
II
P A R T

FRAMEWORK

We are now past the preliminaries and ready to dive into the technical meat
of The Grid. We lead off with Part II, which comprises just the single scene-setting
Chapter 4, “Concepts and Architecture.” This chapter introduces the central Grid
concepts and architectural principles upon which the rest of the book is based. Its
purpose is to orient the reader by presenting the concepts and terminology
required to understand the material that follows. This is the chapter that should
be read before any other.

Chapter 04 26/9/03 8:01 PM Page 35

Julie Look
Text Box

Julie Look
Text Box
Reprinted from The Grid 2 : Blueprint for a New Computer Infrastructure; pages 35-64Ian Foster, Ph.D., Carl Kesselman, Ph.D., editorsCopyright 2003, with permission from Elsevierwww.elsevier.com

Julie Look
Text Box

Julie Look
Text Box

Chapter 04 26/9/03 8:01 PM Page 36

4
CHAPTER

Concepts and Architecture

Ian Foster and Carl Kesselman

In this scene-setting chapter, we provide an overview of the purpose, evolution,
architecture, and implementation of Grid systems—a picture that will then be
filled out in the chapters that follow. This chapter thus both introduces Grids and
provides a road map for the rest of the book.

The term “the Grid” was coined in the mid-1990s to denote a (then) proposed
distributed computing infrastructure for advanced science and engineering. Much
progress has since been made on the construction of such an infrastructure and
on its extension and application to commercial computing problems. And while
the term “Grid” has also been on occasion conflated to embrace everything from
advanced networking and computing clusters to artificial intelligence, there has
also emerged a good understanding of the problems that Grid technologies
address, and at least a first set of applications for which they are suited.

Grid concepts and technologies were originally developed to enable resource
sharing within scientific collaborations, first within early gigabit/sec testbeds
(161, 163) and then on increasingly larger scales (108, 137, 394, 610). As discussed
in Chapter 2, applications in this context include distributed computing for com-
putationally demanding data analyses (pooling of compute power and storage;
e.g., Chapter 10), the federation of diverse distributed datasets (e.g., Chapters
7–9), collaborative visualization of large scientific datasets (pooling of expertise),
and coupling of scientific instruments with remote computers and archives
(increasing functionality as well as availability, e.g., Chapters 1:4 and 1:6).

A common theme underlying these different usage modalities is a need for
coordinated resource sharing and problem solving in dynamic, multi-institutional vir-
tual organizations (281). More recently, it has become clear (see Chapter 3) that
similar requirements arise in commercial settings, not only for scientific and

Chapter 04 26/9/03 8:01 PM Page 37

technical computing applications (where we can already point to success stories;
e.g., Chapters 11 and 12) but also for commercial distributed computing applica-
tions (e.g., Chapter 13), including enterprise application integration (Chapter 14)
and business-to-business partner collaboration over the Internet. Just as the Web
began as a technology for scientific collaboration and was adopted for e-business,
we see a similar trajectory for Grid technologies.

We thus argue that both science and industry can benefit from Grids.
However, at the risk of stating the case too broadly, we make a more compre-
hensive statement. A primary purpose of information technology and infrastruc-
ture is to enable people to perform their daily tasks more efficiently or effectively.
To the extent that these tasks are performed in collaboration with others, Grids
are more than just a niche technology, but rather a direction in which our
infrastructure must evolve if it is to support our social structures and the way
work gets done in our society.

The success of the Grid to date owes much to the relatively early emergence
of clean architectural principles, de facto standard software, aggressive early
adopters with challenging application problems, and a vibrant international com-
munity of developers and users. This combination of factors led to a solid base of
experience that has more recently driven the definition of the service-oriented
Open Grid Services Architecture that today forms the basis for both open source
and commercial Grid products. In the sections that follow, we expand upon these
various aspects of the Grid story and, in so doing, introduce the principal issues
to be addressed in the rest of the book.

4.1 VIRTUAL ORGANIZATIONS AND THE GRID

Consider the following scenarios:

✦ A company needing to reach a decision on the placement of a new factory
invokes a sophisticated financial forecasting model from an application service
provider (ASP), providing it with access to appropriate proprietary historical
data from a corporate database on storage systems operated by a storage service
provider. During the decision-making meeting, what-if scenarios are run
collaboratively and interactively, even though the division heads participating
in the decision are located in different cities. The ASP itself contracts with an
on-demand cycle provider for additional “oomph” during particularly demand-
ing scenarios, requiring of course that cycles meet desired security and perform-
ance requirements.

4 Concepts and Architecture
38

Chapter 04 26/9/03 8:01 PM Page 38

✦ An industrial consortium formed to develop a feasibility study for a next-
generation supersonic aircraft undertakes a highly accurate multidisciplinary
simulation of the entire aircraft. This simulation integrates proprietary software
components developed by different participants, with each component operat-
ing on that participant’s computers and having access to appropriate design
databases and other data made available to the consortium by its members.

✦ A crisis management team responds to a chemical spill by using local weather
and soil models to estimate the spread of the spill, determining the impact
based on population location as well as geographic features such as rivers and
water supplies, creating a short-term mitigation plan (perhaps based on chem-
ical reaction models), and tasking emergency response personnel by planning
and coordinating evacuation, notifying hospitals, and so forth.

✦ Thousands of physicists at hundreds of laboratories and universities world-
wide come together to design, create, operate, and analyze the products of a
major detector at CERN, the European high-energy physics laboratory.
During the analysis phase, they pool their computing, storage, and network-
ing resources to create a “data Grid” capable of analyzing petabytes of data
(178, 368) (see Chapter 10).

✦ A large-scale Internet game consists of many virtual worlds, each with its own
physical laws and consequences. Each world may have a large number of
inhabitants that interact with one another and move from one world to
another. Each virtual world may expand in an on-demand basis to accommo-
date population growth, new simulation technology to model the physical
laws of the world will need to be added, and simulations need to be coupled
to determine what happens “when worlds collide” (see Chapter 13).

✦ A biologist wants to understand how changes in neuron synapse response
induced by a drug impact the performance of specific brain functions. To
answer this question, he needs to perform low-level chemical simulations of
the synapse and then map this information upward in the structural hier-
archy of the brain. This analysis requires mapping simulation across many
different databases, each containing information about different levels of the
biological system.

These examples differ in many respects: the number and type of participants, the
types of activities, the duration and scale of the interaction, and the resources
being shared. However, they also have much in common. In each case, mutually
distrustful participants with varying degrees of prior relationship (perhaps none
at all) want to share resources in order to perform some task. Furthermore,

4.1 Virtual Organizations and the Grid
39

Chapter 04 26/9/03 8:01 PM Page 39

sharing is about more than simply document exchange (as in “virtual enterprises”
(148)): it can involve direct access to remote software, computers, data, sensors,
and other resources. For example, members of a consortium may provide access
to specialized software and data and/or pool their computational resources.

