
Tool-based re-engineering of SNMP Agents for CORBA

Alexander Keller

Faculty of Computer Science, Munich University of Technology

Oettingenstr. 67, 80538 Munich, Germany

E-Mail: kellera@in.tum.de, Phone: ++49-89-2178-2167

Proceedings of the 4th EUNICE Open European Summer School on Network
Management and Operation: EUNICE'98 , Munich, Germany, September 1998

Abstract

The increasing acceptance of CORBA for implementing distributed applications yields the oppor-
tunity of using this distributed object-oriented communication infrastructure for the management
of these applications and the underlying systems as well. It is thus important to supply CORBA-
compliant agents which enable the management of these systems in an e�cient manner. Currently,
this is not the case: While no CORBA-compliant management agents are available on the mar-
ket, one can easily �nd a multitude of SNMP agents meeting these demands. Thus, establishing a
methodology for obtaining the required CORBA-compliant management agents from already existing
modular SNMP agents serves as a case-study on how to transfer legacy code into new computing
environments. This paper describes a methodology for migrating already existing modular SNMP
agent code into a CORBA environment and describes its application to a concrete example, an agent
for managing UNIX workstations. This agent has been developed by our research group and is ex-
tensively used. In addition, we concentrate on how the transformation overhead can be minimized
by deploying standardized translation algorithms and state-of-the-art software development tools.

Keywords: CORBA, Distributed Objects, Distributed Systems Management, Legacy Systems

1 Introduction and Motivation

Apart from the well-known OSI/TMN and Internet management architectures, a third alternative is
gaining increasing attention for integrated management: the Common Object Request Broker Architecture
(CORBA) (see e.g. [2], [13]) which has been standardized by the Object Management Group (OMG).
Initially developed for distributed object-oriented programming, the advantages of using CORBA in the
domain of network and systems management are more and more recognized.

One reason for this is the fact that today the development of management systems is perceived as a spe-
cial case of developing large-scale information technology applications. The successful application of new
principles from the �eld of software engineering like object-oriented techniques for the analysis, design
and implementation of complex software systems leads to the development of modular, well-structured
management applications built from "o�-the-shelf" software components. This yields demand for tech-
niques that protect developers { at least to a certain degree { from the heterogeneity of the underlying
operating systems. This is particularly important for the development of powerful management software.
Another issue is the fact that management architectures like the Internet (SNMP-based) framework and
OSI/TMN require, apart from usual software development knowledge, additional skills in the domain of
management information speci�cation. This leads to the situation that the developers (and even their
companies) of a distributed application and the programmers in charge of implementing the corresponding
management modules are hardly ever identical. A consequence is that the full range of application-speci�c
APIs useful for management are rarely exploited in depth. The requirement of additional knowledge is
due to the fact that traditional management architectures introduce additional complexity by specify-
ing the management interfaces of a managed resource in a special notation (ASN.1 or GDMO) and use
dedicated protocols (SNMP or CMIP) for the communication between managing and managed systems.
Even worse, these management architectures are totally incompatible; the development of mechanisms for
bridging the gaps between them is still a topic of ongoing research. The handling of this heterogeneity in-
troduced by management is often di�cult and the requirements of providers of large-scale communication
infrastructures are often not met in available products.

CORBA follows another approach: Initially speci�ed for distributed object-oriented programming, this
technology can be used not only for implementing distributed applications but also for their management:



The notation for the de�nition of application objects and their associated management objects remains the
same (namely OMG IDL1); in addition, the access to operational and management data is also handled
through the same communication mechanism, the ORB. Consequently, management becomes an integral
part of distributed applications. As a consequence, the development of management software bene�ts
from the broad spectrum of software development tools available on the market because operational and
management functionality are modeled and implemented the same way. Furthermore, studies comparing
the information models of the OSI/TMN and Internet management architectures with the OMG object
model (e.g. [12]) reveal the suitability of CORBA for the management of end systems and distributed
applications.

