
1

Towards CORBA-based Enterprise Management:

Managing CORBA-based Systems with SNMP Platforms

Alexander Keller

Department of Computer Science, Munich University of Technology

E-Mail: keller@informatik.uni-muenchen.de

Proceedings of the Second International Enterprise Distributed Object Computing Workshop:
EDOC'98 , San Diego, CA, USA, November 1998

Abstract|Apart from the well established OSI/TMN
and Internet management architectures, the Common
Object Request Broker Architecture (CORBA) is in-
creasingly considered as a promising framework for En-
terprise Management.
On the downside, management platforms being able
to survey and control management agents via CORBA
are still hard to �nd on the market while SNMP-
based platforms are in widespread use. The consen-
sus on the advantages of CORBA for managing complex
system infrastuctures and applications exacerbates the
need to open well-established management platforms for
CORBA.
This paper will present a feasible and practical ap-
proach to this problem: it allows the extension of exist-
ing SNMP-based management platforms for managing
CORBA-compliant agents without the need of modi-
fying already existing platform code. Thus, it can be
considered as a step towards CORBA-based Enterprise
Management by ensuring the interoperability of het-
erogeneous management architectures. Key to our ap-
proach is the creation of a conceptually integrated ma-
nagement information base on the platform side where
management-related information is collected and eval-
uated independent of the originating base architecture.
The work described in this paper can be considered as a
case-study on the seamless integration of legacy systems
into emerging distributed object environments.

Keywords|CORBA, Enterprise Management, SNMP
Platforms, Distributed Systems Management

I. Introduction

Today, distributed systems based on the client/server
paradigm have made their way into commercial IT in-
frastructures. The price of the exibility gained is a
more complex technical management of the computing
environment. E�cient operation and administration
requires an integrated management, in other words ad-
ministration should be based on a single conceptual
framework, namely a management architecture. This
task has become even more complex through the re-
cent introduction of additional management architec-
tures (see e.g. [1], [2]); on the one hand, there is the
well-known OSI management architecture that is pri-
marily used in the telecommunications area; on the
other hand, many IETF working groups are extend-
ing the scope of the Internet (SNMP) management
architecture, i.e. applying it to the management of
distributed environments. Additionally, CORBA [3] is
becoming increasingly important for management ap-

plications. Whereas this architecture has not been de-
veloped speci�cally for management applications but
to generally support communication and cooperation
within distributed applications, it seems promising to
use it for management purposes, too. Unfortunately,
the current state of CORBA-based management of end
systems and applications leads to an isolated manage-
ment island. This produces a situation where not only
the managed resources introduce a large amount of het-
erogeneity, but also the di�erent standardized mana-
gement frameworks. Therefore, bridging between the
mentioned management architectures is an important
research topic today. Our overall goal is to make in-
tegrated management feasible in an environment con-
sisting of di�erent management architectures.
The aim of the work described in this paper con-

sists in helping to establish a \native" CORBA ma-
nagement environment that can also cope with man-
aged systems in \classical" management environments
that rely e.g., on the Internet management architec-
ture: The management system should be ready for
CORBA-based management but also take advantage
of the functionality delivered by already existing ma-
nagement platforms. We achieve this by establish-
ing a conceptually integrated management information
base where management related information can be
collected and evaluated independent of the originating
management framework. It contains data of resources
as well as events which have been raised somewhere
\out in the network". The aim of our work lies in de-
veloping mechanisms which can be used for integrated
but also distributed management of services, systems
and networks.
In this paper, we will focus on two major integra-

tion problems, namely the transfer of events between
both (CORBA and SNMP) worlds and the use of the
management platform services by CORBA-based ma-
nagement applications. Therefore, we will explain the
functionality of the Event Filtering and Logging ser-
vices of the platform and a method to build a bridge
for events owing between CORBA and the platform.
Events emitted by CORBA agents can be transparently
routed via the bridge into the event services of the ma-
nagement platform, making use of its �ltering, display-



ing and storage capabilities. Platform �lters can be set
up using CORBA interfaces. By using regular features
of the platform, these events may trigger management
actions. We will also explain the functionality of the
platform Topology Services, which manage topological
relationships between managed objects and show how
these generic services can be used in a straightforward
manner to visualize the relationships between CORBA-
based services and objects. For this visualization, we
have developed a simple relationship model tailored for
the LEO/MEO satellite environment described in sec-
tion II. To achieve the integration of events and access
to platform services, we made use of the features of
the CORBAservices [4] by building \wrapper" objects
which open the programming interfaces of the platform
and its services to objects anywhere in the CORBA en-
vironment.
The structure of the paper is as follows: Section

II introduces a real-life management scenario, namely
the CORBA-based management of LEO/MEO satel-
lite constellations. They are an extreme example of
a distributed environment and have management re-
quirements similar to other distributed systems. We
believe that distributed environments should also be
managed in a distributed manner and therefore propose
CORBA as management architecture. As currently no
CORBA-compliant management platforms exist on the
market, there is a strong need for achieving interop-
erability between well-established SNMP-based mana-
gement platforms and the managed nodes represented
by CORBA agents. The third section of the paper
presents the di�erent possibilities for bridging the gaps
between heterogeneous management frameworks and
gives reasons why we decided to perform the integra-
tion on the side of the managing system, i.e. mak-
ing an SNMP-based management platform suitable for
CORBA. It also discusses the di�erent platform-side
integration alternatives and gives an overview over the
services provided by the platform that are most useful
for our purpose. The techniques how this integration
can be achieved will be described in section IV which
presents the results of a study and a trial implemen-
tation of a CORBA-compliant management platform
which integrates a "conventional", i.e. SNMP-based
network management platform product (IBM NetView
for AIX 1) with an Object Request Broker. Section V
concludes the paper and gives an overview of further
steps.

1Since the IBM/Tivoli merger, the product is now called Tivoli
TME 10 NetView.