More abstractly, what these application domains have in common is a need
for coordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations. The sharing that we are concerned with is not primarily file
exchange but rather direct access to computers, software, data, and other
resources, as is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science, and engineering. This sharing
is, necessarily, highly controlled, with resource providers and consumers defining
clearly and carefully just what is shared, who is allowed to share, and the condi-
tions under which sharing occurs. A set of individuals and/or institutions defined
by such sharing rules form what we call a virtual organization (VO), a concept that
is becoming fundamental to much of modern computing. VOs enable disparate
groups of organizations and/or individuals to share resources in a controlled
fashion, so that members may collaborate to achieve a shared goal.

As these examples show, VOs can vary greatly in their purpose, scope, size,
duration, structure, community, and sociology. Nevertheless, we can identify a
broad set of common concerns and technology requirements. In particular, we
see a need for highly flexible sharing relationships, ranging from client-server to
peer to peer; for sophisticated and precise levels of control over how shared
resources are used, including fine-grained and multistakeholder access control,
delegation, and application of local and global policies; for sharing of varied
resources, ranging from programs, files, and data to computers, sensors, and
networks; for virtualization of resources as services, so that diverse capabilities
can be delivered in standard ways without regard to physical location and imple-
mentation; and for diverse usage modes, ranging from single-user to multiuser
and from performance-sensitive to cost-sensitive and hence embracing issues of
quality of service, scheduling, co-allocation, and accounting.

Resource sharing, virtual organization, and virtualization are not new
concepts. For example, in 1965 the designers of the then-revolutionary Multics
operating system wrote that “the time-sharing computer system can unite a group
of investigators . . . one can conceive of such a facility as an . . . intellectual pub-
lic utility” (665), and in 1969 Internet pioneer Len Kleinrock suggested, pre-
sciently if prematurely upon the installation of the first ARPANET node, that “we
will probably see the spread of ‘computer utilities,’ which, like present electric
and telephone utilities, will service individual homes and offices across the
country” (415). And of course the distributed systems, networking, operating
systems, collaborative work, and security communities have worked for more

4 Concepts and Architecture
40

Chapter 04 26/9/03 8:01 PM Page 40

than 30 years on the principles and mechanisms required to support distributed
resource sharing. What is new today is that, as a result of work by these and other
pioneers, the Internet is by now quasi-ubiquitous, devices and networks are far
more capable, and distributed computing technologies have advanced to the point
where it has become practical to think about realizing resource sharing, virtual
organization, and virtualization scenarios on a large scale.

4.1.1 Technical Challenges in Sharing Relationships

Depending on context, the virtual organizations with which we are concerned can
be small or large, short- or long-lived, single or multi-institutional, and homoge-
neous or heterogeneous. Individual VOs may be structured hierarchically from
smaller systems and may overlap in membership. Furthermore, regardless of
these differences, developers of applications for VOs face common requirements
as they seek to deliver QoS—whether measured in terms of common security
semantics, distributed workflow and resource management, coordinated fail-over,
problem determination services, or other metrics—across a collection of resources
with heterogeneous and often dynamic characteristics.

We use the example in Figure 4.1 to illustrate some complexities that we face
in addressing these issues. The figure depicts three physical organizations, AirCar,
Goeing, and CyclesRUs, each of which participates in various virtual organizations
that involve controlled sharing of its computational and data resources. In particu-
lar, AirCar and Goeing (fierce competitors in the aerospace industry) both
collaborate within an international virtual organization, VO-Space, on the design
of an advanced space vehicle. In addition, Goeing participates in a regional cycle-
sharing consortium, VO-Cycles, in which it pools unused cycles with a local
service provider, CyclesRUs, for computationally intensive rendering tasks.

Resource sharing is often conditional: each resource owner makes resources
available, subject to constraints on when, where, and what can be done. (In the
figure, the text in quotes denotes the policies that apply for each resource or serv-
ice.) For example, AirCar might allow its VO-Space partners to invoke a
simulation service only for “simple” problems (according to some agreed-upon
definition). Resource consumers may also place constraints on properties of the
resources they are prepared to work with. For example, a participant in VO-Cycles
might accept only pooled computational resources certified as “secure.” The
implementation of such constraints requires mechanisms for expressing policies,
for establishing the identity of a consumer or resource (authentication), and for
determining whether an operation is consistent with applicable sharing relation-
ships (authorization).

4.1 Virtual Organizations and the Grid
41

Chapter 04 26/9/03 8:01 PM Page 41

Sharing relationships can vary dynamically over time, in terms of the
resources involved, the nature of the access permitted, and the participants to
whom access is permitted. Also, these relationships do not necessarily involve an
explicitly named set of individuals, but rather may be defined implicitly by the
policies that govern access to resources. For example, CyclesRUs might allow
access to anyone who can demonstrate that he is a “customer.” Thus we require
mechanisms for discovering and characterizing the nature of the relationships
that exist at a particular point in time. For example, a new participant joining VO-

4 Concepts and Architecture
42

Multidisciplinary design
using programs and data
at multiple locations

VO-space VO-cycles

Ray tracing using cycles
provided by cycle sharing
consortium

“Participants in
VO-cycles can use
if idle and budget
not exceeded”

“Participants in
VO-space can
read data D”

“Participants in
VO-space can run
program B”

“Participants in
VO-space can run
program A”

Goeing

AirCar CyclesRUs

4.1

FIGURE

Sharing relationships within virtual organizations.

Chapter 04 26/9/03 8:01 PM Page 42

Cycles must be able to determine what resources it is able to access, the “quality”
of these resources, and the policies that govern access.

Sharing relationships are often not simply client-server, but peer to peer:
providers can be consumers, and sharing relationships can exist among any
subset of participants. Sharing relationships may be combined to coordinate use
across many resources, each owned by different organizations. For example, in
VO-Cycles, a computation started on one pooled computational resource may
subsequently access data or initiate subcomputations elsewhere. The ability to
delegate authority in controlled ways becomes important in such situations, as do
mechanisms for coordinating operations across multiple resources (e.g., cosched-
uling; see Chapter 18).

The same resource may be used in different ways in different contexts. For
example, a computer might be used only to run a specific piece of software in one
sharing arrangement, but provide generic compute cycles in another. This lack of
a priori knowledge about how a resource may be used means that performance
metrics, expectations, and limitations may be part of the conditions placed on
resource sharing or usage.

In addition to such issues of security and policy, Grid users are often vitally
concerned with achieving various qualities of service (QoS) in the virtual systems
formed by integrating distributed components. This concern is fundamental not
only within the distributed virtual organizations discussed previously but also,
increasingly, within a single enterprise. In the past, computing typically was per-
formed within highly integrated host-centric enterprise computing centers. The
rise of the Internet and the emergence of e-business have, however, led to a grow-
ing awareness that an enterprise’s IT infrastructure is becoming increasingly
decomposed, both externally (as it extends to encompass external networks,
resources, and services) and internally (as enterprise IT facilities become more
heterogeneous and distributed). The overall result is a decomposition of highly
integrated internal IT infrastructure into a collection of heterogeneous and frag-
mented systems.

