Seminar High Performance Computing - Recent trends and

developments
Winter Term 2015/2016
HPC interconnection topologies - a state-of-the-art

analysis

Stefan Effenberger
LMU

2.4.2016

Abstract

HPC systems of tomorrow will have to scale to a
much larger size than today in order to enable per-
formance of one exaflop and above. To achieve this
scale without sacrificing performance in terms of
latency and throughput, their interconnection net-
works and underlying topologies will have to sup-
port a high amount of nodes while keeping the di-
ameter low and bisection bandwidth high. Addi-
tionally, these interconnection networks need to ad-
dress new challenges: energy consumption and ac-
quisition cost. A trade-off between these metrics
has to be found, that is currently not satisfied by
today’s HPC networks. For this reason, new topolo-
gies are being developed in order to find a topology
that enables HPC systems of exascale level. This
paper introduces state-of-the-art network topolo-
gies and evaluates them. The results show that
these topologies provide improvements over classi-
cal topologies in terms of cost, energy consumption,
latency and resiliency.

1 Introduction

Exascale computing is expected to be enabled be-
tween 2021 and 2022 [15] and networks will take a

major role in that matter [3]. On the other hand,
the properties of such networks are determined by
their underlying topologies [11]. Since computing
power per endpoint is expected to increase follow-
ing Moore’s Law, network size has to increase dras-
tically to enable exascale levels until 2021. Net-
work topologies for these HPC systems therefore
need to overcome limitations imposed by classical
topologies in terms of scalability, power consump-
tion and acquisition cost. In this paper, state-of-
the-art topologies developed specifically for the use
in HPC data centers are examined in order to get
an overview of the current state of HPC intercon-
nection topologies. Additionally, their advantages
and drawbacks in comparison to classical topologies
used in HPC data centers today are investigated.

Section 2 gives an overview of the challenges that
have to be faced during the development of a net-
work topology enabling a high performance large-
scale network. In Section 3, various topologies
along with their structure and routing algorithm are
introduced. Section 4 proceeds to evaluate these
topologies and compares them against each other
and two popular topologies that are used in many
live HPC data centers. Finally, in Section 5, a con-
clusion is presented.

2 Challenges

Creating a high performance network topology is
subject to several challenges, which are explained
in this section.

Even if performance increases per compute node
will follow Moore’s Law (due to increases in the
number of cores per node), their number in current-
gen super-computers (for example 16,000 compute
nodes in the Tianhe-2 [1]) will not be sufficient
for reaching exascale levels by 2021. This means
that the number of compute nodes is expected to
increase, with some sources estimating more than
100,000 nodes [3]. Maintaining low latency thereby
is a key issue when scaling a system to a size this
large. This is due to the fact that all of these nodes
cannot be easily connected together with just one
hop, as such a setup is limited by router radix, with
radix being defined as the number of bidirectional
ports in the router [3]. Currently, routers with
radix 64 are available [17] and work in [19] indi-
cates that combined routers that consist of several
smaller ones could have similar performance, mak-
ing routers with even higher radix possible. Still, a
router cannot handle nearly as many ports as a net-
work of 100,000 nodes would require. Thus, with
growing network size, packets have to traverse a
higher amount of hops resulting in higher latency.
A major scalability concern therefore is to keep the
number of hops low for a high amount of nodes so as
to maintain low latency. Additionally, throughput
of the network is an important metric that deter-
mines its quality [13]. Advances in throughput can
be achieved by allowing the packets in the network
to traverse a different path if the chosen path is con-
gested [10], leading to a high path diversity. This
path diversity is enabled by the underlying topol-
ogy but enforced by a routing algorithm. Depend-
ing on the topology, standard routing algorithms
might not be sufficient (see [11]), so for a highly
functional topology a suitable algorithm is needed
as well.

Link failure is the most common reason for net-
work collapse in large networks [3]. A good topol-
ogy accounts for resiliency by allowing random link
removal [5]. High path diversity not only leads to

better throughput, it also enables higher resiliency.
To increase path diversity, a topology has to in-
crease its amount of links and routers. Because of
the increased size of future exascale systems in com-
parison to today’s HPC systems, a shift to low-cost
architectures is happening right now [9]. Further-
more, increasing the number of routers also leads to
higher power consumption, which is seen as one of
the major challenges for exascale computing [12].
Thus, a trade-off between throughput, resiliency,
cost-effectiveness and energy consumption has to
be found.