II. Managing LEO/MEO Satellite
Constellations

Since 1965, several communication services (long-
haul telephony, TV distribution, network relay, mar-
itime and land communications) are provided by
geosynchronous earth-orbit (GEO) satellites residing at
an altitude of about 36.000 km above the equator. Due
to its high altitude, one GEO spacecraft covers roughly
a third of the earth surface; as a consequence, three
equally-spaced GEO satellites provide full coverage of
the earth, with the exception of the polar regions. An
advantage of GEO satellites comes from the fact that
they move at the same pace as the earth; thus, only
very few ground stations are needed to handle their sig-
nals. On the other hand, apart from their high costs,
GEO satellites present drawbacks for telephony trans-
mission: Due to the long signal paths, the signal prop-
agation delay (about 260 ms of round-trip propagation
time) is signi�cant. Furthermore, due to power restric-
tions, it is not possible to provide a direct satellite con-
nection for handheld mobile phones ([5]).
During the last years, two approaches have been de-

veloped to overcome these restrictions by placing satel-
lites closer to the earth: Low earth-orbit (LEO) satel-
lites reside typically between 500 and 1500 km above
the earth and have very low round-trip delays (10 to 30
ms) while their middle-earth orbit (MEO) counterparts
are 5000 to 12000 km high and have round-trip delays
of about 100 ms. For global coverage, obviously, the
number of required satellites varies with altitude. Ex-
amples of commercial LEO projects are Iridium (780
km, 66 satellites) and Globalstar (1400 km , 48 satel-
lites). A typical example of a MEO global satellite
system is ICO (10335 km, 10 satellites). Figure 1 gives
an overview over characteristic GEO and LEO/MEO
satellite con�gurations.
A property of LEO/MEO satellites grouped into con-

stellations is that they move at a di�erent pace than
the earth; it is therefore not only necessary to provide
a larger number of ground stations, but the number of
satellites in their reach varies with time.
Currently, satellite ground segments are composed

of mission control centres and satellite control centres
linked to ground stations. Mission control centres aim
to manage satellites in terms of payload. They use
satellite control centres in order to con�gure satellites,
manage the onboard resources and ensure the orbit con-
trol. Finally, to communicate with satellites, control
centres use a network of ground stations. The geo-
graphical location of these ground stations allows a
complete coverage of the satellites orbit. As described
above, in the past, typical space systems used mas-
sive spacecraft, huge control centres and large ground

2



Network
terrestrial

Network
terrestrial

terrestrial
Network

(a) Centralized Management of GEO Satellites

(b) Distributed CORBA-based Management of LEO/MEO Satellite Constellations

Platform
Management

Platform

Management
Object Request Broker

Satellite Constellation

Ground Station

Satellite Management

Platform

Ground Station

SatelliteManagement

Platform

Fig. 1. Centralized vs. distributed satellite management

stations. As depicted in �gure 1(a), every station is
equipped with its own management platform. In the
future, however, constellations of LEO/MEO micro-
satellites will be deployed. The control of these constel-
lations will be based on many micro-ground-stations,
inter-communicating through a network in order to
keep expenses low and time-to-availability short.
This approach to satellite management follows a

structure similar to that employed in other distributed
systems. However, it poses an extreme example of such
a structure, since it requires high system reliability.
Thus, resolving the problems related to space systems
would, as a by-product, solve the current management
problems of other distributed systems with high avail-
ability requirements, such as power-line networks, tele-
phony systems, or digital TV/data networks. Unfortu-
nately, very limited experience with the distributed op-
erations management of such ground station networks
exists in the space industry. This constitutes a ma-
jor obstacle for the deployment of micro-satellite con-
stellations. Experience gained from other �elds, such
as Civil Aviation Air Tra�c Control, shows that in-
ternational co-operation and interoperable distributed
management systems are essential to keep investment
costs at a reasonable level, and to enable scalability of
future systems. This experience also shows that new
management paradigms should be carefully designed to
address the speci�c requirements of the target systems.
With a constellation of satellites, there always will

be several ground stations simultaneously in visibility
as depicted in the lower part of �gure 1. Although it
is possible to concentrate enough equipment in a set of
ground stations to allow each of them to handle its task
correctly, a more e�cient solution is to dynamically re-
allocate tracking slots among the ground stations. This
way this otherwise redundant capacity will be better
utilised. Another issue is an improved visibility pat-
tern when tracking satellites. When a ground station
is used to track one or several satellites, its work plan

may be prepared by a management system in advance
and it is possible to get the work done using scattered
yet co-operating ground stations.
To meet these challenges, it is necessary to de�ne

up-to-date operation management software for ground
stations. Existing systems management frameworks
such as HP OpenView, Tivoli TME 10 and CA Uni-
center TNG are relevant to such management con-
texts and may be used to reduce costs. The mana-
gement requirements of LEO/MEO satellite networks
and an approach for representing their topological re-
lationships with available management platforms are
described in [6]. However, many non-standard equip-
ments remain to be managed at a lower level, and, at
a higher level, space operations management not ad-
dressed by the standard management tools must still
be performed. Therefore, an important research prob-
lem consists of creating a framework of inter-operable
components. These components satisfy a market need
which is to build rapidly and on-demand an operations
management software to handle a network of ground
stations. These stations are intended to co-operate via
CORBA (see �gure 1(b)) in order to manage a constel-
lation of satellites.
To support this e�ort, application frameworks based

on distributed processing standards such as CORBA
and performant and easy-to-implement scripting lan-
guages like Java present several advantages to lower
the costs and shorten the delay of building operations
management systems:

� Object-oriented frameworks provide reusable de-
sign and components based on domain-speci�c know-
ledge, while distributed computing using CORBA al-
lows the integration of di�erent existing frameworks
found in other system infrastructures and middleware
layers, hence a market target of fast time-to-availability
operations stations;

� Interoperability among systems makes it possi-
ble to consider a more e�cient resource sharing among
di�erent operators of widely varying skills, resources
and geography ([7], [8]). This would enable satellite ser-
vicing and sales to many customers from many di�erent
geographical areas, thus vastly extending the market
potential;

� Programming languages such as Java may be
used, at a low cost, to add SNMP capabilities to com-
municate with otherwise unmanaged equipment. The
Java Dynamic Management Kit (JDMK) in its current
version includes an SNMP agent toolkit and may pro-
vide OMG IDL interfaces for Java classes in the future;

� The mobile agent paradigm as described in the
OMG Mobile Agent Facility [9] can simplify manage-
ment tasks in many ways. For instance, CORBA/Java-
based mobile agents can resolve software installation

3



problems by allowing on-demand downloading of ap-
propriate management instrumentation from a central
location. Java also allows easy modi�cation of agent-
side software { a task that cannot be easily accom-
plished with SNMP (see e.g. [10], [11]) although the
IETF Distributed Management Framework (disman)
aims at resolving this drawback.
The market of such operations management systems

may be extended from the space stations operations
management to other types of "networked facilities"
management such as �xed services transmitting sta-
tions, power lines, digital-TV networks or digital data
networks. Operations management is also emerging
for terrestrial transportation, telecommunications and
messaging, and operations scheduling: The control cen-
tres are currently equipped with software and tools on
an as-is basis, due of the high cost of tailoring opera-
tions management centres. The availability of reusable
application frameworks may open a new and rich mar-
ket there.