Enterprises must then reintegrate (with QoS) these distributed servers and
data resources, addressing issues of navigation, distributed security, and content
distribution inside the enterprise, much as on external networks. Enterprises are
also now expanding the scope and scale of their enterprise resource planning
projects as they try to provide better integration with customer relationship
management, integrated supply chain, and existing core systems. The aggregate
effect is that qualities of service traditionally associated with mainframe host-centric
computing (503) are now essential to the effective conduct of e-business across dis-
tributed compute resources, inside as well as outside the enterprise. In many ways,
this requirement is simply a restatement of the need for infrastructure that

4.1 Virtual Organizations and the Grid
43

Chapter 04 26/9/03 8:01 PM Page 43

facilitates controlled sharing of resources across organizational boundaries: that
is, the Grid.

4.1.2 Evolution of Grid Technologies

Grid technologies provide mechanisms for sharing and coordinating the use of
diverse resources and thus enable the creation, from geographically and
organizationally distributed components, of virtual computing systems that are
sufficiently integrated to deliver desired qualities of service (281). These tech-
nologies include security solutions that support management of credentials and
policies when computations span multiple institutions; resource management
protocols and services that support secure remote access to computing and data
resources and the co-allocation of multiple resources; information query protocols
and services that provide configuration and status information about resources,
organizations, and services; and data management services that locate and trans-
port datasets between storage systems and applications.

Grid technologies have emerged from some 10 years of research and devel-
opment in both academia and industry, which furthermore continues today. As
illustrated in Figure 4.2, we can distinguish four distinct phases in this evolution.

4 Concepts and Architecture
44

Internet
standards

De facto standard
Single implementation

Web services,
etCetera

Computer science research

Real standards
Multiple implementations

In
cr

ea
se

d
fu

nc
tio

na
lit

y,
 s

ta
nd

ar
di

za
tio

n

1990 1995 2000 2005

Globus Toolkit

Open grid
Services Arch

Custom
solutions

Managed shared
virtual systems

4.2

FIGURE

The evolution of Grid technologies.

Chapter 04 26/9/03 8:01 PM Page 44

Custom solutions. Starting in the early 1990s, work in “metacomputing” and related
fields involved the development of custom solutions to Grid computing problems
(161, 163). The focus of these often heroic efforts was on making things work and
exploring what was possible. Applications were built directly on Internet proto-
cols with typically only limited functionality in terms of security, scalability, and
robustness. Interoperability was not a significant concern.

Globus Toolkit. From 1997 onward, the open source Globus Toolkit version 2 (GT2)
(276) emerged as the de facto standard for Grid computing. Focusing on usability
and interoperability, GT2 defined and implemented protocols, APIs, and services
used in thousands of Grid deployments worldwide. By providing solutions to com-
mon problems such as authentication, resource discovery, and resource access,
GT2 accelerated the construction of real Grid applications. Also by defining and
implementing “standard” protocols and services, GT2 pioneered the creation of
interoperable Grid systems and enabled significant progress on Grid programming
tools. The GT2 protocol suite leveraged existing Internet standards for transport,
resource discovery, and security. Some elements of the GT2 protocol suite were
codified in formal technical specifications, reviewed within standards bodies,
and instantiated in multiple implementations: notably, the GridFTP data transfer
protocol (65) and elements of the Grid Security Infrastructure (660). However, in
general, GT2 “standards” were neither formal nor subject to public review. Similar
comments apply to other important Grid technologies that emerged during this
period, such as the Condor high-throughput computing system.

Open Grid Services Architecture. The year 2002 saw the emergence of the Open Grid
Services Architecture (279) (OGSA; Chapter 17), a true community standard with
multiple implementations, including, in particular, the OGSA-based GT 3.0,
released in 2003. Building on and significantly extending GT2 concepts and tech-
nologies, OGSA firmly aligns Grid computing with broad industry initiatives in
service-oriented architecture and Web services. In addition to defining a core set
of standard interfaces and behaviors that address many of the technical challenges
introduced previously, OGSA provides a framework within which one can define
a wide range of interoperable, portable services. OGSA provides a foundation on
which can be constructed a rich Grid technology ecosystem comprising multiple
technology providers.

Managed, Shared Virtual Systems. The definition of the initial OGSA technical speci-
fications is an important step forward, but much more remains to be done before
the full Grid vision is realized. Building on OGSA’s service-oriented infrastructure,
we will see an expanding set of interoperable services and systems that address

4.1 Virtual Organizations and the Grid
45

Chapter 04 26/9/03 8:01 PM Page 45

scaling to both larger numbers of entities and smaller device footprints, increas-
ing degrees of virtualization, richer forms of sharing, and increased qualities of
service via a variety of forms of active management. This work will draw increas-
ingly heavily on the results of advanced computer science research in such areas
as peer-to-peer (Chapter 29), knowledge-based (115) (Chapter 23), and autonomic
(365) (Chapter 26) systems.

We define a Grid as a system that coordinates distributed resources using
standard, open, general-purpose protocols and interfaces to deliver nontrivial
qualities of service. We examine the key elements of this definition:

✦ Coordinates distributed resources. A Grid integrates and coordinates resources
and users that live within different control domains—for example, the user’s
desktop versus central computing, different administrative units of the same
company, and/or different companies—and addresses the issues of security,
policy, payment, membership, and so forth that arise in these settings.
Otherwise, we are dealing with a local management system.

✦ Using standard, open, general-purpose protocols and interfaces. A Grid is built
from multipurpose protocols and interfaces that address such fundamental
issues as authentication, authorization, resource discovery, and resource
access. As we discuss is material to follow, it is important that these protocols
and interfaces be standard and open. Otherwise, we are dealing with an appli-
cation-specific system.

✦ To deliver nontrivial qualities of service. A Grid allows its constituent
resources to be used in a coordinated fashion to deliver various qualities of
service—relating, for example, to response time, throughput, availability,
and security—and/or coallocation of multiple resource types to meet com-
plex user demands, so that the utility of the combined system is signifi-
cantly greater than that of the sum of its parts.

The second point is of particular importance. Standard protocols (and interfaces and
policies) allow us to establish resource-sharing arrangements dynamically with any
interested party and thus to create something more than a plethora of balkanized,
incompatible, noninteroperable distributed systems. As we discuss at greater
length in the following, relevant standards are being developed rapidly within the
Global Grid Forum and other bodies. For an entity to be part of the Grid it must
implement these “inter-Grid” protocols, just as to be part of the Internet an entity
must speak IP (among other things). Both open source and commercial products
can interoperate effectively in this heterogeneous, multivendor Grid world, thus
providing the pervasive infrastructure that will enable successful Grid applications.