Cost for a network is not only driven by the amount
of routers and cables needed to build it. In fact,
packaging of the components (including compute
nodes) and the physical cabling play an important
role [3]. A topology not only needs to address the-
oretical properties — it has to enable a proper map-
ping between the topology and the actual physical
layout of a possible computing center.

3 Topologies

In this section, 6 different network topologies de-
signed for high performance computing are de-
scribed.

3.1 Flattened Butterfly

A flattened butterfly [10] topology can be directly
created from any conventional butterfly network. It
aims to add path diversity to the butterfly network
structure in order to gain better performance on ad-
versarial (or worst-case) traffic patterns while keep-
ing the low cost. To achieve this, the topology is
built upon the use of high-radix routers.

A butterfly network consists of several rows and di-
mensions as depicted in Figure 1 ¢). In each di-
mension, different rows are connected together. To
create a flattened butterfly, each of these rows con-
taining multiple routers is combined into one single
router. Figure 1 shows how butterfly networks (a,
c) are converted into flattened butterflies (b, d):

e All routers in a row are combined into one
router. For example, routers RO and R1 in a)

g
O - It
o+ N/ He e
(O @,
"\
®_ R2 R3 _@ ®_ R1"
—
@— —o @ I
—
R4 R5 R2' @
—&9 —6D
@— —eD @ I
@ —D @ —<2
R6 R7 g g R3"
®— < 3 —3
(a) (b)

799995 71 14

aia

(c) (d)

Figure 1: Conversion of Butterfly networks (a,c) to Flattened Butterfly (b,d)[10]

become RO’ in b).

e Links between routers in the same row are re-
moved.

e Unidirectional links of the butterfly network
are combined into bidirectional links in the
flattened butterfly. For example, Links (RO,
R3) and (R2, R1) in a) become (R0’, R1’) in
b).

This construction shows how the hop-count of a but-
terfly network can be significantly reduced while bi-
section bandwidth stays the same. Since multiple
routers are combined into one single router, they
have to handle more connections making the flat-
tened butterfly only suitable for routers with many
ports, i.e. high-radix routers.

The network size of a flattened butterfly depends
on the number of dimensions (see Figure 1 ¢)) of
the butterfly and the radix of the routers. Whether
a butterfly network of specific size can actually be
converted into a flattened butterfly is solely deter-
mined by the radix of the routers that can be used
for building the physical network.

Routing in topologies like the flattened butterfly can
be accomplished using different algorithms:

e Minimal routing (MIN) [11]: Packets are al-
ways sent along the path with the least hops. If
multiple paths have the same hop-count, min-
imal routing can also be adaptive (MIN-AD).

e Valiant routing (VAL): Valiant’s algorithm
[18] is used to route packets non-minimally.
Packets are sent to a randomly selected inter-
mediate router before they reach their destina-
tion in order to gain path diversity.

e Universal Globally-Adaptive Load-Balanced
routing (UGAL): Packets are sent using MIN
by default. Queue-length and hop-count in
each router is used to calculate delay. If delay
on the minimal paths is too high, UGAL uses
VAL to send the packets instead.

Delay can be computed using only local infor-
mation in each router (UGAL-L) or a global
information base (UGAL-G) [11].

The flattened butterfly improves over the conven-
tional butterfly network by enabling path diversity.
While all packets in a butterfly network have to
pass dimensions in a strict order, packets in a flat-
tened butterfly can traverse the dimensions in any
order using minimal routes (MIN-AD). Moreover,

packets can take non-minimal routes and thus gain
additional path diversity. For example, a packet
from router RO’ in Figure 1 b) could reach router
R1’ by traversing router R2’ or R3’ at first.

John Kim et al. have introduced an adaptive rout-
ing algorithm for the topology called CLOS-AD
which, like UGAL, decides for each packet whether
it should be sent minimally or not at the packet’s
source. If a packet is chosen to be sent non-
minimally however, it is routed to one of the clos-
est ancestor routers of the source and destination
nodes. These closest ancestors are computed by
viewing the network as a fat-tree [14] that has been
transformed into a flattened butterfly. According to
[3], the path diversity in a flattened butterfly is still
considerably lower than in a fat-tree network.