III. Managing CORBA-Environments with
SNMP Platforms

The CORBA-based management of LEO/MEO
satellite constellations through ground stations (as
described in section II) implies the availability of
a CORBA-based management platform. Although
several platform vendors claim to deliver CORBA-
compliant management platforms, this statement is in
almost every case only true for the internal platform
communication mechanisms: These systems are based
on a proprietary ORB and are thus not CORBA-2.2
compliant, i.e. they cannot inter-operate with other
ORBs and therefore not with CORBA agents located
on remote devices. It is therefore necessary to en-
hance SNMP-based management platforms for han-
dling CORBA requests. This section discusses the prin-
cipal alternatives for bridging the gaps between di�er-
ent management architectures and describes the con-
cept of our solution based on platform services and
standardized CORBAservices.

A. Interoperability between Management Architectures

As �gure 2 shows, there are basically three di�erent
strategies for achieving a seamless interaction of com-
ponents located in di�erent architectural domains (see
also [12]):
The �rst approach consists in the integration at the

resource level, i.e. the managed systems support more
than one management protocol; they are equipped with
Multiarchitectural Agents. This is usually unfeasi-
ble for the following reasons: SNMP agents, for exam-
ple, are often used to perform monitoring of simple net-
work devices. They should not consume a large amount

of resources and are usually built into the �rmware of
the device; the implications are that these agents can
neither be enhanced to support another management
protocol nor should they introduce additional complex-
ity. For an in-depth discussion of this subject, the
reader is referred to [13].

Resources

SNMPCORBA

SNMP

Multiarchitectural Manager

CORBA

SNMP Manager

Multiarchitectural Agent Management Gateway

SNMP

Resources

CORBA

CORBA SNMP

Resources

CORBA

SNMP

CORBA Agent

Fig. 2. Three approaches for interoperability

An alternative is the Management Gateway ap-
proach. It is then possible to manage services, sys-
tems and networks in di�erent management architec-
tures from a single point of control as demonstrated in
[14] and [15]. It is even possible to apply the power
of a management architecture with rich functional-
ity to any resource in the di�erent architectural do-
mains. In management architectures having no notion
of a management functional model such as the Inter-
net framework, the application of management func-
tionality \borrowed" from other architectures is par-
ticularly useful. Furthermore, a translation algorithm
has already been speci�ed by the OpenGroup Joint
Inter-Domain Working Group (JIDM) [16] that allows
the transformation of Internet SMI to CORBA IDL;
the appropriate interworking architecture has been re-
cently submitted [17] to the OMG in response to the
CORBA/TMN Interworking RFP . Thus, the standard-
ization process for CORBA/SNMP management gate-
ways is currently underway. Furthermore, our expe-
riences with building management gateways [18] have
shown that implementations of required CORBAser-
vices (like e.g., Noti�cation, Topology) are also not
available on the marketplace today. At their cur-
rent stage, one has to use proprietary mechanisms for
achieving interoperability; another issue is that mana-
gement gateways are complex pieces of software and
are likely to become bottlenecks with respect to per-
formance [19]. However, one can expect that this situ-
ation will be improved in the near future as the recent
proposals for new services will be adopted.
The third solution is to place the burden of integrat-

ing the di�erent architectures on the managing system.
Such a Multiarchitectural Manager supports a set

4



of management protocols which are implemented onto
the platforms' communication stack. A conversion be-
tween di�erent management protocols is therefore not
necessary. The transformation of the management in-
formation descriptions is often handled by tools bun-
dled with the management platform like MIB-compilers
and therefore need not be handled by the developer.
Furthermore, the service APIs of available management
platforms can easily be accessed thus yielding the op-
portunity of reusing a large amount of platform ser-
vices. In our opinion, this solution represents a good
compromise between the quality of the integration and
the amount of work that has to be undertaken.
Although the gateway-based approach seems to be

very promising as a long-term solution, the manager-
based integration approach currently demands the least
amount of work. Thus, we decided to follow the in-
tegration on the side of the managing system for the
design and implementation of our interoperability so-
lution. In the following two sections, we will therefore
discuss two approaches for doing the platform-based
integration and identify the reusable platform services.
Section IV explains how our prototype implementation
works.

B. Building Multiarchitectural Managers

There are basically two possibilities for the integra-
tion of CORBA as a new management architecture into
an existing management platform: The �rst approach
makes use of the platform's communication interfaces
by integrating a new protocol into the protocol stack.
The second consists of establishing IDL \wrappers"
around the interfaces of the platform services so that
the whole platform appears as a set of CORBA objects.
We will discuss each approach in turn.

B.1 Integration at the Protocol Level: XOM/XMP-
Approach

The goal of this approach is to perform the inte-
gration work on the \lowest level" as possible. The
XMP/XOM (X/Open Management Protocol, X/Open
OSI-Abstract-Data Manipulation) approach [20] has
been for a long time the best-known representative
of this idea. Initially, its purpose was to enable
architecture-independent management by presenting a
uniform API for the SNMP and CMIP management
protocols and a mapping of ASN.1 constructs into C
data types. From today's point of view, this approach
failed due to the missing transparency with respect to
the underlying protocols. Additionally, its complex-
ity led to the fact that it was only used as a C-based
interface to CMIP while the SNMP communication
is handled by a separate and easier-to-use dedicated
SNMP stack. Furthermore, the recently standardized

TMN/C++ API developed by the NM-Forum and de-
scribed in [21] is now replacing XMP.
The main problem for using XMP in conjunction

with CORBA stems from the fact that XMP assumes
that every incoming Protocol Data Unit (PDU) has a
�xed format. While this is true for SNMP and CMIP,
CORBA event messages are a method call on an ar-
bitrary consumer object (see also section III-C.2). Of
course, the Postmaster -daemon being responsible for
the maintenance of the XMP-stack in network mana-
gement systems like HP OpenView and IBM NetView
could act in the role of an event consumer. Conse-
quently, if typed event communication is used, the con-
sumer interface must be modi�ed every time if new
event types have to be considered. This happens very
frequently, e.g. if new resources are introduced into
the CORBA environment. Furthermore, the above de-
scribed extensions of the Postmaster-daemon require
the availability of its source code { if commercial plat-
forms are used, this is obviously impossible.