4 Concepts and Architecture
46

Chapter 04 26/9/03 8:01 PM Page 46

In the Internet, it is not uncommon that a specific set of hosts is disconnected
from other hosts within an intranet. However, this partitioning occurs as a result
of policy and not because of implementation. In general, all networked comput-
ers use TCP/IP and its associated protocols; and despite these policy restrictions,
we still talk about a single Internet.

Similarly, we speak about the Grid as a single entity, even though different
organizations and communities use Grid protocols to create disconnected Grids
for specific purposes. As with the Internet, it is policy issues (e.g., security, cost,
operational mode), not implementation issues, that prevent a service or resource
from being accessible.

4.2 GRID ARCHITECTURE

We have argued that the establishment, management, and exploitation of dynamic,
cross-organizational VO sharing relationships require new technology. We present
a Grid architecture that identifies fundamental system components, specifies the
purpose and function of these components, and indicates how these components
interact with one another. Our goal is not to provide a complete enumeration of all
required components but to identify requirements for general component classes.
The result is an extensible, open architectural structure within which can be
placed solutions to key VO requirements. Our architecture and the subsequent dis-
cussion organize components into layers, as shown in Figure 4.3. Components

4.2 Grid Architecture
47

User applications

Collective services

Resource and
connectivity protocols

Fabric

Tools and applications

Directory brokering,
diagnostics, and

monitoring

Secure
access

to resources
and services

Diverse resources
such as computers,

storage media,
networks, and sensors

4.3

FIGURE

The layered Grid architecture.

Chapter 04 26/9/03 8:01 PM Page 47

within each layer share common characteristics but can build on capabilities and
behaviors provided by any lower layer.

Our Grid architecture is based on the principles of the “hourglass model” (34).
The narrow neck of the hourglass defines a small set of core abstractions and proto-
cols (e.g., TCP and HTTP), onto which many different high-level behaviors can be
mapped (the top of the hourglass), and which themselves can be mapped onto
many different underlying technologies (the base of the hourglass). By definition,
the number of protocols defined at the neck must be small. In our architecture,
the neck of the hourglass consists of resource and connectivity protocols, which
facilitate the sharing of individual resources. Protocols at these layers are
designed so that they can be implemented on top of a diverse range of resource
types, defined at the fabric layer, and can in turn be used to construct a wide range
of global services and application-specific behaviors at the collective layer—so
called because they involve the coordinated (“collective”) use of multiple
resources.

4.2.1 Fabric: Interfaces to Local Control

The Grid fabric layer provides the resources to which shared access is mediated
by Grid protocols, for example, computational resources, storage systems, cata-
logs, network resources, and sensors. A “resource” may be a logical entity, such as
a distributed file system, computer cluster, or distributed computer pool; in such
cases, a resource implementation may involve internal protocols (e.g., the NFS
storage access protocol or a cluster resource management system’s process
management protocol), but these are not the concern of Grid architecture.

Fabric components implement the local, resource-specific operations that
occur on specific resources (whether physical or logical) as a result of sharing
operations at higher levels. There is thus a tight and subtle interdependence
between the functions implemented at the fabric level, on the one hand, and the
sharing operations supported, on the other. Richer fabric functionality enables
more sophisticated sharing operations; at the same time, if we place few demands
on fabric elements, then deployment of Grid infrastructure is simplified. For
example, resource-level support for advance reservations (i.e., the ability to
request and obtain a commitment for access at a future time; see Chapter 18)
makes it possible for higher-level services to aggregate (coschedule) resources
in interesting ways that would otherwise be impossible to achieve. However, as
many resources do not support advance reservation “out of the box,” a require-
ment for advance reservation would increase the cost of incorporating new
resources into a Grid.

4 Concepts and Architecture
48

Chapter 04 26/9/03 8:01 PM Page 48

Experience suggests that, at a minimum, resources should implement intro-
spection mechanisms that permit discovery of their structure, state, and capabil-
ities (e.g., whether they support advance reservation), on the one hand, and
resource management mechanisms that provide some control of delivered quality
of service, on the other, as in the following examples:

✦ Computational resources. Mechanisms are required for starting programs and
for monitoring and controlling the execution of the resulting processes.
Management mechanisms that allow control over the resources allocated to
processes are useful, as are advance reservation mechanisms (see Chapter 18).
Introspection functions are needed for determining hardware and software
characteristics as well as relevant state information such as current load and
queue state in the case of scheduler-managed resources.

✦ Storage resources. Mechanisms are required for putting and getting files.
Third-party and high-performance (e.g., striped) transfers are useful (652).
So are mechanisms for reading and writing subsets of a file and/or exe-
cuting remote data selection or reduction functions (118). Management
mechanisms that allow control over the resources allocated to data transfers
(space, disk bandwidth, network bandwidth, CPU) are useful (587), as are
advance reservation mechanisms (see Chapters 18 and 22). Introspection
functions are needed for determining hardware and software characteristics
as well as relevant load information such as available space and bandwidth
utilization.

✦ Network resources. Management mechanisms that provide control over the
resources allocated to network transfers (e.g., prioritization, reservation) can
be useful (see Chapter 1:19). Introspection functions should be provided to
determine network characteristics and load (682).

Other important classes of resources include database systems used to store struc-
tured data (see Chapter 22) and sensors of various kinds.

4.2.2 Connectivity: Communicating Easily and Securely

The connectivity layer defines core communication and authentication protocols
required for Grid-specific network transactions. Communication protocols enable
the exchange of data between fabric layer resources. Authentication protocols
build on communication services to provide cryptographically secure mech-
anisms for verifying the identity of users and resources.

4.2 Grid Architecture
49

Chapter 04 26/9/03 8:01 PM Page 49

Communication requirements include transport, routing, and naming.
Although alternatives certainly exist, it is common to assume that these protocols
are drawn from the TCP/IP protocol stack: specifically, the Internet (IP and
ICMP), transport (TCP, UDP), and application (DNS, OSPF, RSVP, etc.) layers of
the Internet-layered protocol architecture (96). This is not to say that in the
future, Grid communications will not demand new protocols that take into
account particular types of network dynamics—for example, on high-performance
optical networks or wireless networks.

The complexity of the security problem makes it important that any connect-
ivity layer security solutions be based on existing standards whenever possible. As
with communication, many security standards developed within the context of
the Internet protocol suite are applicable. Chapter 21 provides a comprehensive
discussion of the security demands of VO environments (146), so we note here
just some of the more important requirements:

✦ Single sign-on. As Grid users frequently want to initiate computations that access
multiple remote resources, a user should be able to “sign on” (authenticate) just
once, rather than once per resource or administrative domain accessed.

✦ Delegation (280, 303, 371). A user must be able to endow a program with the
ability to run on the user’s behalf, so that the program is able to access the
resources on which the user is authorized. The program should (optionally)
also be able to delegate a subset of its rights to another program: what is some-
times referred to as restricted delegation.