3.2 Dragonfly

Developed by the authors of the flattened butterfly
topology, the dragonfly topology [11] primarily aims
to improve over the flattened butterfly by reducing
its cost and keeping latency low and throughput
high. It consists of three levels:

1. A router with a fixed amount of compute nodes
connected to it.

2. A group of routers inside a cabinet connected
to each other.

3. The system consisting of all groups connected
to each other.

The routers inside of a group effectively act as one
virtual router, allowing the topology to emulate
routers of radix higher than what is possible with
single routers. Thus, the topology can maintain a
low global diameter, reducing latency.

In the dragonfly topology, a packet traverses one
global (inter-cabinet) channel at maximum. This
setup allows the topology to maintain a low number
of global channels. These global channels consist of
optical cables enabling a network of large areal size.
The purchase of optical cables is subject to higher
fixed costs than electrical cables but cost per length-
unit is lower [11]. The topology thus minimizes cost

olio N e

G \ '
| minimal route
m non-minimal route

Figure 2: Routing paths in a dragonfly topology
[11]

by reducing the number of global optical cables and
using longer cables.

A dragonfly with a certain diameter is bound to
a maximum network size at which only one global
channel between a pair of groups is possible. Drag-
onflies with a lower amount of nodes can have ad-
ditional global cables that are evenly distributed
among the pairs of groups.

Since each packet can traverse up to two local inter-
group channels to evenly distribute load on load-
balanced traffic, John Kim et al. propose that the
number of routers be exactly two times the number
of inter-group connections per router. Additionally,
the number of compute nodes connected to a router
shall be equal to this number of inter-group connec-
tions per router.

Such a load-balanced dragonfly can scale to 256K
nodes with a diameter of 3 and readily available
radix-64 routers.

The scalability of the topology is also subject to
the topologies used for inter- and intra-cabinet con-
nections — since there are no restrictions, arbitrary
configurations can be used for various use cases and
budgets.

Minimal routing (MIN) is straightforward: A
packet sent inside of a group is directly sent to the
router attached to it. If a packet is sent to another
group and the router of the source node does not
have a connection to that group, the packet is first
sent internally to a router that has such a connec-
tion. It is then sent over the global channel to the
destination group. If the destination node is not
attached to the router the packet arrived at, it has

the be sent again to the destination router.

In non-minimal routing (using VAL), one additional
group is used as an intermediate group as can be
seen in Figure 2.

John Kim et al. have created an adapted version
of the UGAL routing algorithm to achieve desirable
performance on the dragonfly. With global informa-
tion about all global channels (since these are the
channels that actually have to be balanced) UGAL-
G would be ideal. Unfortunately, this is difficult to
implement, so routing decisions have to be made
with a version of the algorithm using local infor-
mation (UGAL-L). Since latency and throughput
are hurt by using UGAL-L, the algorithm has been
slightly modified to approach the optimal perfor-
mance of UGAL-G on the network. For deadlock
avoidance, virtual channels are used.

3.3 HyperX

HyperX [3] describes a topology framework. It is
based upon the flattened butterfly (see Section 3.1)
and the hypercube [6]. Both topologies can be com-
pletely described by the framework. It additionally
comes with an algorithm that calculates the best
possible topology inside the HyperX specification
for various intended constraints like bisection band-
width. For networks with full bisection bandwidth,
a best-possible HyperX aims to approach perfor-
mance of a fat-tree network, with similar or lower
cost than a flattened butterfly network.

The HyperX consists of a fixed number of dimen-
sions. For each dimension, there is a variable num-
ber of routers meaning that each dimension can
consist of a different amount of routers. In each
dimension the switches are fully connected.

Figure 3 shows an example of a HyperX with two
dimensions (L) and 4 compute nodes (T) per router.
The first dimension consists of two routers (Si).
The second dimension consists of four routers re-
spectively (S2), resulting in a total of 8 routers.
Each router is fully connected to all other routers
in the same dimension.

A HyperX can also describe the bandwidth (K) of
the links. This bandwidth can vary for each dimen-
sion and is expressed as a multiple of the bandwidth

(@)L=2,8=2,8,=4,K=1,T=4

Figure 3: Example of an irregular HyperX [3]

between routers and compute nodes.