B.2 Encapsulating the Platform Service Interfaces

An alternative to the XOM/XMP approach is the di-
rect access to services provided by the platform like the
facilities described in the following section III-C. This
is possible because a large part of the platform services
is available to third-party applications through C-APIs.
Therefore, we decided to encapsulate the platform in-
terfaces with IDL wrappers so that the platform ap-
pears as a set of CORBA objects. The use of wrappers
is a standard technique for migrating legacy systems
into new object-oriented environments. This is feasi-
ble because the \perception is reality"-principle applies
to any kind of object-oriented system: It is not neces-
sary that a system is implemented in an object-oriented
way; the important thing is that its interfaces look like
objects. Other CORBA objects can then communi-
cate with the platform the same way as they would do
with \native" CORBA objects. On the other hand, the
use of platform-speci�c service APIs naturally implies
the loss of independence from concrete products; the
portability of the solution is thus restricted.

C. Necessary Platform- and CORBA-services

Management platforms available on the market (e.g.,
IBM NetView) usually contain the following key fea-
tures:

� Topology Management: Network nodes are dy-
namically discovered and polled for con�guration in-
formation. This information is stored in a database
and a graphical view of the network topology is pre-
sented at the platform's user interface. The database
can be accessed through a programming interface by
management applications which want to retrieve or

5



supply topological information. In addition to the
generic discovery and status polling applications for IP
networks, the Generalized Topology Manager (GTM)
application collects and maintains information about
\non-IP" nodes.

� Event Management: The platform is able to re-
ceive and process network events via SNMP (traps) and
CMIP or CMOT, respectively (event reports). The
platform Event Management Services (EMS) receive,
�lter and store the events in log �les that can then be
accessed by users or by applications via a programming
interface. Events can be presented on the graphical
user interface. The platform allows to �lter events by
application-de�ned criteria and to forward them to reg-
istered applications. This allows automatic triggering
of actions in case of pre-de�ned network situations.

� Performance Monitoring: Network administra-
tors can de�ne thresholds on the attributes of managed
objects. An event is generated automatically when a
previously de�ned threshold is exceeded so that an op-
erator or an application can be informed e.g., whenever
the QoS (Quality of Service) of a network resource falls
below a critical level.

� Con�guration Application: The platform con-
tains a Browser for Management Information Bases
(MIBs) that can be used to query a device's con�g-
uration by reading MIB information and to con�gure
a device remotely by modifying its MIB variables.

� Monitoring the State of Resources: All network
resources are periodically polled for state changes. A
change of state is visualized through a colour change of
the icon which represents the resource on the graphical
user interface.

� Integration of Third-Party Applications: Al-
though state-of-the-art platforms provide a number of
basic services that are needed for network management,
these services can be extended by integrating additional
management applications that are tailored to speci�c
needs. Many platforms also contain a set of APIs that
allow the integration of user-written applications.

The services described above ful�l basic requirements
for the management of networks and computer sys-
tems. For a platform that manages CORBA objects,
these services must be enhanced to support the ma-
nagement of distributed applications and services in
addition to network resources and computers. This
is due to the fact that not only the amount of �ne-
grained managed objects representing the application
components tends to be much higher than the number
of networked devices but these managed objects are ex-
tremely dynamic: The installation of new applications
must be monitored and the starting and stopping of
application processes must be surveyed and controlled
by the managing system. This poses high requirements

w.r.t. scalability.
Our work focuses on the Event and Topology Ser-

vices of the platform which provide a common basis for
all kinds of management services. In addition, both ac-
cess and maintain the platforms' Management Informa-
tion Repository. Therefore, they are the main building
blocks for the development of further CORBA manage-
ment services like con�guration applications. The han-
dling of events is a major aspect of resource mana-
gement, especially for detecting fault situations. Since
the availability of CORBA-based applications and ser-
vices depends on the functionality of computer systems
and network components, the application and service
management may not be separated from systems and
network management. Therefore, interfaces have to be
developed that allow CORBA events to be received
and processed by the manager in the same way as
SNMP traps; they will be described in section IV-A.
Topology Services manage topological relationships
between managed objects. In section IV-B we will show
how these generic services can be used in a straight-
forward manner in order to visualize the relationships
between CORBA objects.

C.1 Event Management Services provided by the Ma-
nagement Platform

SNMP-based management platforms have several
components for receiving and processing SNMP traps.
Received events are forwarded through a chain of pro-
cesses, each performing speci�c actions on them. The
services of a �lter process can be used to send certain
kinds of events to registered management applications
in order to allow automatic actions to be taken in case
of unusual circumstances. Several �lters can be ac-
tive concurrently, each one de�ned for certain event
attributes like source, type, time, etc. A log daemon
stores all event data in a log �le. This �le can be ac-
cessed by users and applications to determine the event
history of the network. A GUI application presents a
graphical representation of events in so-called Dynamic
Workspaces at the platform user interface. These dy-
namic workspaces can be used to cluster all incoming
events or only those according to a speci�c, pre-de�ned
�lter.

C.2 The CORBA Event Service

The CORBA Event Service [4] standardizes the
transfer of asynchronous noti�cations between objects.
An object that generates events is called supplier
whereas an object which receives events is called con-
sumer . A supplier passes an event to a consumer by
invoking an appropriate method on the consumer inter-
face. Suppliers and consumers can be decoupled from
each other by event channel objects. An event channel

6



forwards all events it receives from any of its suppliers
to all the consumers that have registered with the chan-
nel. The events themselves can be either of generic or
typed format. A generic event has one single parameter
of the OMG IDL datatype any, whereas a typed event
may have an arbitrary number of parameters which can
be of any OMG IDL datatype.
In the future, the currently standardized CORBA

Noti�cation Service developed by the OMG
Telecommunications Domain Task Force will provide
much more exible event �ltering capabilities. It is
then possible to establish user-de�ned event �lters by
assigning priorities to events, generate timestamps,
and introduce QoS criteria for the handling of events.
Mechanisms for modifying the persistency properties of
events will also be available.

