
The Intel® Xeon Phi Coprocessor

Dr-Ing. Michael Klemm
Software and Services Group
Intel Corporation
(michael.klemm@intel.com)

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of

that product when combined with other products.

Copyright 2014© , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are

trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Intel Technologies for HPC

Network
& Fabric

Software
& Services

Processors
Intel® Xeon® Processor

Coprocessor
Intel® Many Integrated Core

I/O &
Storage

Intel®
Cluster
Ready

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

3D

Tri-

Gate

Hi-K

Metal

Gate

Executing to Moore’s Law

Predictable Silicon Track Record – well and alive at Intel.
Enabling new devices with higher performance and
functionality while controlling power, cost, and size

14nm

2013
10nm

2015
planned

Future options subject to change without notice.

7nm

2017
R&D

Transforming the Economics of HPC

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Driving Innovation and Integration
Enabled by Leading Edge Process Technologies

Integrated Today Coming in the Future

SYSTEM LEVEL BENEFITS IN COST, POWER, DENSITY, SCALABILITY & PERFORMANCE

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

The Magic of Integration
Moore‘s Law at Work & Architecture Innovations

1970s

150 MFLOPS
CRAY-1

Image: Rama, EPFL

2013

1000000 MFLOPS
Intel® Xeon Phi™

6666x

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

#1 TOP500 June 2014

33 PFLOPS HPL

54 PFLOPS Peak

32000 Intel® Xeon® E5v2 Processors

48000 Intel® Xeon Phi™ Coprocessors

#1
33
54
32000
48000

Intel® Many Integrated Core Architecture (Intel® MIC) &

Intel® Xeon Phi™ Coprocessor

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Intel Architecture Multicore and Manycore
More cores. Wider vectors. Co-Processors.

Intel® Xeon®

processor

64-bit

Intel Xeon

processor 5100
series

Intel Xeon

processor 5500
series

Intel Xeon

processor 5600
series

Intel Xeon

processor E5
Product
Family

Intel Xeon
processor code name

Ivy Bridge

Intel Xeon
processor code name

Haswell

Intel®

Xeon Phi™ Coprocessor

code name

Knights Corrner

Core(s) 1 2 4 6 8 12 18 61

244Threads 2 2 8 12 16 24 36

Intel® Xeon Phi™ Coprocessor extends established CPU architecture
and programming concepts to highly parallel applications

Images do not reflect actual die sizes. Actual production die may differ from images.

9

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Core unit based on Intel® Pentium®
processor family
 Two pipelines (U and V)

 Dual-issue on scalar instructions

 Scalar pipeline 1 clock latency

 64-bit data path

4 hardware threads per core
 Thread context: GPRs, ST0-7, etc.

 “Smart” round-robin scheduling

 Prefetch buffers 2 inst-bundles / context

 Next ready context selected in order

10

Each Intel® Xeon Phi™ Coprocessor core is a fully functional

multi-thread execution unit

Ring

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I$ + 32K L1 D$

Vector

Unit
Scalar Unit

U V

Instruction Decoder

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a fully functional

multi-thread execution unit

11

Instruction decoder is fully pipelined but is designed as a 2-

cycle unit

 Enables significant increase to maximum core frequency, but...

 Core cannot issue instructions from same context in

adjacent cycles

 Means minimum two threads per core to use all available

compute cycles

Ring

Scalar

Registers

Vector

Registers

512K L2 Cache

32K L1 I$ + 32K L1 D$

Vector

Unit
Scalar Unit

U V

Instruction Decoder

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a fully functional

multi-thread vector unit

12

Vector unit width 512 bits!