Despite these advantages,

MIB

IDL-Compiler
Compiler

Linker

IDL Object Descriptions

CORBA Management Agent

OMT-compliant CASE-Tool

CORBA Development Environment

Optimized
Object Model

Generated
Object Model

New Requirements

JIDM Algorithm

Code Modules

SNMP Management Agent

Figure 1: Overview of the transformation methodology

native CORBA-based ma-
nagement agents are still
hard to �nd on the mar-
ket while SNMP agents are
widely used. In order to ob-
tain CORBA-compliant ma-
nagement agents from ex-
isting SNMP implementa-
tions without the need of
rewriting the already exist-
ing agent code, it is nec-
essary to provide a smooth
transition path. This paper
will present a novel approach
to this problem: it allows the
migration of modular SNMP
agent implementations into a
CORBA environment. Such
a CORBA-compliant mana-
gement agent consists of multiple distributed cooperative managed objects interacting with the mana-
ging system via an ORB. The transformation process will be described and demonstrated on a concrete
example, namely an agent for the management of UNIX workstations which has been developed by our
research group. Furthermore, it is described how the amount of work for the transformation process can
be limited through the use of standardized translation algorithms and development tools available on the
market.

The structure of the paper is as follows: Section 2 describes the properties of the SNMP agent for UNIX-
workstations which serves as a starting point for the transformation. The JIDM algorithm (which has
recently been standardized by the Open Group and the NM Forum) for the translation of Internet MIBs
into OMG IDL object descriptions is also treated because our approach relies on it. The translation of the
SNMP MIB into IDL object descriptions yields an object model which obviously needs to be enhanced.
The reasons and the tools which have used for the re-engineering of the agent will be described in section
3. During this phase, it is particularly important to have the opportunity of using CASE-tools supporting
the cyclic process of analysis and design; it is then also possible to introduce new requirements into the
object model. After this optimized object model has been established it is necessary to transform it into
CORBA-compliant object interface descriptions; they form the base of the implementation which will be
sketched out in section 4. Section 5 concludes the paper and gives an overview of further steps.

Our novel transformation approach has also been successfully applied to other problem domains such as
the design of CORBA-based management agents for ATM switches in a joint cooperation project with a
major industrial partner. Another �eld of application was the provisioning of CORBA-based management
of the CICS TP monitor (see [8]).

1The Interface De�nition Language (IDL) is the standardized language for the speci�cation of CORBA objects.

2



2 Starting Point and Initial Transformations

2.1 An SNMP Agent for managing UNIX Workstations

In contrast to existing com-

stoTablestorage

process processTable

whoTable
user

userTable userQuotasEntry
groupTable groupUserEntry

deviceTable

device

processor

printer

disk
partition

filesystem
mountedFsTable
predefinedFsTable
partitionTable
diskTable
queueTable
printerTable
cpuTable

queueJobEntry

FsBackUpEntry

devTypes

system

Figure 2: Structure of the UNIX workstation MIB (taken from [3])

mercial solutions ([5], [6])
generally based on a bottom-
up approach, we focused
on covering typical tasks of
Unix system administrators.
This top-down analysis [3]
revealed the need for sup-
porting multiple issues: The
creation and deletion of user
accounts and groups, the
management of user quotas
for system resources like storage or printer usage, the mount/unmount of �lesystems and functions for
starting and stopping processes. It is easy to see that the capabilities of the agent are beyond the
usual monitoring tasks by permitting the execution of actions on behalf of the systems. The transfer of
management information is done through the SNMPv2 management protocol.

The analysis led to the development of a UNIX workstation MIB and to the implementation of a systems
management agent running on di�erent platforms (HP-UX, IBM AIX, Sun Solaris, SunOS). The structure
of this MIB is depicted in �gure 2; the MIB consists of 195 variables and 15 tables and represents, among
others, the following components:

� Memory (main memory, swap-space)

� Devices (CPUs, printers, storage disks and �lesystems etc.)

� Processes (user processes, kernel processes)

� Users (passwords, groups, quota etc.)

In order to cope with the large heterogeneity of the supported operating systems and to enable the
adaption of the agent to new provider requirements the agent has been implemented in a modular way:
Every way of accessing a MIB variable is represented by a di�erent procedure. This means that every
MIB variable has been implemented in a separate module and has either one or two interfaces, depending
on whether the variable is readonly or read- and writeable. An example of the former is the value of
a readonly MIB variable like sysName which is obtained through the get sysName procedure; the latter
variables are accessed through their get and set procedures, respectively.