D. Topology Services

Topology Services are needed to visualize and moni-
tor managed resources on the graphical user interface.
In network management this means displaying symbols
for all existing network components and computer sys-
tems, showing the connections between them (e.g., on
the IP level) and visualizing the state of a resource (up,
down, test etc.) through the colour of the symbols.

D.1 Platform Topology Services

The main components of platform topology services
are discovery modules that �nd managed resources,
store information about them in the database of the
management platform and poll them for con�guration
and state changes at regular intervals. The informa-
tion in the database is then used to display a model
of the network and its resources in a hierarchy of so-
called submaps on the user interface. An operator
may navigate through the submaps and examine their
content by selecting the symbols representing managed
resources. By extending the topology tervices for the
management of CORBA systems and applications, we
achieved not only a common user interface for monitor-
ing network components, computers and applications,
but also an integrated Management Information Repos-
itory inside the platform. Section IV-B will describe
this in detail.

D.2 The CORBA Topology Service

The topology service whose goal is to maintain and
manipulate the logical topology of distributed sys-
tems is currently undergoing the OMG standardiza-
tion process. It de�nes mainly three generic APIs that
are particularly useful for topology management pur-
poses: The Metadata Manager API allows the de�ni-
tion of rules for topology relationships between object
classes based on criteria like their type or the number

of objects that take part in a topological relationship.
The Data Manager API makes use of the former API
for establishing, maintaining or deleting relationships
between object instances. Every change requires a
lookup for ensuring that the rules de�ned in the meta-
data are ful�lled. The Query Manager API , �nally,
is used by management applications for inquiries con-
cerning topology relationships.
Although these features are particularly useful for

managing distributed systems, the standardisation of
the topology service has been stopped in december
1997 because it seemed that recent developments in
the OMG (Portable Object Adapter, Meta-Object Ser-
vices) already provide parts of the topology service
functionality.

IV. The CORBA/SNMP Management
Platform Prototype

This section describes our prototype which has been
implemented using the following products: The SNMP-
based management platform is IBM NetView for AIX
version 4.1 ; the CORBA development environment is
the IBM SOMobjects Developer's Toolkit version 3.0 .
The structure of this section is similar to section III;

we will therefore describe in subsection IV-A how the
implementation of the event handling mechanism works
and focus in subsection IV-B on our solution for topo-
logy management.

A. Event Handling

Our goal was to open the NetView Event Manage-
ment Services (EMS) for CORBA events in addition
to SNMP traps in order to create a single point of
reception and processing of events from network, sys-
tems and application management. Our approach is
based on the CORBA Event Service, which has been
described in section III-C.2. We have decided to use
event channel objects and typed event communication
because we believe that the generic event format is in-
su�cient for passing the complex information needed
for managing CORBA-based distributed applications.
Event channels have the following useful properties:
The amount of event consumers and their object refer-
ences are completely transparent to the suppliers; these
send their events directly to an event channel and thus
only need to know one reference (the one of the event
channel) although an arbitrary number of consumers
may receive the event. Typed event communication
yields not only the advantage of being able to distin-
guish between application, network and resource events
but presents also the opportunity of structuring the
events stemming from CORBA agents according to its
severity and w.r.t. di�erent categories like fault, topo-
logy or security. This gives us the possibility to select

7



events according to their kind and severity: it is feasible
to use the push-model between the event channel and
the consumer (i.e., the platform) for important events
and to rely on pull-type communication for less critical
events.
Two interfaces were de�ned between the CORBA en-

vironment and the management platform (see also �g-
ure 3):

Event Display

Log

Event

CORBA

EFD

EFD

Supplier

Supplier

(Filter 1)

(Filter 2)

Consumer

NetView Filter Daemon

SNMP

SNMP

SNMPCORBA

CORBA

CORBA Mgmt. Application

CORBA-Agent Wrappers

NetView Log Daemon

SNMP-Manager

Event Gateway

Event
Adapter

Supplier
Channel

Event

Supplier

Supplier

Channel

Event

Consumer

Consumer
Event

Channel

EMS
Event

Consumer

Fig. 3. Encapsulating the platform event handling APIs

1. An interface that allows CORBA events to be
sent to NetView. Once events have been received, they
can be �ltered, logged and displayed on the user inter-
face of the platform in the same way as SNMP traps.

2. An interface that allows CORBA applications
to register themselves and their �lters with NetView to
receive selected events.
We will discuss the implementation of both interfaces

in the following sections.

A.1 Interface 1: Reception of CORBA Events by
NetView

Since NetView is not able to receive CORBA events
directly, they have to be converted into an appropri-
ate format. For this purpose, we have developed an
event gateway whose instances o�er a TypedConsumer

interface for CORBA management events. The event
gateway receives events from suppliers (i.e., CORBA-
compliant management agents) via an event channel
and transforms them into SNMP traps; these can then
be handled by NetView. The actual event-to-trap con-
version is carried out by the two object classes that
form the event gateway depicted in �gure 3: The
EMS Event Consumer object registers itself with the
event channel in order to collect all kinds of events
sent out by the suppliers. The transformation of the
received event messages into SNMP traps and their for-
warding to the management platform is done by call-
ing the appropriate methods of the Event Adapter ob-
jects. An enterprise-speci�c SNMP trap-PDU is then
created, �lled with the delivered parameters and �nally
sent to NetView. The mapping of speci�c kinds of

typed events to enterprise-speci�c traps is similar to the
approach described in [17]. These enterprise-speci�c
traps must be de�ned on the side of the management
platform either manually or by setting the trap dae-
mon (trapd) con�guration by corresponding API calls.
The mapping rules between the names of the CORBA
events and their enterprise-speci�c trap counterparts
must also be de�ned. Such a mapping table can ei-
ther be de�ned in a at �le or as a separated object
or in the EMS Event Consumer object. We decided to
implement a common, prede�ned set of asynchronous
noti�cations and stored these in a �le that was parsed
by the EMS Event Consumer. The IDL de�nition of an
Event Adapter object class is given below:

interface Event_Adapter : SOMObject

{

void create_pdu(in long tid, in string src);

void add_arg_long(in long arg);

void add_arg_string(in string arg);

void send_pdu();

}

A trap-PDU is created and initialized by calling the
method create pdu; the purpose of this method is to
determine the enterprise-speci�c trap-identi�er (tid)
and the IP-address of the source (src, determined by
the host-parameter of the CORBA event) and to in-
sert these parameters into the newly created trap-PDU.
The two add arg () methods are used to write the
arguments of the event as variable-bindings into the
PDU. Finally, send pdu() sends the PDU to the plat-
form. This IDL interface can be considered as the
\wrapper"for the appropriate methods of the NetView
SNMP-API [22]. As this API is implemented in C, the
C language mapping was used to establish the bind-
ing between the IDL interface and the SNMP API.
The CORBA development environment that we used
requires that every object class must be derived from
SOMobject, the base object class.