 32 512-bit vector registers per context

 Each holds 16 floats or 8 doubles

 ALUs support int32/float32 operations, float64
arithmetic, int64 logic ops

 Ternary ops including Fused-Multiply-Add

 Broadcast/swizzle support, float16 up-convert

 8 vector mask registers for per lane conditional operations

 Most ops: 4-cycle latency 1-cycle throughput

– Matches 4-cycle round robin of integer unit

 Mostly IEEE 754 2008 compliant

– Not supported: MMX™ technology, Streaming SIMD
Extensions (SSE), Intel® Advanced Vector Extensions
(Intel® AVX)

Ring

Scalar
Registers

Vector
Registers

512K L2 Cache

32K L1 I$ + 32K L1 D$

Vector

Unit
Scalar Unit

U V

Instruction Decoder

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Individual cores are tied together via fully coherent caches into
a bidirectional ring on the Intel® Xeon Phi™ coprocessor

13

GDDR

GDDR
GDDR

GDDR

PCIexp

L1 32K I/D-cache per core

1 cycle access latency
3 cycle addr-gen interlock l.
8-way associativity
64-byte cache line
~38 concurrent access/core

L2 512K cache per core

11 cycle raw latency
8-way associativity
64-byte cache line
Streaming HW prefetcher
~38 concurrent access/core

GDDR5 Memory

16 32-bit channels

- Up to 5.5 GT/sec
8 GB – 275 ns access latency

Bidirectional ring
180 GB/sec

Distributed Tag
Directory (DTD)
reduces ring

snoop traffic
Gen2x16 PCI

Express* 64-256
byte packets
peer-to-peer R/W

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Cache Hierarchy

Parameter L1 L2

Coherence MESI MESI

Size 32KB + 32 KB 512 KB

Associativity 8-way 8-way

Line Size 64 Bytes 64 Bytes

Banks 8 8

Access Time 2 cycle 11 cycle

Policy Pseudo LRU Pseudo LRU

Duty Cycle 1 per clock 1 per clock

Ports Read or Write Read or Write

There is no L3 cache!

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

22 nm process

Up to 61 Cores

Up to 16GB Memory

2013:

Intel® Xeon Phi™

Coprocessor x100

Product Family

“Knights Corner”

2015:

Intel® Xeon Phi™
Coprocessor x200
Product Family

“Knights Landing”

14 nm

Processor & Coprocessor

Up to 72 cores

On Package, High-
Bandwidth Memory

Future Knights:

Upcoming Gen of
the Intel® MIC
Architecture

In planning

Continued roadmap
commitment

*Per Intel’s announced products or planning process for future products

Intel® Xeon Phi™ Product Family
based on Intel® Many Integrated Core (MIC) Architecture

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Next Intel® Xeon Phi™ Processor
Codename: Knights Landing

Designed using Intel’s cutting-edge

14nm process

Not bound by “offloading” bottlenecks

Standalone CPU
or PCIe Coprocessor

Leadership compute & memory bandwidth

Integrated

On-Package Memory

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Next Intel® Xeon Phi™ Processor
Codename: Knights Landing

On-Package Memory:

 up to 16GB at launch

 5X Bandwidth vs DDR47

Compute: Energy-efficient IA cores2

 Microarchitecture enhanced for HPC3

 3x Single Thread Performance vs Knights Corner4

 Intel Xeon Processor Binary Compatible5

 1/3x the Space6

 5x Power Efficiency6

.
.

.

.
.

.

Integrated Fabric

Intel® Silvermont Arch.
Enhanced for HPC

Processor Package

…

Jointly Developed with Micron Technology

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Programming for Intel Architectures

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Highly Parallel Applications

Theoretical acceleration of a highly parallel processor over a Intel® Xeon®

parallel processor (<1: Intel® Xeon® faster) – For illustration only

Efficient vectorization,

threading, and parallel execution

drives higher performance for

suitable scalable applications

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Parallel Programming for Intel® Architecture

Parallel programming to utilize the hardware resources,
in an abstracted and portable way

Use threads directly (pthreads) or via OpenMP*, C++11
Use tasking, Intel® TBB / Cilk™ Plus

CORES

Intrinsics, auto-vectorization, vector-libraries
Language extensions for vector programming (SIMD)

VECTORS

Use caches to hide memory latency
Organize memory access for data reuse

BLOCKING

Structure of arrays facilitates vector loads / stores, unit stride
Align data for vector accesses