✦ Integration with local security solutions. In a heterogeneous Grid, each site or
resource provider may employ any of a variety of local security solutions.
Grid security solutions must be able to interoperate with these various local
solutions. They cannot, realistically, require wholesale replacement of local
security solutions but rather must allow mapping into the local environment.

✦ User-based trust relationships. For a user to use resources from multiple
providers together, the security system must not require each of the resource
providers to cooperate or interact with each other in configuring the security
environment. For example, if a user has the right to use sites A and B, the
user should be able to use sites A and B together without requiring that A’s
and B’s security administrators interact.

Grid security solutions should also provide flexible support for communica-
tion protection (e.g., control over the degree of protection, independent data unit
protection for unreliable protocols, support for reliable transport protocols other

4 Concepts and Architecture
50

Chapter 04 26/9/03 8:01 PM Page 50

than TCP) and enable stakeholder control over authorization decisions, including
the ability to restrict the delegation of rights in various ways.

We discuss briefly below and in far more detail in Chapter 21, in the follow-
ing, how these and related requirements can be addressed using a relatively small
set of standard connectivity protocols.

4.2.3 Resource: Sharing Single Resources

Having established identity, the Grid user needs to be able to interact with remote
resources and services. This is the role of the resource layer, which builds on con-
nectivity layer communication and authentication protocols to define protocols for
the secure negotiation, initiation, monitoring, control, accounting, and payment of
sharing operations on individual resources. Resource layer implementations of
these protocols call on fabric layer functions to access and control local resources.
Resource layer protocols are concerned entirely with individual resources and
hence ignore issues of global state and atomic actions across distributed collec-
tions; such issues are the concern of the collective layer discussed next.

Two primary classes of resource layer protocols can be distinguished:

✦ Information protocols are used to obtain information about the structure and
state of a resource, for example, its configuration, current load, and usage
policy (e.g., cost).

✦ Management protocols are used to negotiate access to a shared resource, speci-
fying, for example, resource requirements (including advanced reservation and
quality of service) and the operation(s) to be performed, such as process
creation or data access. Since management protocols are responsible for instan-
tiating sharing relationships, they must serve as a “policy application point,”
ensuring that the requested protocol operations are consistent with the policy
under which the resource is to be shared. Issues that must be considered
include accounting and payment. A protocol may also support monitoring the
status of an operation and controlling (for example, terminating) the operation.

Although many such protocols can be imagined, the resource (and connectivity)
protocol layers form the neck of our hourglass model and as such should be lim-
ited to a small and focused set. These protocols must be chosen so as to capture
the fundamental mechanisms of sharing across many different resource types
(for example, different local resource management systems), while not overly
constraining the types or performance of higher-level protocols that may be
developed.

4.2 Grid Architecture
51

Chapter 04 26/9/03 8:01 PM Page 51

The list of desirable fabric functionality provided in Section 4.2.1 summarizes
the major features required in resource layer protocols. To this list we add the
need for “exactly once” semantics for many operations, with reliable error report-
ing indicating when operations fail.

4.2.4 Collective: Coordinating Multiple Resources

The collective layer contains protocols and services not associated with any one
specific resource but instead capturing interactions across collections of
resources. Because collective components build on the narrow resource and con-
nectivity layer “neck” in the protocol hourglass, they can implement a wide vari-
ety of sharing behaviors without placing new requirements on the resources being
shared. For example:

✦ Directory services allow VO participants to discover the existence and/or prop-
erties of VO resources. A directory service may allow its users to query for
resources by name and/or by attributes such as type, availability, or load
(204). (See, in particular, Chapters 22 and 23—and the discussion of MDS-2 in
Chapter 27.)

✦ Coallocation, scheduling, and brokering services allow VO participants to request
the allocation of one or more resources for a specific purpose and the sched-
uling of tasks on the appropriate resources. Examples include AppLeS (114),
Condor-G (292), Nimrod-G (57), and the DRM broker (108). (See Chapters 18,
24, and 1:12.)

✦ Monitoring and diagnostics services support the monitoring of VO resources
for failure, adversarial attack (“intrusion detection”), overload, and so forth.
(See Chapter 20).

✦ Data replication services support the management of VO storage (and perhaps
also network and computing) resources to maximize data access performance
with respect to metrics such as response time, reliability, and cost (66, 368).
(See Chapter 22.)

Programming models and tools (discussed at length in Chapter 24) often
define and/or invoke collective layer functions.

✦ Grid-enabled programming systems enable familiar programming models to be
used in Grid environments, using various Grid services to address resource
discovery, security, resource allocation, and other concerns. Examples

4 Concepts and Architecture
52

Chapter 04 26/9/03 8:01 PM Page 52

include Grid-enabled implementations of the Message Passing Interface (300,
403) (Chapter 24) and manager–worker frameworks (156, 443) (Chapters 19
and 24).

✦ Workflow systems provide for the description, use, and management of multi-
step, asynchronous, multicomponent workflows (see Chapter 24).

✦ Software discovery services discover and select the best software implementa-
tion and execution platform based on problem parameters; for example, see
NetSolve (153) and Ninf (497), described in Chapter 24.

✦ Collaboratory services support the coordinated exchange of information within
potentially large user communities, whether synchronously or asynchronously;
for example, see CAVERNsoft (220, 437), Access Grid (182) (Chapter 15),
Butterfly.net (Chapter 13), and commodity groupware systems.

Collective layer services must also address security, policy, and accounting issues:

✦ Community authorization servers enforce community policies governing
resource access, generating capabilities that community members can use to
access community resources (519). These servers provide a global policy
enforcement service by building on resource-layer information and manage-
ment protocols and security protocols in the connectivity layer. Akenti (648)
addresses some of these issues. See Chapter 21 for further discussion.

✦ Community accounting and payment services gather resource usage information
for the purpose of accounting, payment, and/or limiting of resource usage by
community members.

These examples illustrate the wide variety of collective layer protocols and serv-
ices that are encountered in practice. Note that whereas resource layer protocols
must be general in nature and are widely deployed, collective layer protocols span
the spectrum from general purpose to highly application- or domain-specific, with
the latter existing perhaps only within specific VOs.

Collective functions can be implemented as standalone services or as libraries
designed to be linked with applications. In both cases, their implementation can
build on resource layer (or other collective layer) protocols and APIs. For example,
given a collective coallocation API that uses a resource layer management
protocol to manipulate underlying resources, we can define a co-reservation
service protocol and implement a co-reservation service that speaks this protocol,
calling the coallocation API to implement coallocation operations and perhaps
providing additional functionality, such as authorization, fault tolerance, and

4.2 Grid Architecture
53

Chapter 04 26/9/03 8:01 PM Page 53

logging. An application might then use the co-reservation service protocol to
request end-to-end network reservations.