If the bandwidth K and the amount of routers S
is uniform among all dimensions, a HyperX can be
seen as regular. Such a regular HyperX is described
by the tuple (L, S, K, T). A flattened butterfly can
be expressed as a regular HyperX with T = S and
K=1.

Jung Ho Ahn et al. have shown that an irregular
(or general) HyperX will always result in the usage
of less routers compared to a regular one.

Since the topology space of HyperX is so wide, only
few topologies inside of this space are desirable. For
this reason, an algorithm has been proposed which
can find a HyperX topology meeting certain re-
quirements and minimizing the amount of routers.
The requirements consist of the desired network
size, radix of the routers and bisection bandwidth.
Minimal routing (MIN-AD) in HyperX is done by
adaptive dimension order routing. Essentially, the
packets traverse the topology one dimension after
another, not traversing any dimension that already
has been traversed. The more dimensions a packet
has to traverse, the higher the path diversity gets
as the packet can traverse dimensions in any order,
adaptively choosing the path with the least buffer
congestion.

HyperX introduces a new adaptive routing algo-
rithm called Dimensionally-Adaptive, Loadbalanced
(DAL) that is based upon the CLOS-AD algorithm
described in Section 3.1. Packets are routed mini-
mally using dimension order routing. Any router on
the path of a packet can adaptively choose to der-

oute the packet on a non-minimal route based on
path congestion. A maximum of one deroute per
dimension is allowed. Packets are sent through di-
mension order virtual channels, making the routing
algorithm deadlock free.

3.4 Slim Fly

Slim fly [5] is a topology based on graphs approach-
ing solutions to the degree-diameter problem [16].
Its primary goal is thus reducing the network diam-
eter to a minimum.

The idea behind the topology is to maximize the
number of compute nodes in a network with given
router radix and network diameter. The optimal
graph for this problem can only be approached
with the maximum number of achievable nodes in a
graph with given diameter and radix being defined
by the Moore Bound [16]. To achieve full global
bandwidth, routers in the topology connect 33% of
their ports to compute nodes. All other ports are
connected to other routers. Using radix-128 routers
and a network diameter of 2, the Moore Bound with
this setup is set to approximately 300K nodes. For
radix-64 routers, it is only set to around 40K nodes.
This means, that the topology relies on high-radix
routers.

Slim fly is based on diameter-2 graphs introduced
in [16]. Figure 4 shows an exemplary graph. It is
partitioned into two subgraphs each consisting of an
equal amount of routers. In each graph, routers are
furthermore grouped into subgroups with each sub-
group not being connected to the other subgroups.
Routers inside the subgroups are connected to each
other. For each subgraph, the routers are connected
in a different way. Additionally, each router in a
subgraph is connected to some other routers in the
opposing subgraph.

Each router can now reach all other routers either
directly or with maximum one intermediate hop.
Minimal routing (MIN) in a slim fly topology is
straightforward: If the router of the source node is
directly connected to the router of the destination
node, the packet can be sent directly. Otherwise,
the packet is sent through an intermediate router.

The second subgraph
consisting of
routers (1,m,c)

The first subgraph
consisting of
routers (0,x,y)

Edges between two subgraphs

q subgroups not directly
connected with one another

q subgroups not directly
connected with one another

Figure 4: Slim Fly network graph with diameter 2
[5]

Maciej Besta et al. propose to use the topology
with the UGAL-L routing algorithm.

3.5 Random topologies

Network size in conventional topologies is usually
determined by their structure [13], for example be-
cause nodes and links have to be evenly distributed.
In [13], an assumption is made that network size
should rather be determined by surface area and
cost for energy and hardware using non-structured
topologies that are not subject to such limitations.
Following this principle, random topologies have
been introduced which gain latency improvements
by adding random shortcut links to classical topolo-
gies like hypercubes. These random links help re-
duce the diameter of such topologies by supply-
ing shortcuts for paths that would normally require
many hops.

Shortcut links are added by sequentially traversing
the list of routers and randomly selecting the de-
sired amount of other routers to connect them to.

This algorithm is run 100 times. The 100 result-
ing topologies are then compared for diameter and
average shortest path and the topology with the
lowest values is used.

It has been shown empirically that generating only
100 different topologies is sufficient for finding the
best possible solution. Furthermore, is has been
found that using a generation method for shortcuts
which takes the usefulness of the links into account
only yields an overall 0.02 percent increase for aver-
age shortest path length. This method simply com-

putes the average shortest path length for a fixed
number of randomly selected routers and picks the
one with the lowest value.