2.2 Algorithm for the Transformation of SNMP MIBs into OMG IDL

The mapping of existing management information bases to the CORBA object model implies the devel-
opment of algorithms for translating the MIB speci�cation languages. Our scenario requires an algorithm
for mapping the ASN.1 template language used for Internet MIB speci�cations into the OMG Interface
De�nition Language (IDL). Such an algorithm ([7], [14]) has been developed by the Joint Inter-Domain
Management Task Force (JIDM). The complexity of bridging the di�erent information models may be
illustrated as follows: Internet MIBs de�ne the properties of an agent in terms of scalar variables, groups
and tables and have no notion of object-oriented concepts like inheritance or polymorphism. In contrast,
CORBA agents are de�ned based on object classes and their associated attributes, methods and rela-
tionships. The transformation of SNMPv2 data types, macros and traps into the CORBA mechanisms
is described below:

� Every SNMP group becomes an object class; the scalar data types contained therein are transformed
into attributes of the object class. The SNMPv2 data types are mapped to their IDL counterparts,
e.g. Integer32 becomes long, DisplayString and IpAddress are mapped to a sequence of octets.

� SNMP tables become object classes, too. Each table entry represents in the OMG model an instance
of an object class which is described by an IDL interface. The following example shows the application
of this rule: If three hard disks are contained in a system, they are represented in the MIB through the

3



existence of a table storageTable with three rows. On the other hand, a CORBA-compliant system
would create three instances of an object class StorageDevice.

� Variables specifying table columns become attributes of the corresponding object class.

� SNMP traps are transformed into CORBA events which rely on the Object Event Service [9].

Although the JIDM algo-

System

Name : string = ""
Contact : string = ""
Location : string = ""
Os : string = ""

Hardware : string = ""

Uptime : integer
Date : dateAndTime

Users : integer
ClockTime : integer

Processor

Number : integer
Type : string = ""
ClockRate : integer
UserTime : integer
NiceTime : integer
SystemTime : integer
IdleTime : integer
OpState : integer
UsState : integer
AdState : integer
Action : integer

Storage
Index : integer
Type : TstoType

AllocationUnits : bytes
Used : bytes
Size : bytes
Description : string = ""

State : integer

Index : integer
Type : TdevType
Description : string = ""
State : integer

Device

+1

Figure 3: Generated object model in OMT notation (partial view)

rithm is a powerful tool, it is
necessary in our case to per-
form some adjustments be-
cause management seman-
tics are often de�ned in the
Internet information model
in an implicit way: In the
Internet management archi-
tecture, actions on managed
objects are performed by as-
signing a certain value to
so-called "pushbutton" vari-
ables because the SNMPv2
management protocol has no
action protocol data unit.
The CORBA analogon is to
call a method of the man-
aged object.
The translation algorithm is
unable to perform this mapping because "pushbutton" variables cannot be distinguished from regular
variables on a syntactic level.

2.3 Result of the algorithmic Transformation: A �rst Object Model

The JIDM algorithm described in the previous section serves as a basis for obtaining the �rst version of
our object model for Unix workstations. However, two remarks must be made:

1. The JIDM algorithm has been developed for implementing management gateways. This implies that a
gateway needs to store any information related to SNMP variables (table indices, object identi�ers etc.)
in object attributes. While this is certainly necessary for management gateways, such an approach is
not needed for the redesign of our agent.

2. The target language of the JIDM algorithm is, as already mentioned in section 2.2, OMG IDL. It
is absolutely crucial for the further design of the management agent to transform the MIB into a
notation which permits further re�nements with commercially available CASE-tools. The tool we
deployed (described in section 3.1) is based on the Object Modeling Technique (OMT) [11] but is also
able to take IDL �les as input. Consequently, the transformation of IDL into OMT was handled by
the CASE-tool. Figure 3 depicts a detail of the �rst version of the obtained object model.