DATA LAYOUT

Use Intel® MPI, Co-Array FortranNODES

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Heterogeneous Programming

Directive-based offloading &
Virtual Shared Memory model

P
C

Ie

CPU Executable Intel® MIC

Native Executable

Heterogeneous
Computing

P
a

ra
lle

l
C

o
m

p
u

te

Messaging libraries and
internal infra structure

P
a

ra
lle

l
C

o
m

p
u

te

OpenMP*

Intel® MKL

Intel® TBB

C/C++

Intel® Cilk™ Plus

Fortran

OpenCL

OpenMP*

Intel® MKL

Intel® TBB

C/C++

Intel® Cilk™ Plus

Fortran

OpenCL

In
te

l®
P

a
ra

lle
l B

u
ild

in
g

B

lo
ck

s

In
te

l P
a

ra
lle

l B
u

ild
in

g

B
lo

ck
s

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Native Programming for Intel Xeon Phi

In
te

l®
 M

at
h

 K
er

n
el

 L
ib

ra
ry

M

P
I*

In
te

l®
 T

h
re

ad
in

g
B

u
ild

in
g

B
lo

ck
s

In
te

l®
 C

ilk
™

 P
lu

s

O
p

en
M

P
*

POSIX threads*

Intel® Math Kernel Library

Intel® Cilk™ Plus Array Notations

Auto vectorization

Semi-auto vectorization:
#pragma (vector, ivdep, simd)

C/C++ Vector Classes
(F32vec16, F64vec8)

Intrinsics

Ease of use

Fine control

Parallelization Vectorization

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Flexible Execution Models for Heterogeneous Platforms

MAIN()

XEON®

SOURCE

CODE

RESULTS

MAIN()

XEON®

RESULTS

XEON

PHI™

MAIN()

XEON®

RESULTS

XEON

PHI™

MAIN()

XEON®

RESULTS

XEON

PHI™

MAIN()

RESULTS

Compilers, Libraries,

Runtime Systems

Multicore Only Multicore Hosted with

Manycore Offload

Symmetric Manycore Only

(Native)

HIGHLY PARALLEL CODESERIAL AND MODERATELLY

PARALLEL CODE

Case Study: NWChem CCSD(T)

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Finding Offload Candidates

Requirements for offload candidates

 Compute-intensive code regions (kernels)

 Highly parallel

 Compute scaling stronger than data transfer,
e.g., compute O(n3) vs. data size O(n2)

Finding offload candidates

 Create a benchmark to trigger application code of interest

 Find hotspots in the application

 Determine input and output data

 Determine data sizes transferred

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Offload Analysis Methodolgy

Hotspot
Analysis

Call-Tree
Analysis

Loop
Analysis

Add
Offload

Optimize
Data
Flow

Optimize
Kernel

Create
Bench-
mark

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Example: NWChem Hotspots

NWChem hotspot profile

Communication

Total of 38% of time
spent in sd_t_dX_Y

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Example: NWChem Hotspots

Call-tree analysis shows relationship of hotspots

This function is the
common anchor for

all hotspots.

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

offload

multi-threading

Example: Loop Analysis

All kernels expose the
same structure

7 perfectly nested loops

Trip count per loop is
equal to “tile size” (20-30)

Naïve per-kernel solution
is obvious

SIMD

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,
1 h7d,triplesx,t2sub,v2sub)
implicit none
integer h3d,h2d,h1d,p6d,p5d,p4d,h7d
integer h3,h2,h1,p6,p5,p4,h7
double precision triplesx(h3d,h2d,h1d,p6d,p5d,p4d)
double precision t2sub(h7d,p4d,p5d,h1d)
double precision v2sub(h3d,h2d,p6d,h7d)
do p4=1,p4d
do p5=1,p5d
do p6=1,p6d
do h1=1,h1d
do h2=1,h2d
do h3=1,h3d
do h7=1,h7d
triplesx(h3,h2,h1,p6,p5,p4)=