Adding random shortcut links to various base
topologies resulted in an interesting outcome: The
more shortcut links are added, the more these
topologies approach the same values in diameter
and average shortest path length. Adding the
shortcut links to a simple ring topology leads to the
fastest decrease for these values, meaning that the
ring topology is indeed the best option for adding
random shortcut links. Also, not all topologies
benefit from random links. A fat-tree for exam-
ple still gains improvements in latency but it comes
at the cost of massively reduced throughput. At
this point, determining whether random links are
beneficial or not for a specific topology can only be
figured out by simulation.

Routing for random topologies can not exploit topo-
logical structures and thus is bound to topology-
agnostic deadlock-free algorithms [7]. These algo-
rithms have a higher complexity in terms of path
computation and rely on routing table size which
might limit scalability. These issues are still to be
researched.

3.6 Skywalk

Skywalk [8] is a topology built on the premise that
routing technology will reach a point where latency
is dominated by cable- rather than router-delay.
Ikki Fujiwara et al. define this turning point at
around 60ns for router delay. Currently, the fastest
routers achieve a delay of roughly 100ns [8].
Skywalk is a random topology (as described in Sec-
tion 3.5). Since it has been shown that with de-
creasing router delay random topologies have higher
latencies in comparison to topologies like the hyper-
cube, a new method for random shortcut generation
is proposed in this work. This generation method
explicitly takes the physical structure of the topol-
ogy into account so that cable lengths are mini-
mized.

The topology consists of cabinets containing mul-
tiple switches each. The cabinets are aligned

on a two-dimensional grid. Three different sub-
topologies are specified:

e intra-cabinet

e inter-cabinet with straight links (along a row
or column of the alignment grid)

e inter-cabinet with diagonal links

For each of these sub-topologies, links between the
nodes (either routers or cabinets) are randomly gen-
erated. For cabinets, each newly generated link is
connected to the respective next router in the cabi-
net so that the links are equally distributed among
the routers. As Ikki Fujiwara et al. have shown,
straight links between cabinets lead to lower cable
length and thus latency. For this reason, the maxi-
mum number of straight links is created before di-
agonal links are additionally set up. This method is
repeated 10 times so that 10 different topologies are
generated. The topology with the largest amount
of links is picked (the random shortcut generation
method skips a link if the randomly chosen router
already is connected to the current router).

The main differences between Skywalk and random
topologies lie in the fact that random links are al-
ways constrained by their sub-topology and that no
base topology is used.

When cable delay dominates network delay, routing
on the basis of hop-count is not sufficient. There-
fore, a routing algorithm should be used that routes
packets based upon a combination of cable- and
router-delays. A topology-agnostic deadlock-free
routing algorithm (as described in Section 3.5) is
proposed, for which the routing tables are com-
puted using Dijkstra’s algorithm with the distance
between the nodes being defined as a combination
of cable- and router-delay. Ikki Fujiwara et al. have
however not defined how to compute this combina-
tion.

4 Evaluation

The topologies described in Section 3 are now eval-
uated and compared against each other and the

classical topologies fat-tree and hypercube regard-
ing various metrics. For each topology, the num-
ber of compute nodes per router is set to a value
that enables full global bandwidth [5]. Fat-tree and
flattened butterfly are analyzed in a three-level and
three-dimensional configuration, respectively.

4.1 Graph analysis

In this section, basic metrics like the nodal degree,
diameter and bisection bandwidth are analyzed and
compared to each other.

Table 1 shows these values for the various topologies
discussed in this paper. D refers to the number of
dimensions and L to the level of a topology.

The degree (amount of connections between the
routers) of the topologies can vary. For example,
a random topology can have a very low degree or a
high degree depending on how many random short-
cut links are generated and which base topology is
used. The rating depicted here shows if low degree
is possible at all.

In [5] random topologies are assumed to have a di-
ameter between 3 and 10. For the Skywalk topol-
ogy, since it is set up similarly to a dragonfly, the di-
ameter is 3 at minimum and the maximum depends
on the number of random links added. Slim fly net-
works have the lowest diameter. Other topologies
(like fat-tree) can have a diameter of two as well
but with significantly lower scalability [5].

