
Seminar HPC Trends

Winter Term 2017/2018

New Operating System Concepts for High

Performance Computing

Fabian Dreer
Ludwig-Maximilians Universität München

dreer@cip.ifi.lmu.de

January 2018

Abstract

When running large-scale applications on clusters,
the noise generated by the operating system can
greatly impact the overall performance. In order to
minimize overhead, new concepts for HPC OSs are
needed as a response to increasing complexity while
still considering existing API compatibility.

In this paper we study the design concepts of het-
erogeneous kernels using the example of mOS and
the approach of library operating systems by ex-
ploring the architecture of Exokernel. We sum-
marize architectural decisions, present a similar
project in each case, Interface for Heterogeneous
Kernels and Unikernels respectively, and show
benchmark results where possible.

Our investigations show that both concepts have
a high potential, reduce system noise and outper-
form a traditional Linux in tasks they are already
able to do. However the results are only proven by
micro-benchmarks as most projects lack the matu-
rity for comprehensive evaluations at the point of
this writing.

1 The Impact of System Noise

When using a traditional operating system kernel
in high performance computing applications, the
cache and interrupt system are under heavy load by
e.g. system services for housekeeping tasks which is
also referred to as noise. The performance of the
application is notably reduced by this noise.

Even small delays from cache misses or interrupts
can affect the overall performance of a large scale
application. So called jitter even influences collec-
tive communication regarding the synchronization,
which can either absorb or propagate the noise.
Even though asynchronous communication has a
much higher probability to absorb the noise, it is
not completely unaffected. Collective operations
suffer the most from propagation of jitter especially
when implemented linearly. But it is hard to anal-
yse noise and its propagation for collective oper-
ations even for simple algorithms. Hoefler et al.
[5] also suggest that “at large-scale, faster networks
are not able to improve the application speed sig-
nificantly because noise propagation is becoming a
bottleneck.” [5]

Hoefler et al. [5] also show that synchronization
of point-to-point and collective communication and

1

dreer@cip.ifi.lmu.de


OS noise are tightly entangled and can not be dis-
cussed in isolation. At full scale, when it becomes
the limiting factor, it eliminates all advantages of a
faster network in collective operations as well as full
applications. This finding is crucial for the design
of large-scale systems because the noise bottleneck
must be considered in system design.

Yet very specialized systems like BlueGene/L [8]
help to avoid most sources of noise [5]. Ferreira
et al. [3] show that the impact is dependent on
parameters of the system, the already widely used
concept of dedicated system nodes alone is not suf-
ficient and that the placement of noisy nodes does
matter.

This work gives an overview of recent developments
and new concepts in the field of operating systems
for high performance computing. The approaches
described in the following sections are, together
with the traditional Full-Weight-Kernel approach,
the most common ones.

The rest of this paper is structured as follows. We
will in the next section introduce the concept of run-
ning more than one kernel on a compute or service
node while exploring the details of that approach at
the example of mOS and the Interface for Hetero-
geneous Kernels. Section 3 investigates the idea of
library operating systems by having a look at Ex-
okernel, one of the first systems designed after that
concept, as well as a newer approach called Uniker-
nels. Section 4 investigates Hermit Core which is a
combination of the aforementioned designs. After
a comparison in Section 5 follows the conclusion in
Section 6.

2 Heterogeneous Kernels

The idea about the heterogeneous kernel approach
is to run multiple different kernels side-by-side.
Each kernel has its spectrum of jobs to fulfill and its
own dedicated resources. This makes it possible to
have different operating environments on the parti-
tioned hardware. Especially with a look to hetero-

geneous architectures with different kinds of mem-
ory and multiple memory controllers, like the recent
Intel Xeon Phi architecture, or chips with different
types of cores and coprocessors, specialized kernels
might help to use the full potential available.

We will first have an in-depth look at mOS as at
this example we will be able to see nicely what as-
pects have to be taken care of in order to run dif-
ferent kernels on the same node.

2.1 mOS

To get a light and specialized kernel there are two
methods typically used: The first one is to take
a generic Full-Weight-Kernel (FWK) and stripping
away as much as possible; the second one is to build
a minimal kernel from scratch. Either of these two
approaches alone does not yield a fully Linux com-
patible kernel, which in turn won’t be able to run
generic Linux applications [4].

Thus the key design parameters of mOS are:
full linux compatibility, limited changes to Linux,
and full Light-Weight-Kernel scalability and perfor-
mance, where performance and scalability are pri-
oritized.

To avoid the tedious maintenance of patches to the
Linux kernel, an approach inspired by FUSE has
been taken. Its goal is to provide internal APIs
to coordinate resource management between Linux
and Light-Weight-Kernels (LWK) while still allow-
ing each kernel to handle its own resources indepen-
dently.

“At any given time, a sharable resource is either
private to Linux or the LWK, so that it can be
managed directly by the current owner.” [11] The
resources managed by LWK must meet the follow-
ing requirements: i) to benefit from caching and
reduced TLB misses, memory must be in phys-
ically contiguous regions, ii) except for the ones
of the applications no interrupts are to be gener-
ated, iii) full control over scheduling must be pro-
vided, iv) memory regions are to be shared among
LWK processes, v) efficient access to hardware must

2



be provided in userspace, which includes well-per-
forming MPI and PGAS runtimes, vi) flexibility in
allocated memory must be provided across cores
(e.g. let rank0 have more memory than the other
ranks) and, vii) system calls are to be sent to the
Linux core or operating system node.

mOS consists of six components which will be in-
troduced in one paragraph each:

According to Wisniewski et al. [11], the Linux run-
ning on the node can be any standard HPC Linux,
configured for minimal memory usage and without
disk paging. This component acts like a service
providing Linux functionality to the LWK like a
TCP/IP stack. It takes the bulk of the OS adminis-
tration to keep the LWK streamlined, but the most
important aspects include: boot and configuration
of the hardware, distribution of the resources to the
LWK and provision of a familiar administrative in-
terface for the node (e.g. job monitoring).