3 Building an adequate Object Model

After the transformation of ASN.1 templates into OMG IDL and their integration into the CASE-tool
have been performed, we can now start our re-engineering of the CORBA agent. Recall that the goal
of our work is a management agent which ful�lls the criteria of an object-oriented system as much as
possible. The critical items to be addressed in this section can be described as follows:

1. The �rst object model almost completely lacks hierarchical relationships between the

object classes.

The containment relationship between di�erent classes applies only to the System class; the model
doesn't have inheritance. As a consequence, polymorphism is not supported, too. Thus, three out of
the four main principles of the object-oriented paradigm are not ful�lled. This is a consequence of the

4



Internet information model which has no notion of containment and inheritance relationships between
object classes.

2. The "type" variables are not in accordance with the principles of object-oriented design.

Examples of such "type" variables in the above described MIB extract are Type in the Storage class and
Type in the Device class. Although it is possible to distinguish between di�erent kinds of the Storage
object class (like Ram, hard disks, tapes or diskettes) by setting the Type variable appropriately, the
speci�cs of each kind of media are not reected correctly. In object-oriented modeling, this can easily
be expressed through the concept of inheritance. The fact that the Internet Structure of Management
Information (SMI) lacks inheritance is the cause of this anomaly.

3. The problem of "pushbutton" variables is still there.

The setting of a variable with a speci�c value results in the execution of an operation; thus, it is di�cult
to understand the meaning of some attributes. This stems from the fact that SNMP has no action
protocol data unit.

4. The data types of the attributes are restricted to the base ASN.1 types.

Even attributes with a restricted range of potential values like e.g., OpState2 or AdState3 of the
Processor object class are bound in the �rst version of the object model to an integer data type. While
this may sound like a "cosmetic" problem, it is important to restrict the value ranges of attributes
with respect to conformance testing.

The only principle of object-oriented design that is met in the �rst version of our object model is encap-
sulation. If this object model is given to an IDL-compiler, implementation skeletons with every attribute
agged as private are generated. However, these would be accessible only via get- or set-operations i.e.
the attributes are not accessible by other means than the ones provided by the implementor.

3.1 Tool Instrumentation

The de�ciencies of the �rst version of our object model imply considerable modi�cations of its structure.
It is also necessary to incorporate new provider requirements not previously foreseen into the process of
building an optimized object model. On the other hand, the e�ort on the developer's side for implement-
ing the necessary changes should be kept as small as possible.
Thus, we decided to base the re-engineering of our management agent on a commercially available CASE-
tool compliant to the OMT design method. Another requirement was the ability of the CASE-tool to
automatically generate OMG IDL object descriptions from the object model given in OMT notation.
This enables the integration with the CORBA development environment.
These requirements were ful�lled by the Software through Pictures (StP) CASE-tool [1], which contains
several powerful editors for each phase of the software development process. It enables a rapid prototyp-
ing approach by supporting cyclic analysis, design and implementation steps [10] together with version
control facilities. The preparation of graphic designs and the application of changes to them in a tabular
representation was easily feasible; this is also true for the documentation of the project. Other helpful
features were the ability of de�ning default values for attributes or properties like "read-only" already
in the modeling phase; the fact that the graphical representation of the object model was always clearly
arranged made the design easier. The corresponding SNMP MIB covered about 40 pages.

3.2 Steps for optimizing the Object Model

The observations made at the beginning of this section imply the following rules for optimizing the object
model:

� Identical attributes and operations appearing in several di�erent object classes are gathered in a (even-
tually new) superclass (see 3.2.1).

� Attributes de�ning the type of di�erent instances of an object class are removed and replaced by
appropriate subclasses (see 3.2.2).

� "pushbutton" variables become methods of the corresponding class (see 3.2.3).

2OpState (Operational State) may only take the values 1 (enabled) or 2 (disabled); an enumeration data type is su�cient
for this.

3AdState (Administrative State) has the values 1 (unlocked), 2 (locked) or 3 (shutting down); as in the previous example,
an enumeration reects better the semantics of this attribute.

5



� Relationships between object classes should be as accurate as possible; containment and inheritance
are introduced into the model (see 3.2.4).

� New data types (e.g., enumerations) are de�ned for attributes with restricted value ranges (see 3.2.5).

The results of the application of these rules are described in the following subsections.