The bisection bandwidth is given in relation to the
network size. Bisection bandwidth in HyperX net-
works is one of the input values of the generation
algorithm, making it possible to create networks
with different values. The upper bound depends on
the other input values but can exceed full bisection
bandwidth of N/2 [3].

Figure 5 shows the average shortest path of all
compared topologies except skywalk and HyperX.
Slim fly has a value below two, since its diameter
is two. Random topologies also have a very low
value despite the fact that their diameter can be
much higher. The dragonfly topology, with its di-
ameter of 3, averages at around 2.5 hops per path.
The other topologies average at a much higher hop-
count, ultimately resulting in higher latency.

12.54
Topology

10.04

173
aQ

o

L

‘S -A- Hypercube
5 —+- Fat Tree

2 754 =& Flat. Butterfly
g -% Dragonfly

< -k Random top.
S 5.0 % Slim Fly

©

§ %

N

T T T T
1000 2000 3000 4000 5000
Network size [endpoints]

Figure 5: Average shortest path of various topolo-
gies [5]

For Skywalk, diameter and average shortest path
length are not sufficient for performance analysis
[8]. Therefore, no data is available.

4.2 Latency and Throughput

Latency and throughput are the two most impor-
tant metrics concerning network performance. In
this section, the topologies are compared to each
other regarding different messaging patterns and
their impact on these metrics.

Two different scenarios are used to simulate net-
work traffic [5]: Firstly, nodes in the network send
traffic to other, randomly chosen nodes. This cre-
ates uniform traffic which is expected to evenly dis-
tribute load across the network. Secondly, a worst
case scenario is simulated by choosing the respec-
tive worst case traffic pattern for each topology. An
explanation of these patterns can be obtained from
[5]. Worst-case scenarios are only available for fat-
tree, dragonfly and slim fly.

The results of the traffic stress tests are shown in
Figure 6. All graphs show the relation between la-
tency and the network load. This also gives insight
on the throughput: The network is saturated at
the point where latency increases drastically. a)
and b) show random traffic and worst-case scenar-
ios respectively for fat-tree, dragonfly and slim fly
topologies. c¢) shows a (different) random traffic
scenario for the rest of the topologies in this pa-
per. It is based on routers with 60ns delay so that
a comparison with skywalk can be made on a fair

Table 1: Graph analysis for various topologies [5]

Hyper- | Fat-tree Flat. Dragon- | HyperX | Slim Random | Skywalk

cube But. fly Fly
Degree low [6] | high [14] high high high [3] | high [5] | low [13] | low [§]

[10] [11]
Diameter D [6] (L—1)2[14] | D [10] 3 D [3] 2 3-10 3-7 [8]
Bisection BW | N/2 N/2 N/4 N/4 * ~N/3 | ~N/23 |-
Topology Topology

7 | 7 | < FatTee o =+ Hypercube
g T -+ Dragonfly § -A- Random top.
B30 L.304 -=- Slim Fly g -3 Dragonfly
§ E" -/ 5 —&- Skywalk
%20, ﬁzo’ 3 - HyperX

T T
0.00 0.25 0.75 14 0.00 0.‘25 0.‘75

0.50 050
Offered load Offered load

a) random traffic b) worst case traffic

Accepted traffic [Gbit/sec/host]
) random traffic

Figure 6: Traffic scenarios (a,b) [5] and random traffic scenario with 60ns router delay (c) [8]

basis. Additionally, the topology setup of dragon-
fly is different to the setup used in the other two
graphs. Therefore, the graph from c¢) cannot be
directly compared with the graphs from a) and b).
a) shows that latency in dragonfly and slim fly net-
works is lower than in a classical 3-layer fat-tree net-
work. It can support higher network load though,
so throughput is slightly higher for fat-tree and slim
fly can handle more load than dragonfly.

b) shows that the fat-tree network has a clear ad-
vantage over the other two topologies when worst
case traffic occurs. This comes at the expense of a
higher cost as can be seen in Section 4.3.

¢) shows that the hypercube topology has a high la-
tency overall despite the fact that latency should
not be dominated by its high average shortest path
length in this 60ns router delay environment. Hy-
perX can handle the highest load, while dragonfly
is showing the best latency for lower load. Interest-
ingly, skywalk is still outperformed by HyperX and
dragonfly in this environment.