Collective components may be tailored to the requirements of a specific user
community, VO, or application domain, for example, a library that implements an
application-specific coherency protocol, or a co-reservation service for a specific
set of network resources. Other collective components can be more general-
purpose, for example, a replication service that manages an international collec-
tion of storage systems for multiple communities or a directory service designed
to enable the discovery of VOs. In general, the larger the target user community,
the more important it is that a collective component’s protocol(s) and API(s) be
standards based.

4.2.5 Applications

The final layer in our Grid architecture comprises the user applications that oper-
ate within a VO environment. Applications are constructed in terms of, and by
calling upon, services defined at any layer. At each layer, we have well-defined
protocols and APIs that provide access to some useful service: resource manage-
ment, data access, resource discovery, and so forth.

We emphasize that—as is discussed in more detail in Chapter 24—what we
label “applications” and show in a single layer in Figure 4.3 may in practice call
upon sophisticated frameworks and libraries (e.g., the Common Component
Architecture (88), SciRun (517), Cactus (110), workflow systems (130)) and
feature much internal structure that would, if captured in our figure, expand it
out to many times its current size. These frameworks may themselves define
protocols, services, and/or APIs, for example, Web service orchestration
frameworks.

4.3 IMPLEMENTING GRID ARCHITECTURE

As discussed in the introduction, the technologies used to implement Grid archi-
tecture concepts have evolved over time, from a de facto standard in the form of
the Globus Toolkit version 2 to the more formal standard Open Grid Services
Architecture (OGSA), implemented by the Globus Toolkit version 3 (GT3) as well
as other open source and commercial systems.

We briefly review here the principal features of GT2 and explain both how
these features address the Grid technology requirements introduced previously

4 Concepts and Architecture
54

Chapter 04 26/9/03 8:01 PM Page 54

and how they fit into our Grid architecture. We then introduce OGSA. We start
with some general remarks concerning the utility of a service-oriented Grid archi-
tecture, the importance of being able to virtualize Grid services, and essential
service characteristics. Then we define what we mean by a Grid service. Technical
details on OGSA are provided in Chapter 17 and subsequent chapters.

GT2 has proven to be effective and influential not only because it provides
technical solutions to challenging problems encountered when building Grids,
such as authentication and secure resource access, but also because it does so by
defining standard protocols that enable interoperability. Both advantages have
proven important in practice, with many developers writing tools and applications
that assume the basic functions introduced in the following (GSI security, GRAM
resource access, GridFTP data access, etc.) and large numbers of sites deploying
GT2 services in support of these tools and applications (see Chapter 27).

4.3.1 Globus Toolkit Version 2

GT2 (276, 281) is a community-based, open-architecture, open source set of ser-
vices and software libraries that support Grids and Grid applications. GT2 addresses
issues of security, information discovery, resource management, data manage-
ment, communication, fault detection, and portability. GT2 is the foundation for
thousands of major Grid projects worldwide in both academia and industry. Several
of these projects are discussed in Chapter 27, which discusses practical issues that
arise when deploying GT2 services.

4.3.1.1 Fabric

GT2 is primarily concerned with implementing Grid protocols, not fabric-level
behaviors, and as such assumes the existence of suitable software on fabric
elements for such purposes as local CPU scheduling, file system management,
and system monitoring. However, the toolkit does include some components
designed to facilitate interfacing to resource-level protocols. For example, soft-
ware is provided for discovering structure and state information for various com-
mon resource types, such as computers (e.g., OS version, hardware configuration,
load (230), scheduler queue status), storage systems (e.g., available space), and
networks (e.g., current and predicted future load (451, 681)), and for packaging
this information in a form that facilitates the implementation of higher-level
resource-layer protocols. Resource management, on the other hand, is generally
assumed to be the domain of local resource managers, although the General-
Purpose Architecture for Reservation and Allocation (GARA) (283) prototyped

4.3 Implementing Grid Architecture
55

Chapter 04 26/9/03 8:01 PM Page 55

a “slot manager” that can be used to implement advance reservation for resources
that do not support this capability. Others have developed enhancements to the
Portable Batch System (PBS) (31) and Condor (446) that support advance reserva-
tion capabilities; see Chapter 27.

4.3.1.2 Connectivity

GT2’s connectivity layer is defined by the public-key-infrastructure (PKI)-based
Grid Security Infrastructure (GSI) (280) protocols, which provide for single sign-
on authentication, communication protection, and some support for restricted
delegation. In addition, standard Internet protocols are assumed. In brief:

✦ Single sign-on allows a user to authenticate once and then create a proxy
credential that a program can use to authenticate with any remote service on
the user’s behalf. A proxy credential is a digitally signed certificate that grants
the holder the right to perform operations on behalf of the signer, typically
only for a limited period of time. Proxy credentials are critical to Grid com-
puting because they allow a user to initiate a computation that accesses mul-
tiple remote resources—without having to hand over sensitive credentials
(such as a private key in a PKI-based system) to that computation.

✦ Delegation allows for the creation and communication to a remote service of
a delegated proxy credential that the remote service can use to act on the
user’s behalf, perhaps with various restrictions; this capability is important for
nested operations.

GSI addresses interoperability by defining a credential format and an authen-
tication and remote delegation protocol for transmitting those credentials to
remote services. The credential format is an extended form of the X.509 certificate,
a widely employed standard for PKI certificates. The remote delegation protocol is
based on the transport layer security (TLS) protocol (the follow-on to the popular
secure socket layer, SSL), although other public key-based authentication protocols
can also be used by GSI. In addition, GSI addresses application programmability
and portability by defining extensions to the generic security services application
programming interface (GSS-API) so that applications can invoke authentication
operations conveniently using a high-level API, rather than performing protocol
operations directly. Technical specifications define the credential (660), protocol,
and GSS-API extensions (470). Further details on GSI design and implementation,
including the techniques used to map to local security mechanisms, are provided
in Chapter 21.

4 Concepts and Architecture
56

Chapter 04 26/9/03 8:01 PM Page 56

4.3.1.3 Resource

We now discuss those GT2 resource layer protocols used for remote invocation of
computation, resource discovery and monitoring, and data transport.

The Grid Resource Allocation and Management (GRAM) protocol provides
for the secure, reliable creation and management of remote computations (205).
A two-phase commit protocol is used for reliable invocation, based on tech-
niques used in the Condor system (446) (see Chapter 19 for details). GSI mech-
anisms are used for authentication, authorization, and credential delegation to
remote computations. Multiple interoperable implementations of the GRAM
protocol have been constructed (205, 386, 429), but there is no formal protocol
specification.

GT2’s implementation of the GRAM protocol uses a small, trusted “gate-
keeper” process to initiate remote computations, a “job manager” to manage the
remote computation, and a “GRAM reporter” to monitor and publish information
about the identity and state of the local computation.