3.2.1 New Superclasses for common Attributes and Operations

Several object classes of the �rst object model contain attributes with identical semantics but di�erent
names. These attributes have been gathered in a common superclass and removed from its subclasses.
Typical examples of such common attributes are identi�ers, name declarations and status attributes
appearing, among others, in the Printer, Storage and Processor classes. The role of the superclass
has been assigned to the class Device which has been renamed in GenericDevice. It is now the root of
the inheritance hierarchy for several system components. This facilitates further extensions of the object
model because these new classes can now be derived immediately from GenericDevice and inherit the
base properties common to all kinds of components.

3.2.2 New Subclasses instead of "type" Variables

This optimization is the an-

System

Name : string = ""
Contact : string = ""
Location : string = ""
Os : string = ""
Uptime : time
Date : date
...

SLCache

shutdown()

Ram

FLCache

ID : integer
Name : string = ""
Description : string = ""
UsageState : TUsState
AdminState : TAdState
AvailState : TAvState

enable()
disable()
lock()
unlock()

Storage

Size : bytes
Used : bytes
AllocationUnits : bytes

Processor

Number : integer
Type : string = ""
ClockRate : integer
UserTime : integer
NiceTime : integer
SystemTime : integer
IdleTime : integer

+1

GenericDevice

permanentStorageDevice volatileStorageDevice

VirtualMemory

+1

Figure 4: Optimized object model for UNIX workstations (partial view)

swer to the second criticism
which addresses the fact that
di�erent kinds of objects can
be instantiated from one ob-
ject class. Unfortunately,
this is contradictory to the
concept of object-orientation
which implies that instances
of the same object class must
have the same properties.
In the �rst model it was
impossible to assign di�er-
ent properties to di�erent
types of an object class; each
instance of a class would
have had the same struc-
ture, independent of its type.
An example may illustrate
this: It was possible to in-
stantiate objects of di�erent
kinds from the Device class
by assigning di�erent values
to the Type attribute; each
of these components would
share only three very generic
attributes (Index , Descrip-
tion and State). This is another reason for introducing the virtual, i.e. not instantiable base class
GenericDevice as the root of the inheritance hierarchy (see also 3.2.1). If an object of any system
component has to be generated, this does not lead to an instance of GenericDevice but yields a new
instance of the corresponding subclass.

A similar modi�cation a�ects the Storage class: Here, the di�erent kinds of storage (Ram, VirtualMemory,
FLCache and SLCache4 could be generated, but it was not possible to assign di�erent properties
to di�erent kinds of storage devices. Therefore, two new classes permanentStorageDevice and
volatileStorageDevice have been introduced into the model: The former is the superclass for ob-
jects like hard disks, magnetic tapes and oppy disks. The latter class encompasses the components
which were initially instantiated through the Storage class i.e. the new subclasses Ram, VirtualMemory,
FLCache and SLCache.

4First Level Cache and Second Level Cache, resp.

6



3.2.3 Operations instead of "pushbutton" Variables

The problem of so-called "pushbutton" variables resulting from the Internet information model still exists
in the �rst version of the object model (see �gure 3): Operations on a managed object are triggered by
assigning a value to the corresponding attribute. This is unacceptable for a model expressed in a powerful
notation because this representation permits clearer semantics by having the concept of methods. We
therefore introduce a new method for every value that a "pushbutton" variable can take. An example
may illustrate this: The �ve possible values of the attribute cpuAction from the class Processor lead
to the de�nition of �ve methods, namely enable(), disable(), lock(), unlock() and shutdown(). The call
of the method enable() is now the replacement for the previous value assignment cpuAction:=1. As
these �ve operations are needed by many components, they have been added to the base object class
GenericDevice (see �gure 4).

3.2.4 Reality compliant Modeling of Object Relationships

Concerning the relationships between object classes, the �rst version of the model contains the same
de�ciencies as the SNMP MIB: There is no inheritance and almost no containment relationships. In
contrast to this, the goal of object-oriented design is to model the components and their relationships as
realistic as possible. The inheritance hierarchy indicates that one component is a re�nement of another
one, e.g. a storage device is a special kind of device.
The System class becomes the root of the containment hierarchy because the end user system is com-
posed of other devices. The de�nition of aggregation relationships is also straightforward: A System

contains at least one Processor (represented by a 1:n relationship with n�1) but any number of
permanentStorageDevices (in this case, a 1:n relationship with n�0). A Printer, in contrast, is not part
of a System but a peripheral device; its connection to the system is expressed by a simple 1:n relationship
with n�0. Figure 4 gives a overview of the relationships between some object classes.