A.2 Interface 2: Platform-based �ltering of CORBA
Events

The second interface allows CORBA-based applica-
tions to receive events which have been �ltered by
NetView. The NetView �lter API supports �ltering
according to the following criteria: Enterprise ID, IP-
address of the agent system, event time, event logged
time, generic and speci�c trap types, frequency of oc-
currence. Filter expressions are represented by strings
that consist of keywords representing the above crite-
ria, values, logical and numeric operators.
As we want to ensure that CORBA-based manage-

ment applications make use of the platform �lter func-
tionality, �ltered SNMP-traps had to be converted back

8



again into CORBA events. In the terminology of the
CORBA event service, the platform must therefore be
able to adopt the \supplier" role for �ltered events.
To make this possible, the object class EFD Supplier

was de�ned. This name of the object class was cho-
sen because these objects have a functionality that
is similar to the OSI Event Forwarding Discrimina-
tors (EFD). An EFD Supplier receives NetView events
which have passed a NetView �lter, converts them into
CORBA events and forwards them to the registered
consumer objects (i.e. CORBA-based management ap-
plications) via a CORBA event channel (see �gure 4).
For technical reasons, we have implemented a helper
class Event Dispatcherwhose purpose is to handle the
registrations of event consumers and to distribute the
�ltered events to the appropriate consumers. The IDL
de�nition of an EFD Supplier is as follows:

interface EFD_Supplier : SOMObject

{

attribute string filter;

void set_Dispatch(in Event_Dispatcher disp);

oneway void activate();

}

A consumer can specify what kind of events he
wants to receive by setting the EFD Suppliers filter
attribute. When an EFD Supplier is activated, the
filter attribute is converted into a NetView event
�lter and a session with the NetView �lter process
(ovesmd) is opened. Every NetView event that passes
the �lter is converted to the corresponding CORBA
event and is forwarded to the registered consumers via
the event channel. The conversion is done by a callback
method that is activated whenever an event passes the
�lter. The purpose of this method is to map a �ltered
SNMP trap into an appropriate CORBA event accord-
ing to the speci�c-ID of the trap. The parameters of
the trap are included into the event message and for-
warded to the Event Dispatcherwho introduces them
into the corresponding event channels. As soon as the
�lter is initiated by the activate() method call, the
traps are collected and handled by the callback method
in an endless loop. In order to prevent that the con-
sumer blocks, too, the activate method is de�ned as
oneway. One EFD Supplier object exists for every ac-
tivated �lter.
As the �ltering happens completely in the SNMP-

based management platform, the �lter rules are re-
stricted to the above described (SNMP-focused) cri-
teria. A native CORBAservice that allows �ltering ac-
cording to more powerful criteria is therefore highly
desirable. The standardization of an appropriate Noti-
�cation Service is currently underway (see also section
III-D.2).

EMS Event Consumer trapd.log

ovevent.log

trapd pmd ovesmd

ovelmd

API

nvevents

Event Channel

Suppliers

Event Channels

Consumers

Applications

Applications

API

Event Adapter EFD Supplier

SNMP Trap

Fig. 4. Using the platform event propagation and �ltering APIs

A.3 Handling Internal Errors in a Distributed Object
System

The previously described interfaces seamlessly inte-
grate the NetView Event Management Services into the
CORBA environment. Events can be used to convey
various types of information inside a distributed ma-
nagement system. One of the main application areas
however is to notify a manager (application or human)
when a fault situation has occurred inside a managed
resource.
For CORBA-based application and service mana-

gement, the managed resources are often the objects
themselves (as opposed to objects representing physi-
cal resources). CORBA objects handle fault situations
during method invocations by generating exceptions
which are passed back to the caller of the method.
In order to use NetView for fault management in a
CORBA (here: SOMObjects) environment, we modi-
�ed the object adapter of the server processes in such a
way that it generates fault events whenever an excep-
tion has occurred during a method invocation on an
object. Please note that this refers only to internal

errors during the processing of events coming from re-
sources. All method invocations by clients on an object
inside a SOMObjects server process are �rst received by
the object adapter that connects the server to the ORB.
The object adapter forwards the requests to a server
object which is an instance of the class SOMDServer.
This server object performs the actual dispatching of
the request on the target object. We extended SOMD-

Server by introducing a subclass called ManagedServer

and whose purpose is to check for exceptions after dis-
patching method calls on target objects. Whenever
it detects an exception, it generates a fault event and
sends it to NetView. By replacing the regular server
object with a ManagedServer, all exceptions inside the
corresponding server process can be captured by the
management platform because such a server object is
present in every SOMObjects server process. There-

9



fore, the platform is also informed if errors occur in the
distributed processing environment.
Subclassing from the server object is a convenient

way to integrate management functionality into the dis-
patching of method calls. One can then survey how well
the management infrastructure itself performs. Other
possible application areas of this mechanism are:

� Ensuring security by checking the principal pa-
rameter (user and hostname) of method calls and com-
paring this data with the access control lists of the
server.

� Enabling accounting by deriving the account ID
from the principal parameter (user and hostname) of
method calls.

� Monitoring the performance of the distributed
system by measuring the time it takes to dispatch a
method.

B. Topology Management

As outlined in section III-D, topology services man-
age topological relationships between managed objects.
In this section, we describe �rst how a graphical rep-
resentation of abstract objects bound to real resources
might look like. This is necessary because (see sec-
tion II) LEO/MEO satellites provide to a large extent
telecommunication services (perceived as CORBA ob-
jects) that initially do not �t well into an object model
for network resources as provided by SNMP-based ma-
nagement platforms. Another challenge comes from
the high dynamics of satellite communications where
not only the relationships between call connections and
satellites may di�er, but also the number of satellites
bound to ground stations. Thus, new managed objects
must be rapidly identi�ed by a discovery task and the
high frequency of changes requires regular topology up-
dates.