The Monitoring and Discovery Service (MDS-2) (204) provides a uniform
framework for discovering and accessing configuration and status information
such as compute server configuration, network status, and the capabilities and
policies of services. The framework defines both a data model for representing
information about resources and services, and resource-level protocols for dissem-
inating and accessing this information. The data model and protocols are
described in Chapter 27.

The GT2 MDS-2 implementation provides two main components: a config-
urable local registry or data publisher used to manage the collection and dissem-
ination of information at a particular location, and an index node or collective
registry used to maintain and support queries against information from multiple
locations. Both the local and collective registries perform caching so as to reduce
the frequency with which requests for information must be communicated to
the original source. Experimental studies show that this caching can be important
in high-load situations (698).

The third GT2 component that we describe is GridFTP. This extended version
of the file transfer protocol (FTP) is used as a management protocol for data
access; extensions include use of connectivity layer security protocols, partial file
access, and management of parallelism for high-speed transfers (64). FTP is
adopted as a base data transfer protocol because of its support for third-party
transfers and because its separate control and data channels facilitate the imple-
mentation of sophisticated servers. See Chapter 22 for more details.

Figure 4.4 shows these various GT2 resource layer protocols in action. We
first see the user authenticating and generating a proxy credential for User

4.3 Implementing Grid Architecture
57

Chapter 04 26/9/03 8:01 PM Page 57

process #1, thus allowing that process to act on the user’s behalf. That process
then uses the GSI-authenticated GRAM protocol to request the creation of a new
process at a remote location. This request is processed by the Gatekeeper process
at the remote location, which creates the new User process #2 along with a new
set of proxy credentials, which the new process can use to issue requests to other
remote services. The existence and other properties of the new process are regis-
tered with the MDS-2 information infrastructure.

4.3.1.4 Collective and Tools

The GT2 software distribution provides only a limited number of collective layer
capabilities: the DUROC resource coallocation library (206) is one example. Many
GT2-compatible collective layer services and libraries, as well as programming
and system tools that depend on those libraries, have been developed by others.
Some of these systems have been mentioned in previous sections.

4.3.2 Open Grid Services Architecture

By 2001, the rapidly increasing uptake of Grid technologies and the emergence of
the Global Grid Forum as a standards body made it timely and feasible to under-
take a standardization (and, in the process, a significant redesign) of the core
GT protocols. The following design goals drove this activity, which ultimately
produced the Open Grid Services Architecture:

4 Concepts and Architecture
58

Authenticate and
create proxy
credentials

User

Request
process
creation

User
process #1

User
process #2

Proxy Proxy #2

Create
process

Gatekeeper
(factory)

Reporter
(registry and
discovery)

Register with
discovery service

Register
Contact

other
service

Grid information
index server
(discovery)

Other service
(e.g. GridFTP)

4.4

FIGURE

Selected Globus Toolkit mechanisms.

Chapter 04 26/9/03 8:01 PM Page 58

✦ Factoring of component behaviors. GT2 protocols such as GRAM combined sev-
eral functions (e.g., reliable messaging for at-most-once invocation of remote
services, and notification for monitoring) that ended up being either reimple-
mented or unavailable to other functions such as GridFTP or application pro-
grams. Thus, a goal in OGSA was to identify essential Grid functions and then
to express them in a way that would allow their use in different settings.

✦ Service orientation. A service is a network-enabled entity with a well-defined
interface that provides some capability. While GT2 defined service interfaces
to specific resource types (e.g., GRAM for compute resources), service
orientation was not consistently applied, and it did nothing to facilitate the
definition of arbitrary services or service composition. A goal in OGSA was
to enable a uniform treatment of all network entities so that, for example,
collective layer behaviors could be expressed as virtualizations of underlying
resource layer protocols.

✦ Align with Web services. GT2 builds on a mix of low-level protocols and did not
provide any standard interface definition language. With the emergence of Web
services as a viable Internet-based distributed computing platform, a design goal
for OGSA was to leverage the Web services standards (e.g., the Web Services
Definition Language, or WSDL), application platforms, and development tools.

The result of this design activity is a service-oriented framework defined by
a set of standards being developed within the Global Grid Forum (GGF). A funda-
mental OGSA concept is that of the Grid service: a Web service (see Chapter 17)
that implements standard interfaces, behaviors, and conventions that collectively
allow for services that can be transient (i.e., can be created and destroyed) and
stateful (i.e., we can distinguish one service instance from another). The founda-
tional Open Grid Services Infrastructure (OGSI) specification defines the inter-
faces, behaviors, and conventions that control how Grid services can be created,
destroyed, named, monitored, and so forth. OGSI defines a set of building blocks
that can then be used to implement a variety of resource layer and collective layer
interfaces and behaviors.

OGSA then builds on this OGSI foundation by defining the services and
additional interfaces and behaviors required in a functional Grid environment.
For example, interfaces are required for discovery, data management, resource
provisioning, and service virtualization. Other services are required for security,
policy, accounting, and billing. Service orchestration provides for the coordination
of service workflow. GGF working groups are engaged in identifying required
functions, rendering these functions as OGSI-compliant interfaces, and defining
relationships among the resulting service definitions.

4.3 Implementing Grid Architecture
59

Chapter 04 26/9/03 8:01 PM Page 59

From an organizational perspective, these OGSA services can be viewed
within the context of the layered architecture of Figure 4.3. At the connectivity
layer, we have a small number of service definitions that address critical issues of
authentication, credential mapping, and policy verification, while at the resource
level we can identify another small set of service definitions, for data access, job
submission, bandwidth allocation, and so on. In a virtualized environment, we
find that interfaces defined at the resource layer can reappear at the collective
layer as interfaces to virtualized services that from their observable behavior are
indistinguishable from resource layer services. Our Grid architecture is thus
recursive, with services being composed of services.

OGSA has been broadly adopted as a unifying framework for Grid computing
with backing from major scientific and academic Grid communities as well as
significant acceptance in the commercial section, from vendors to end users.
There are multiple interoperable implementations of this common standards-
based, protocol-oriented approach to infrastructure, including GT3, an open
source reference implementation of the OGSI and basic OGSA services. A more
detailed discussion of OGSA and OGSI can be found in Chapter 17 and in subse-
quent chapters that discuss specific functionalities and services.

4.4 THE GRID COMMUNITY

In the five years that have passed since the first edition of this book, the develop-
ment of Grid technologies and applications has grown to become a worldwide
effort. Participation in the Global Grid Forum (GGF) has multiplied more than ten-
fold since its inception as the U.S. Grid Forum in 1998. Today, delegates from over
400 organizations in over 50 countries attend the thrice-yearly GGF meetings to
participate in working groups defining technical specifications or in research
groups discussing future directions in Grid technologies and applications, or sim-
ply to learn about the technology.

