challenges are of syntactical
nature, i.e. where in the data models a piece of information
can be found and how it is stored. Semantic transformation is
required for most attributes, due to different implementations.
While semantic transformations are time consuming, we didn’t
encounter any major problems. The third identified dimension
in Section II where difference have to be compensated are
access-related differences. In this case the libvirt project shows
that this problem can be handled very well.

VI. CONCLUSION

The harmonisation of management information provided by
established but heterogeneous products is a difficult and te-
dious task. In a bottom-up approach, we have analysed raw
attributes of two common hypervisors and mapped them se-



Fig. 4. Architectural overview of libvirt and our extension

mantically and syntactically, before implementing them within
an agent based on the libvirt library, that provided the access-
related mapping. During analysis, it became obvious, that even
common hypervisors differ syntactically in most management
information items they offer via their management interfaces.
Based on a list detailing the aspects of projection, we have
developed a classification scheme and a methodology that
enabled the mapping in a systematic manner, and that can be
readily applied to additional attributes. While this approach
requires a lot of effort and domain knowledge, it may be em-
ployed in order to harmonise management information incre-
mentally, in contrast to a top-down approach. Our comparison
of attribute semantics and syntax with those specified within
the CIM suggest that our approach could even be employed
to feed attribute valued into the specified profiles. We selected
two prominent hypervisor products, without loss of generality.
Using the same method this set can be extended to cover
both more attributes and additional hypervisors. In particular,
those relying on non-full-virtualization schemes could prove
interesting, as their own choice of management attributes can
be expected to reflect their different modus operandi.
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