1 triplesx(h3,h2,h1,p6,p5,p4)
1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
end

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Issues w/ Naïve Offload Solution

offload

multi-threading

SIMD

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,h1d,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d,h2d,h1d,p6d,p5d,p4d)

double precision t2sub(h7d,p4d,p5d,h1d)

double precision v2sub(h3d,h2d,p6d,h7d)

cdir$ offload target(mic) in(t2sub:length(h7d*p4d*p5d*h1d))

1 in(v2sub:length(h3d*h2d*p6d*h7d))

2 inout(triplesx:length(h3d*h2d*h1d*p6d*p5d*p4d))

!$omp parallel do

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h2=1,h2d

do h3=1,h3d

do h7=1,h7d

triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

end

Vectorization potential
too low (about 80%)

Outer loop does not
expose enough

parallelism (20-30
threads)

Offloading individual
kernels requires GBs of

data transfers
(1-2 GB per offload)

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

data env.

offload

Optimization of Data Transfers

Use call-tree analysis to find common anchor for hotspots

 Hoist data transfers up as high as possible

 Make offload regions as large as possible

cdir$ offload_transfer target(mic) nocopy(triplesx:length(triplesx_l) ALLOC)

cdir$ offload_transfer target(mic) nocopy(t2sub:length(t2sub_l) ALLOC)

cdir$ offload_transfer target(mic) nocopy(v2sub:length(v2sub_l) ALLOC)

cdir$ offload target(mic) nocopy(triplesx:length(0) REUSE)

call zero_triplesx(triplesx)

do ...

if (...)

cdir$ offload target(mic) in(triplesx:length(0),REUSE)

1 in(t2sub:length(2sub_l),REUSE)

3 in(v2sub:length(v2sub),REUSE)

2 in(h3d,h2d,h1d,p6d,p5d,p4d,h7d)

call sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,h7,triplesx,t2sub,v2sub)

endif

c sd_t_d1_2 until sd_t_d1_9

enddo

c Similar structure for sd_t_d2_1 until sd_t_d2_9

cdir$ offload_transfer target(mic) out(triplesx:length(triplesx_l) REUSE)

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Kernel Optimizations

multi-threading

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,h1d,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d,h2d,h1d,p6d,p5d,p4d)

double precision t2sub(h7d,p4d,p5d,h1d)

double precision v2sub(h3d,h2d,p6d,h7d)

!$omp parallel do

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h2=1,h2d

do h3=1,h3d

do h7=1,h7d

triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

end

Use collapse clause to

increase parallelism by
1-2 orders of magnitude.

collapse(3)

Outer loop does not
expose enough

parallelism (20-30
threads)

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Kernel Optimizations, Part 2

• Loop ordering not optimal

for SIMD execution

• Too low trip count for
inner loop

• Index analysis shows that

loops can be reordered

• Swap h7 and h3

• Swap h7 and h2 again

multi-threading

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,h1d,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d,h2d,h1d,p6d,p5d,p4d)

double precision t2sub(h7d,p4d,p5d,h1d)

double precision v2sub(h3d,h2d,p6d,h7d)

!$omp parallel do collapse(3)

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h2=1,h2d

do h3=1,h3d

do h7=1,h7d

triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

end

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Kernel Optimizations, Part 2

• Loop ordering not optimal

for SIMD execution

• Too low trip count for
inner loop

• Index analysis shows that

loops can be reordered

• Swap h7 and h3

• Swap h7 and h2 again

• Loops h2 and h3 can be

collapsed

multi-threading

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,h1d,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d,h2d,h1d,p6d,p5d,p4d)

double precision t2sub(h7d,p4d,p5d,h1d)

double precision v2sub(h3d,h2d,p6d,h7d)

!$omp parallel do collapse(3)

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h7=1,h7d

do h2=1,h2d

do h3=1,h3d

triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

end

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Kernel Optimizations, Part 2