A special case of relationship can be found

Quota

Filesystem Account

Figure 5: Quota as OMT association class

between the classes Filesystem, Quota and
Account. As the quota is a property of a relation-
ship between a user account and a �lesystem, the
Quota object class becomes an association class
of the Filesystem|Quota relationship (see �g-
ure 5).

3.2.5 New Types for Variables with restricted Value Ranges

The �nal optimization step deals with the problem that the ranges of attribute data types resulting from
the automatic translation are in general too broad for our purposes. The attribute OpState from the
Processor object class may only take two values in the SNMP MIB: 1 (for enabled) or 2 (for disabled).
Due to the lack of more appropriate data types in the Internet management information model it has
been de�ned as integer. Our object model gives us the possibility of de�ning an enumeration data type
which shows immediately the operational state of a device.
Another example is the attribute AdminState (the former AdState has been renamed for easier under-
standing). Here, we de�ned an enumeration type with four values, namely unknown, unlocked , locked
and shutting down.

4 Implementing the optimized Object Model in CORBA

As the CASE-tool provides a mapping from OMT to OMG IDL, the object interface descriptions can be
generated automatically. The listing below gives an idea of this mapping by showing the IDL descriptions
of the System object class.

One can easily see that attribute properties (like read-only) and their data types de�ned in the OMT
model are transformed into their IDL equivalents. The bottom of the listing contains the de�nitions of
the relationships between di�erent object classes; in this case, information contained in the OMT model
is lost by the transformation into OMG IDL.

7



f...g
// stp class definition 108

interface System

f
// stp class members

attribute string Contact; // simple read-

attribute date Date; // and writable

attribute string Hardware; // attributes

attribute string Location;

attribute string Name;

readonly attribute string Os; // read-only

readonly attribute time Uptime; // attributes

readonly attribute long maxProcessNumber;

readonly attribute long maxProcessSize;

attribute sequence<Printer> assnPrinter; // 1:n association

attribute Process assnProcess; // simple assoc.

attribute sequence<Processor> aggrProcessor; // 1:n aggregation

...

g;

4.1 Completing the generated IDL Interfaces

The loss of information by transforming relationships is a good example for the necessary steps that
need to be done manually in order to capture the full semantics of the OMT model in OMG IDL:
Although the Object Relationship Service ([9]) has been standardized by the OMG, no currently available
CORBA implementation contains functionality which helps to enforce the OMT relationship properties
during runtime. We therefore had to implement methods by hand to survey the validity of relationships
periodically. The method update processes() checks which processes are currently running on the system.

This example leads us to another issue: The representation of highly dynamic objects like processes.
Generally spoken, the CORBA objects representing system resources should be instantiated at the start
of the system and deleted when the CORBA runtime environment shuts down. While this is adequate
for objects with a low degree of change rates like hard disks and CPUs, this method is unfeasible for
administering highly dynamic objects, i.e., objects having a short lifetime like UNIX processes. It is
almost impossible to maintain these objects consistent with the real state because this would imply the
instantiation of an object at the start of a process and its deletion when the process dies. The solution to
this problem consists of making a snapshot of the current state every time information about processes is
required. We achieved this by enforcing the access to Process objects through a metaclass MetaProcess
which calls the update processes method when current data is needed. Consequently, any requesting
object (usually the monitoring objects from the managing system) gets the correct process state.

Several other modi�cations were due to the speci�cs of our development toolkit [4] and are skipped here
for the sake of brevity.