B.1 Visualization of CORBA Resources

Submap

Submap

Submap

Ground Stations

Services

Call Connections

Submap

Satellites

Root Submap

P
latfo

rm
 T

o
p

o
lo

g
y N

avig
atio

n

Fig. 5. A simple relationship model for satellite management

In order to visualize and monitor managed resources,
a simple abstract relationship model of CORBA sys-
tems has been de�ned and integrated in the database
of the management platform. The model is based
on the layered architecture depicted in �gure 5. The
LEO/MEO satellite management scenario described in

section II poses several requirements for a relationship
model which is suitable for monitoring this CORBA-
based environment. However, the topological relation-
ships di�er to a certain extent from relationships usu-
ally encountered in LAN segments. Therefore, we de-
signed a relationship model suitable for satellite mana-
gement requirements.

� The highest layer (services) consists of dis-
tributed objects which may have references to each
other and communicate through method invocations.
An object o�ers services to potential clients and may
utilize the services of other objects. This is true for
telecommunication services implemented as CORBA
objects.

� The second layer (call connections) comprises
the calls in which one or more service objects may par-
ticipate. A call may be switched either through one
satellite to a ground station or (as it is the case e.g.
for the Iridium system) over inter-satellite links where
several satellites may be involved.

� The third layer (satellites) contains the systems
over which connections are switched. Although more
than one ground station may be visible from a satellite,
there is only a n:1 communication relationship between
satellites and ground stations.

� The lowest layer shows the ground stations
which act as the communication backbone for the
LEO/MEO satellite constellation.
Although this relationship model is very simple, it is

able to handle the dynamic relationships between ser-
vices, call connections, satellites and ground stations.
Please note that the services represent the most �ne-
grained objects in this model and therefore are placed
in the highest part of the hierarchy in our model al-
though one could argue that because call connections
depend on services, they should be placed on top of
the hierarchy. We believe that the former representa-
tion �ts better into the topology map navigation mech-
anism of network management platforms: By selecting
a symbol representing a ground station, the platform
user reaches a submap that shows all the satellites that
maintain actually communication relationships to this
one ground station. The subordinate submap shows
the call connections that are switched over the satellite
in question. If a user clicks on a call connection sym-
bol, he will get the objects that represent the services
currently involved in the call.

B.2 The Discovery Task

The data for the above described relationship model
is provided by a task that discovers all the CORBA re-
sources and creates entries for them in the management
platform database. This discovery task is based on the
NetView Generalized Topology Manager (GTM) com-

10



ponent, which includes an API and a set of abstract
data objects.
In order to enable the implementation of a purely

CORBA-based discovery application we wrapped the
GTM API in a set of CORBA interfaces. From the
point of view of a client, the instances of these classes
can be treated like any other CORBA object and are
used to create entries in the NetView database. To
create a model of the CORBA resources, the discovery
application provides the following information:

1. The services that are registered with the ORB
and their references.

2. The connected calls.
3. The satellites involved in a call.
4. The ground stations over which calls are

switched.
The object references are needed to determine the

relationships between the services and the connections.
Object references are represented by proxy objects in-
side a SOMObjects process. A proxy is an object inside
a client's address space that forwards all local method
calls to the corresponding target object on the server.
In order to determine the server relationships it must
be known what proxy objects exist inside a server and
on which servers the target objects of the proxies re-
side. The information about a proxy's target is con-
tained in the stringi�ed object reference corresponding
to both the proxy and its target. The calls and the ser-
vices that run on them are discovered by accessing the
CORBA Implementation Repository. A subclass of the
SOMObjects server object acts as a registry for all the
objects and the proxies inside the server. In addition
to the already mentioned role of the server object in
method dispatching, it also o�ers functions to create
and delete objects inside the server (Like the factory

objects from the CORBA lifecycle service). By sub-
classing from SOMDServer and overriding the appropri-
ate methods we achieved that the creation and deletion
of objects is registered and that the information about
objects and proxies inside the server can be obtained by
clients. Other potential information sources with valu-
able information to a discovery application are naming
services for discovering registered objects and trader
services for discovering registered services.

B.3 Updating the Topology Data

Since both the number and the state of managed
resources dynamically change (e.g. new objects are
created, calls are established or dropped) it is neces-
sary to constantly update the topology data that is
contained in the management platform database. The
traditional approach to this problem is the polling of
the network for new resources and for state changes of
already known resources by the management platform.

The disadvantages of this approach are on the one hand
the considerable delay until new resources are identi�ed
and, on the other hand, the generation of potential ex-
cessive network tra�c that reduces the available band-
with for other applications. To avoid these problems
we developed an approach that is completely event-
driven. Managed resources emit events to well-known
event channels when their state changes or when they
notice the creation or deletion of other resources. To
realize the generation of topology events we modi�ed
the following SOMObjects runtime components:

� Every server object sends out events when ob-
jects are created or deleted in the corresponding server.

� The object representing the implementation
repository generates events when services are registered
or deleted.

� The service processes themselves send out events
when they are started and when they are terminated.
The bene�t of this event-driven approach is that the

management related network tra�c is greatly reduced
because an event is only generated when a change in
topology data has really occurred and not proactively
by the management platform. This is particularly use-
ful for LEO/MEO satellites where changes occur fre-
quently and where bandwith is limited and therefore
expensive.