• Loop ordering not optimal

for SIMD execution

• Too low trip count for
inner loop

• Index analysis shows that

loops can be reordered

• Swap h7 and h3

• Swap h7 and h2 again

• Loops h2 and h3 can be

collapsed

multi-threading

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,h1d,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d,h2d,h1d,p6d,p5d,p4d)

double precision t2sub(h7d,p4d,p5d,h1d)

double precision v2sub(h3d,h2d,p6d,h7d)

!$omp parallel do collapse(3)

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h7=1,h7d

do h2=1,h2d

do h3=1,h3d

triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

end

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Kernel Optimizations, Part 2

• Loop ordering not optimal

for SIMD execution

• Too low trip count for
inner loop

• Index analysis shows that

loops can be reordered

• Swap h7 and h3

• Swap h7 and h2 again

• Loops h2 and h3 can be

collapsed

multi-threading

SIMD

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,h1d,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d*h2d,h1d,p6d,p5d,p4d)

double precision t2sub(h7d,p4d,p5d,h1d)

double precision v2sub(h3d*h2d,p6d,h7d)

!$omp parallel do collapse(3)

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h7=1,h7d

do h2h3=1,h2d*h3d

triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h2h3,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

end

about 50% speed-up

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Kernel Optimizations, Multi-versioning

about 15% speed-up

subroutine sd_t_d1_1(h3d,h2d,h1d,p6d,p5d,p4d,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,h1d,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

integer rmndr

double precision triplesx(h3d*h2d,h1d,p6d,p5d,p4d)

double precision t2sub(h7d,p4d,p5d,h1d)

double precision v2sub(h3d*h2d,p6d,h7d)

rmndr = mod(h3d,8) + mod(h2d,8) + mod(h1d,8) +

1 mod(p6d,8) + mod(p5d,8) + mod(p4d,8) +

2 mod(h7d,8)

if (rmndr.eq.0) then

!$omp parallel do collapse(3)

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h7=1,h7d

!dec$ vector aligned

do h2h3=1,h2d*h3d

triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h2h3,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

c continued from left column

else

!$omp parallel do collapse(3)

do p4=1,p4d

do p5=1,p5d

do p6=1,p6d

do h1=1,h1d

do h7=1,h7d

do h2h3=1,h2d*h3d

triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,p4)

1 - t2sub(h7,p4,p5,h1)*v2sub(h2h3,p6,h7)

enddo

enddo

enddo

enddo

enddo

enddo

enddo

!$omp end parallel do

endif

end

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Device Partitioning

Host executes several MPI ranks

 Utilize coprocessor from several host processes concurrently

 Utilize host CPUs for increased performance

Partition coprocessors through OpenMP* runtime

 Less threading overhead, better overall system utilization

 Rank 0: OFFLOAD_DEVICES=0 KMP_PLACE_THREADS=30c,4t,0o

 Rank 1: OFFLOAD_DEVICES=0 KMP_PLACE_THREADS=30c,4t,30o

 Rank 4: OFFLOAD_DEVICES=1 KMP_PLACE_THREADS=30c,4t,0o

 Rank 5: OFFLOAD_DEVICES=1 KMP_PLACE_THREADS=30c,4t,30o

Socket 1Socket 0

0 1 2 3 4 5 6 7

QPI

Coprocessor 1Coprocessor 0

Copyright© 2014, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Performance Results

Performance tests are measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when

combined with other products. System configuration: Atipa Visione vf442 server with two Intel Xeon E5-2670 8-core processors at 2.6 GHz (128 GB DDR3 with 1333 MHz,

Scientific Linux release 6.5) and Intel C600 IOH, two Intel Xeon Phi coprocessors 5110P (GDDR5 with 3.6 GT/sec, driver v3.1.2-1, flash image/micro OS 2.1.02.0390, Intel

Composer XE 14.0.1.106). Benchmark perturbative triples correction to the CCSD(T) correlation energy of the 1,3,4,5-tetrasilylimidazol-2-ylidene molecule (formula Si4C3N2H12) in

its triplet state.

©2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