Topology
7500001 -4 Hypercube
-+ Fat Tree

¢ Flat. Butterfly
-% Dragonfly
& Random top.
Slim Fly

500000 -

250000 +

Power consumption [W]

T T T T
10000 20000 30000 40000
Network size [endpoints]

Figure 7: Energy efficiency of various topologies [5]

4.3 Energy efficiency and cost

According to [2], up to 50% of a data center’s
energy consumption can be caused by the underly-
ing network. Furthermore, energy consumption is
seen as a major challenge for exascale computing
[12]. Tt is therefore important for HPC networks to
reduce energy consumption by a whole magnitude
to enable exascale computing. Figure 7 shows a

1.0e+08

Topology
7.5e+07 -& Hypercube
—+ Fat Tree

< Flat. Butterfly
=k Dragonfly
<% Random top.
%% Slim Fly

5.0e+07 4

Total cost [$]

2.5e+07

0.0e+00

T T T
20000 30000 40000

Network size [endpoints]

Figure 8: Cost of various topologies [5]

comparison between various network topologies in
terms of energy consumption. The exact testing
setup and cost functions can be obtained in [5].
The graph shows that slim fly is the clear winner in
terms of energy consumption with approximately
26 percent less power consumption than a dragonfly
network of similar size. This is mainly achieved by
the topology using less routers than its competitors.

Routers and cables account for almost all network
cost [11]. Therefore, a reduction in both leads to a
better cost-effectiveness of the whole network. Fig-
ure 8 depicts the cost of a network in relation to
its size for various topologies. Similar to the results
for energy consumption, slim fly is the topology
with the best cost-effectiveness of the tested topolo-
gies. HyperX networks also account for low cost by
preferring the configuration with the least routers.
Skywalk reduces network cost mainly by reducing
cable length. However, as no direct metrics in terms
of cost-effectiveness are available for both topolo-
gies, they cannot be included in the comparison.

4.4 Resiliency

In [5], various topologies have been evaluated
against sudden link failure:

The hypercube is more resistant against link failures
than the fat-tree regarding low amount of nodes
(around 512-1024). This behavior reverses with a
higher amount of nodes, because more links be-
tween routers are established in a fat-tree network
with growing size.

10

The dragonfly topology is generally more resilient
than fat-tree and hypercube. Fat-tree networks tend
to failure when enough global links between the core
routers fail. This is true for dragonfly as well but
it is still more resilient.

The flattened butterfly is more resilient than the
dragonfly because of its high path diversity and the
fact that link failure of global links in a dragonfly
topology can lead to network partitioning easily.
Random topologies and slim fly are more resilient
than all already mentioned topologies and in this
context approximately equal to each other, thanks
to high path diversity.

For skywalk and HyperX, there are no metrics avail-
able in this regard.

It has to be noted that resiliency not only depends
on the network structure but also on the routing
algorithm [3]. This has not been taken into account
in the presented metrics.

5 Conclusion

To enable exascale computing, HPC network
topologies have to overcome limitations due to en-
ergy consumption, cost and performance. In this
paper, several topologies have been evaluated re-
garding these properties and compared against each
other and popular topologies already in use in to-
day’s HPC data centers.

The evaluation shows that some of the examined
topologies are strong candidates for next-generation
high performance computing (with dragonfly cur-
rently being the only topology in use [4]). With
many of the new topologies focusing on cost-
effectiveness, a high cost and energy consumption
reduction in comparison to classical fat-tree net-
works that are in use in many HPC networks to-
day [1] can be achieved with even lower latency and
higher resiliency. Topologies like dragonfly and slim
fly can surpass classical topologies in many regards,
although there are drawbacks as well: For adversar-
ial traffic patterns, highly redundant networks like
the fat-tree accept significantly more traffic before
they are saturated.

Random topologies have shown that latency can

be reduced by adding random links to an existing
topology. This might enable already existing data
centers to improve performance with little effort.

References

[1]

2]

The top 500. http://www.top500.org. Ac-
cessed: 2015-12-06.

Dennis Abts, Michael R. Marty, Philip M.
Wells, Peter Klausler, and Hong Liu. Energy
proportional datacenter networks. SIGARCH
Comput. Archit. News, 38(3):338-347, June
2010.