A major impetus for this surge of interest is certainly the needs of the scien-
tific community, which, as discussed in Chapter 2, has urgent demands across a
broad range of fronts for more effective and large-scale integration of resources
and services. Both grass-roots efforts and major government-funded Grid activities
in Japan, Australia, Singapore, China, Europe, North America, and other places
have spawned literally thousands of projects on Grid technologies and applica-
tions. Given the complexity of the overall problem and the international dimen-
sion of many scientific collaborations, the development of common technical
standards and collaborative development of key software is vital to success. Thus,
GGF fills an important role in the coordination of international Grid efforts.

4 Concepts and Architecture
60

Chapter 04 26/9/03 8:01 PM Page 60

Industrial involvement in GGF also continues to grow, with around one-third
of GGF participants now coming from industry. Both established technology
companies such as Fujitsu, HP, Hitachi, IBM, NEC, Microsoft, Oracle, Platform,
and Sun and startups such as Avaki, DataSynapse, and United Devices participate
in working groups. In addition, we see an increasing number of commercial end-
users at GGF meetings.

Another major forum for discussion of Grid technologies is the annual
GlobusWorld event, a combined user and technical training meeting for users of
the Globus Toolkit.

4.5 FUTURE DIRECTIONS

The tools and experience established over the past five years provide a solid
foundation for future developments in Grid applications and technologies. However,
success in the ultimate goal of a global infrastructure for distributed system integra-
tion and resource sharing will require significant progress in standards, social and
business models, and basic research. The sustained collaborative engagement of sci-
entific application groups, industry, and the computer science community is vital.

OGSA stands poised to become the dominant infrastructure for Grids, with
significant consolidation around both the general approach and specific specifica-
tions such as OGSI. The next major hurdle is to continue refinement of the OGSA
model and specifically to define and develop the additional building block services
(e.g., end-to-end provisioning, global service discovery, service virtualization) that
will raise the level of abstraction for all Grid applications. If we take the Internet
as an analogy, then OGSI provides us with TCP/IP; now we need to create the
domain name service, routing protocols, and ultimately HTTP analogs. Later
chapters discuss specific capabilities and services that, collectively, define a good
part of what we expect to be the research, development, product, and application
agendas for the next five years.

The development of new application paradigms is a major focus of current
work and can be expected to expand in the future. Predictions by industry ana-
lysts have focused primarily on commercial intranet deployments with a particu-
lar emphasis on increasing resource utilization. Yet this perspective only
scratches the surface of the Grid’s capabilities. The flexible formation of dynamic
collaborations can have a profound effect on organizational structure. However,
to achieve this potential, we need advances in the way applications are structured,
standardization of associated service definitions, and in some cases new business
models as well. For example, dynamic federation requires not only services for
dynamically evaluating and enforcing trust relationships but also a dynamic

4.5 Future Directions
61

Chapter 04 26/9/03 8:01 PM Page 61

provisioning and payment model to produce a federated (or virtualized) service
set that maps to the requirements of the collaboration.

There is an urgent need for program development and execution tools for
Grid environments: compilers, debuggers, performance monitors, and libraries.
High-level languages and programming paradigms suitable for dynamic environ-
ments are required. Grid-enabled libraries (Chapters 16 and 24) and workflow
systems are important, but more sophisticated autonomic techniques should also
be pursued (Chapters 25 and 26). We require an improved understanding of
correctness, performance, troubleshooting, and optimization in dynamic environ-
ments. Users need to be able to assemble multiple services to create both Grid
infrastructure and Grid applications that meet requirements. The cost of assem-
bling these services must be sufficiently low that users can focus on their goals
rather than on building customized infrastructure. Research is required on the-
ories and techniques to describe and reason about the semantics and behavior of
services and the compositional effects of putting services together. New tools to
support the discovery, composition, and use of services based on high-level
descriptions of requirements must also be developed.

We need to understand how to scale the Grid both to larger numbers of
entities and to smaller devices. The future pervasive digital infrastructure will
seamlessly combine reliable high-performance computing systems, communi-
cation networks, and variable low-performance embedded or portable devices
with integrated wireless facilities. Resources will vary in their availability, qual-
ity, and reliability. Fundamental computing research is needed to enable the
realization of trusted ubiquitous systems formed from the coalition of these
potentially uncertain components. Effective solutions to these scaling problems
must inevitably involve the development of infrastructure elements capable of
adapting to changes in application or user needs without undue human inter-
vention: what IBM has termed “autonomic computing” (365), a term that
encompasses automated management, configuration, optimization, healing,
and protection.

The social, economic, and political aspects of Grids are going to become
increasingly important. (The third edition of this book will surely feature
authors from the social sciences). We envision a wide variety of different Grids
ranging from highly controlled “intra-Grids” using secure private networks to
spontaneous community Grids using the global Internet. The large number of
users, cultures, and usage modalities will demand not only new policy specifi-
cation, monitoring, and enforcement mechanisms but also an improved under-
standing of the social and economic issues that influence stability and produc-
tivity. Social scientists also have much to contribute to our understanding of
issues of trust (301, 321, 416) and usability (511, 676].

4 Concepts and Architecture
62

Chapter 04 26/9/03 8:01 PM Page 62

Another area in which fundamental research is required relates to the role of
knowledge systems and services, not only for future Grid applications, but also for
the effective functioning of the Grid itself. As discussed in Chapter 23, we need to
be able to manage the traceability and integrity of information, and to trace prove-
nance, all the way from initial data through information to knowledge structures.
New theories and techniques are required to allow tolerant, safe, and scalable rea-
soning over uncertain and incomplete knowledge that embraces data, metadata,
and knowledge activities.

SUMMARY

We have introduced the principal topics to be discussed at greater length in the
chapters that follow. We provided a concise statement of the “Grid problem,”
which we define as controlled and coordinated resource sharing and resource use
in dynamic, scalable virtual organizations. We have also both motivated and
defined a Grid architecture, in which are identified the principal functions
required to enable sharing within VOs and the key relationships that exist among
these different functions. Finally, we have introduced the open source Globus
Toolkit that has enabled the rapid adoption of Grid technologies and the Open
Grid Services Architecture specifications now supporting the continued expansion
of Grid technologies and applications.

FURTHER READING

For more information on the topics covered in this chapter, see www.mkp.com/grid2
and the following references:

✦ Much of the material in Chapter 1:2 is not repeated here, and remains highly
relevant.

✦ Two recent articles in Physics Today (269) and Scientific American (270) pro-
vide good high-level introductions to Grid computing and its applications.

✦ The 2003 report of the National Science Foundation’s Blue Ribbon Panel on
Cyberinfrastructure summarizes the scientific motivation for Grids (37).

✦ A recent book edited by Berman, Fox, and Hey provides good coverage of
research in Grid computing (113). See also the proceedings of the annual
IEEE Symposium on High Performance Distributed Computing (HPDC).

Further Reading
63

Chapter 04 26/9/03 8:01 PM Page 63

Chapter 04 26/9/03 8:01 PM Page 64