V. Conclusion and Outlook

The paper has described an approach for the in-
tegration of CORBA with existing SNMP-based ma-
nagement platforms and its proof-of-concept through
a prototype implementation. Our work was motiva-
ted by the increasing demand for accessing CORBA-
compliant management agents while CORBA-based
management platforms are still hard to �nd on the
market. The need for such an integration has been
demonstrated through a concrete scenario, namely the
CORBA-based management of satellite constellations.
We have demonstrated how the major integration

problems can be solved with rather small e�ort by
� exchanging events between the CORBA objects

and the platform through CORBA typed event chan-
nels,

� supplying information to the platform database,
and

� using open platform services as a temporary re-
placement for currently speci�ed, but not yet available
CORBAservices.
The overall message is that there are products avail-

able on the market place today which allow to imple-
ment CORBA management platforms by the thought-
ful combination of available components, e.g. COR-
BAservices and network management platforms. We
have used o�-the-shelf products and tied them together

11



in order to obtain a CORBA-based integrated system
and network management platform. Great care has
been taken to base our work on open, standardized
mechanisms and services for performing the integra-
tion. Especially the CORBA event service and the
JIDM speci�cation translation algorithm for mapping
the Internet SMI to OMG IDL turned out to be par-
ticularly useful and powerful tools for building our in-
teroperability solution.
The acquired solution permits the management

of SNMP- and CORBA-compliant agents across the
boundaries of the Internet and CORBA management
architectures and therefore helps to preserve the large
investments in the already deployed SNMP-based ma-
nagement platforms while presenting the opportu-
nity of seamlessly integrating new and more powerful
CORBA-compliant management agents. These advan-
tages might encourage large network providers to de-
ploy powerful distributed object systems and represents
therefore a step towards integrated enterprise manage-
ment.

Acknowledgment

The author wishes to thank the members of
the Munich Network Management (MNM) Team
and for helpful discussions and valuable comments
on previous versions of the paper. The MNM
Team directed by Prof. Dr. Heinz-Gerd Hegering
is a group of researchers of the University of Mu-
nich, the Munich University of Technology, and
the Leibniz Supercomputing Center of the Bavarian
Academy of Sciences. Its webserver is located at
http://wwwmnmteam.informatik.uni-muenchen.de.

References

[1] H.-G. Hegering, S. Abeck, and B. Neumair, Integrated Ma-
nagement of Networked Systems | Concepts, Architectures
and their Operational Application, Morgan Kaufmann Pub-
lishers, 1998.

[2] Morris S. Sloman, Ed., Network and Distributed Systems
Management, Addison Wesley, 1994.

[3] \The Common Object Request Broker: Architecture and
Speci�cation," OMG Speci�cation Revision 2.2, Object Ma-
nagement Group, Feb. 1998.

[4] \CORBAservices: Common Object Services Speci�cation,"
OMG Speci�cation, Object Management Group, Nov. 1997.

[5] Barry Miller, \Satellites free the mobile phone," IEEE
Spectrum, Mar. 1998.

[6] G. Dreo, B. Neumair, R. Wies, A. B�ottcher, and
M.Werner, \Management von LEO/MEO-Satellitennetzen:
Anforderungen und Netzdarstellung," in Kommunikation
in verteilten Systemen, GI/ITG-Fachtagung, K. Franke,
U. H�ubner, and W. Kalfa, Eds. Feb. 1995, pp. 270{284,
Springer-Verlag.

[7] Andreas Vogel and Keith Duddy, Java Programming with
CORBA, John Wiley & Sons, Inc., 2nd edition, 1998.

[8] Robert Orfali and Dan Harkey, Client/Server Programming
with Java and CORBA, John Wiley & Sons, Inc., 2nd edi-
tion, 1998.

[9] \Mobile Agent System Interoperability Facilities Speci�ca-
tion," Document, Object Management Group, May 1997.

[10] Franck Barillaud, Luca Deri, and Metin Feridun, \Network
Management using Internet Technologies," In Lazar et al.
[23], pp. 61{70.

[11] Michael Maston, \Using the World Wide Web and Java
for Network Service Management," In Lazar et al. [23], pp.
71{84.

[12] Pramod Kalyanasundaram and Adarshpal Sethi, \Interop-
erability Issues in Heterogeneous Network Management,"
in Journal of Network and Systems Management, Manu
Malek, Ed., vol. 2, pp. 169 { 193. Plenum Publishing Cor-
poration, June 1994.

[13] S. Mazumdar, S. Brady, and D. Levine, \Design of Pro-
tocol Independent Management Agent to Support SNMP
and CMIP Queries," in Proceedings of the 3rd IFIP/IEEE
International Symposium on Integrated Network Manage-
ment. Apr. 1993, North-Holland.

[14] Subrata Mazumdar, \Inter-Domain Management between
CORBA and SNMP," in Proceedings of the IFIP/IEEE In-
ternational Workshop on Distributed Systems: Operations
& Management, L'Aquila, Italy, Oct. 1996.

[15] Nader Soukouti and Ulf Hollberg, \Joint Inter-Domain Ma-
nagement: CORBA, CMIP and SNMP," In Lazar et al.
[23], pp. 153{164.

[16] \Inter-Domain Management: Speci�cation Translation,"
Open Group Preliminary Speci�cation P509, Open Group,
Mar. 1997.

[17] JIDM Working Group, \CORBA/TMN Interworking -
SNMP Part," OMG TC Document telecom/98-05-03, Ob-
ject Management Group, May 1998.

[18] A. Keller and B. Neumair, \Using ODP as a Framework for
CORBA-based Distributed Applications Management," in
Proceedings of the Joint International Conference on Open
Distributed Processing (ICODP) and Distributed Platforms
(ICDP), J. Rolia, J. Slonim, and J. Botsford, Eds., Toronto,
Canada, May 1997, pp. 110{121, Chapman & Hall.

[19] A. Keller, \Tool-based Implementation of a Q-Adapter
Function for the seamless Integration of SNMP-managed
Devices in TMN," in Proceedings of the IEEE/IFIP Net-
work Operations and Management Symposium (NOMS 98),
New Orleans, USA, Feb. 1998, IEEE Communications So-
ciety, pp. 400{411.

[20] \OSI-Abstract-Data Manipulation API (XOM)," X/Open
CAE Speci�cation C180, X/Open Ltd., Nov. 1991.

[21] Tom R. Chatt, Michael A. Curry, Juha Sepp�a, and Ulf Holl-
berg, \TMN/C++: An object-oriented API for GDMO,
CMIS, and ASN.1," In Lazar et al. [23], pp. 177{191.

[22] IBM Corporation, Research Triangle Park, NC 27709-
12195, IBM NetView for AIX Version 4: Programmer's
Reference, 1st edition, July 1995, Order Number: SC31-
8165-00.

[23] Aurel A. Lazar, Roberto Saracco, and Rolf Stadler, Eds.,
Proceedings of the 5th IFIP/IEEE International Sympo-
sium on Integrated Network Management, San Diego, CA,
USA, May 1997. IFIP, Chapman and Hall.

12