Jung Ho Ahn, Nathan Binkert, Al Davis,
Moray McLaren, and Robert S. Schreiber. Hy-
perx: Topology, routing, and packaging of ef-
ficient large-scale networks. In Proceedings of
the Conference on High Performance Comput-
ing Networking, Storage and Analysis, SC ’09,
pages 41:1-41:11, New York, NY, USA, 2009.
ACM.

B. Arimilli, R. Arimilli, V. Chung, S. Clark,
W. Denzel, B. Drerup, T. Hoefler, J. Joyner,
J. Lewis, Jian Li, Nan Ni, and R. Raja-
mony. The percs high-performance inter-
connect. In High Performance Interconnects
(HOTI), 2010 IEEE 18th Annual Symposium
on, pages 75-82, Aug 2010.

M. Besta and T. Hoefler. Slim fly: A cost ef-
fective low-diameter network topology. In High
Performance Computing, Networking, Storage
and Analysis, SC14: International Conference
for, pages 348-359, Nov 2014.

L.N. Bhuyan and D.P. Agrawal. Generalized
hypercube and hyperbus structures for a com-
puter network. Computers, IEEE Transactions
on, C-33(4):323-333, April 1984.

J. Flich, T. Skeie, A. Mejia, O. Lysne,
P. Lopez, A. Robles, J. Duato, M. Koibuchi,
T. Rokicki, and J.C. Sancho. A survey and
evaluation of topology-agnostic deterministic

11

routing algorithms. Parallel and Distributed
Systems, IEEE Transactions on, 23(3):405—
425, March 2012.

I. Fujiwara, M. Koibuchi, H. Matsutani, and
H. Casanova. Skywalk: A topology for hpc
networks with low-delay switches. In Parallel
and Distributed Processing Symposium, 2014
IEEE 28th International, pages 263-272, May
2014.

Georgios Kathareios, Cyriel Minkenberg, Bog-
dan Prisacari, German Rodriguez, and Torsten
Hoefler. Cost-effective diameter-two topolo-
gies: Analysis and evaluation. In Proceedings
of the International Conference for High Per-
formance Computing, Networking, Storage and
Analysis, SC ’15, pages 36:1-36:11, New York,
NY, USA, 2015. ACM.

John Kim, William J. Dally, and Dennis Abts.
Flattened Butterfly : A Cost-Efficient Topol-
ogy for High-Radix Networks. In Proceedings
of the 34th annual international symposium on
Computer architecture, pages 126-137, 2007.

John Kim, William J. Dally, Steve Scott,
and Dennis Abts. Technology-Driven, Highly-
Scalable Dragonfly Topology. In Proceedings of
the 35th Annual International Symposium on
Computer Architecture, pages 77-88, 2008.

P.M. Kogge, P. La Fratta, and M. Vance.
[2010] facing the exascale energy wall. In In-
novative Architecture for Future Generation
High Performance (IWIA), 2010 International
Workshop on, pages 51-58, Jan 2010.

M. Koibuchi, H. Matsutani, H. Amano, D.F.
Hsu, and H. Casanova. A case for random
shortcut topologies for hpc interconnects. In
Computer Architecture (ISCA), 2012 39th An-
nual International Symposium on, pages 177—
188, June 2012.

C.E. Leiserson. Fat-trees: Universal networks
for hardware-efficient supercomputing. Com-
puters, IEEE Transactions on, C-34(10):892—
901, Oct 1985.

[15]

[16]

[17]

Dong-Joon Lim, Timothy R. Anderson, and
Tom Shott. Technological forecasting of super-
computer development: The march to exascale
computing. Omega, 51:128 — 135, 2015.

Mirka Miller and Jozef Siran. Moore graphs
and beyond: A survey of the degree/diameter
problem. The electronic journal of combina-
torics, 2005.

Steve Scott, Dennis Abts, John Kim, and
William J. Dally. The blackwidow high-radix
clos network. In Proceedings of the 33rd An-
nual International Symposium on Computer
Architecture, ISCA 06, pages 16-28, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

L. G. Valiant. A scheme for fast parallel com-

munication. SIAM Journal on Computing,
11(2):350-361, 1982.

Juan A. Villar, Francisco J. AndiJar, José L.
SaNchez, Francisco J. Alfaro, José A. GaMez,
and José Duato. Obtaining the optimal con-
figuration of high-radix combined switches.
J. Parallel Distrib. Comput., 73(9):1239-1250,
September 2013.

12