4.2 Reusing the existing Agent Code

After the completion of the IDL descriptions, the already existing management functionality had to
be integrated with the interfaces. I.e., the legacy code had to be migrated into the object-oriented
environment. The usual technique for achieving this is to encapsulate the legacy code into object classes
by means of so-called wrappers . It can then bea easily accessed by other objects without the need of
modifying the implementation.
Our former SNMP management agent had been implemented in C and has obviously no object-oriented
properties. As the OMG has standardized, among others, an IDL|C language mapping, this did not
matter. Much more important is the fact that the agent code is well structured and modular. As
this was the case for our agent (see 2.1), we did not encounter severe problems while building the new
CORBA-compliant management agent.

8



5 Conclusion and Outlook

Following a practical example, this paper has described the necessary steps for building distributed
cooperative CORBA-compliant management objects from an existing SNMP agent implementation. The
approach represents a exible and systematic methodology for the re-engineering of already existing
management agents. Three critical factors for a successful migration were identi�ed:

� The modular design of the agent code,

� the availability of standardized mechanisms for transforming the information model from one mana-
gement architecture into another one, and

� good support by powerful software development tools implementing state-of-the-art OOA/OOD tech-
niques (like OMT).

Several encountered di�culties have their origin in the fact that currently available CORBA development
toolkits lack implementations of already standardized generic services (currently, more than a eighteen
CORBAservices have been adopted by the OMG). We believe that a very large part of our manual
enhancements w.r.t. generic management functionality may be dropped when CORBA implementations
become more mature.
The suitability of CORBA for systems and application management purposes could be demonstrated even
if performance and scalability issues make its current use in very large environments prohibitive: This
is due to the fact that the interface repositories are implemented as at �les which need to be exported
and/or mounted via the Network File System (NFS).
At the current stage of the project, the descriptive power of modern OOA/OOD methodologies has been
applied only to static aspects of distributed systems. Further steps consist in analyzing and modeling
dynamic properties of distributed systems like data and control ows.

References

[1] Aonix. Software through Pictures/Object Modeling Technique: Creating OMT Models. Aonix, Inc., 1997.
Release 3.4.

[2] The Common Object Request Broker: Architecture and Speci�cation. OMG Speci�cation Revision 2.2,
Object Management Group, February 1998.

[3] M. Gutschmidt and B. Neumair. Integration von Netz- und Systemmanagement: Ziele und erste Erfahrungen.
In Proceedings der 3. Fachtagung Arbeitsplatzrechensysteme (APS'95), Hannover, May 1995.

[4] IBM Corporation. SOMobjects Developer Toolkit Programmer's Guide Volume 2: Object Services, March
1996. First Edition.

[5] IBM Corporation, International Technical Support Organization, Research Triangle Park, NC 27709-2195.
IBM Systems Monitor: Anatomy of a Smart Agent, December 1994. Order Number: GG24-4398-00.

[6] HP OpenView IT/Operations Concepts Guide. User manual, Hewlett Packard, August 1997. Order Number:
B4249-90011.

[7] Inter-Domain Management: Speci�cation Translation. Open Group Preliminary Speci�cation P509, Open
Group, March 1997.

[8] A. Keller and B. Neumair. Using ODP as a Framework for CORBA-based Distributed Applications Manage-
ment. In J. Rolia, J. Slonim, and J. Botsford, editors, Proceedings of the Joint International Conference on
Open Distributed Processing (ICODP) and Distributed Platforms (ICDP), pages 110{121, Toronto, Canada,
May 1997. Chapman & Hall.

[9] CORBAservices: Common Object Services Speci�cation. OMG Speci�cation, Object Management Group,
November 1997.

[10] Robert M. Poston. Automated from Object Models. Communications of the ACM, September 1994.

[11] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall International, Inc., 1991.

[12] Tom Rutt. Comparison of the OSI Management, OMG and Internet Management Models. A report of the
Joint X/Open-NM Forum Inter-Domain Management Task Force, AT&T Bell Laboratories, March 1994.

[13] Jon Siegel. CORBA Fundamentals and Programming. John Wiley & Sons, Inc., 1996.

[14] Nader Soukouti and Ulf Hollberg. Joint Inter-Domain Management: CORBA, CMIP and SNMP. In A. A.
Lazar and R. Saracco, editors, Proceedings of the 5th International IFIP/IEEE Symposium on Integrated
Management (IM), pages 153{164, San Diego, USA, May 1997.

9