The LWK which is running (possibly in multiple
instantiations) alongside the compute node Linux.
The job of the LWK is to provide as much hardware
as possible to the applications running, as well as
managing its assigned resources. As a consequence
the LWK does take care of memory management
and scheduling [11].

A transport mechanism in order to let the Linux
and LWK communicate with each other. This
mechanism is explicit, labeled as function ship-
ping, and comes in three different variations: via
shared memory, messages or inter-processor inter-
rupts. For shared memory to work without major
modifications to Linux, the designers of mOS de-
cided to separate the physical memory into Linux-
managed and LWK-managed partitions; and to al-
low each kernel read access to the other’s space.
Messages and interrupts are inspired by a model
generally used by device drivers; thus only send-
ing an interrupt in case no messages are in the
queue, otherwise just queueing the new system call
request which will be handled on the next poll. This
avoids floods of interrupts in bulk-synchronous pro-
gramming. To avoid jitter on compute cores, com-
munication is in all cases done on cores running

Linux [11].

The capability to direct system calls to the cor-
rect implementor (referred to as triage). The idea
behind this separation is that performance critical
system calls will be serviced by the LWK to avoid
jitter, less critical calls, like signaling or /proc re-
quests handles the local Linux kernel and all opera-
tions on the file system are offloaded to the operat-
ing system node (OSN). But this hierarchy of sys-
tem call destinations does of course add complexity
not only to the triaging but also to the synchroniza-
tion of the process context over the nodes [11].

An offloading mechanism to an OSN. To remove
the jitter from the compute node, avoid cache pol-
lution and make better use of memory, using a dedi-
cated OSN to take care of I/O operations is already
an older concept. Even though the design of mOS
would suggest to have file system operations han-
dled on the local linux, the offloading mechanism
improves resource usage and client scaling [11].

The capability to partition resources is needed for
running multiple kernels on the same node. Mem-
ory partitioning can be done either statically by
manipulating the memory maps at boot time and
registering reserved regions; or dynamically mak-
ing use of hotplugging. These same possibilities are
valid for the assignment of cores. Physical devices
will in general be assigned to the Linux kernel in
order to keep the LWK simple [11].

We have seen the description of the mOS architec-
ture which showed us many considerations for run-
ning multiple kernels side-by-side. As the design
of mOS keeps compatibility with Linux core data
structures, most applications should be supported.
This project is still in an early development stage,
therefore an exhaustive performance evaluation is
not feasible at the moment.

2.2 Interface for Heterogeneous
Kernels

This project is a general framework with the goal
to ease the development of hybrid kernels on many-

3



core and accelerator architectures; therefore at-
tached (coprocessor attached to multi-core host)
and builtin (standalone many-core platform) con-
figurations are possible. It follows the two design
principles of keeping the interface minimal on the
one hand, and providing a requisite utility library
for kernels on the other hand.

Similar to mOS yet less strict, IHK defines the
requirements for a hybrid kernel approach to be
i) management of kernels and an interface to al-
locate resources, ii) resource partitoning and, iii) a
communication mechanism among kernels. In IHK
it is assumed that one kernel manages at most one
processor.

The framwork consists of the following components:

IHK-Master has the ability to boot other kernels.
The mechanisms needed to do so are the same as
discussed in the architecture description of mOS
about partitioning resources. The master kernel
also makes the user interface available.

IHK-Slave defines an interface for slave kernels to
work with each other. Kernels of this type only run
in their assigned space, retrieve that information
from, and are booted by, the master kernel.

The IHK-IKC (communication model) provides
rudimentary functions for the use of channels,
where a channel is a pair of message queues. Mas-
ter and slave kernels have an interface to use the
IKC. This slightly differs from what we’ve seen in
mOS, as IHK provides a library for using inter-
rupts and queuing where the exact implementation
is free. The included IKC library provides func-
tions to setup a client-server layout among the ker-
nels with a master channel to share control mes-
sages [10].

For easier development of LWKs, a bootstrap li-
brary is part of IHK. Currently an implementation
for x86 64 is available. The delegation of system
calls works in concept exactly like we’ve seen in
mOS, with the difference that there is no operating
system node where file system operations can be
sent to.

“While IHK/McKernel is in a more advanced phase
than mOS at this moment, both projects are too
early in their development cycle for doing an ex-
haustive performance study.” [4]

To still have an idea what can be expected from
the heterogeneous kernel approach, Figure 1 shows
benchmark results from FusedOS [9], which was the
first prototype incorporating the idea. The work of
Wisniewski et al. [11] is also based on FusedOS ,
therefore the overall tendency should be compara-
ble.

The x-axis of Figure 1 shows time while the y-axis
shows the number of iterations performed during a
certain quantum of time. We see the performance
of the FusedOS PECs (Power-Efficient-Cores) —
which can be thought of as the LWKs of mOS — in
purple above the red Linux. High-frequency noise
as well as occasional large spikes can be seen in
the Linux curve. Especially these large spikes are
detrimental to the performance on large-scale clus-
ters. In comparison, the FusedOS PEC curve has
the form of a straight line, thus not displaying any
spikes; for that reason we would tend to believe that
the behavior of the application running on FusedOS
is deterministic [9].

To sum up, even though some prototypes of het-
erogeneous kernels are still in their early phases,
the concept itself looks promising. Light-Weight-
Kernels run almost completely deterministically
and show superior noise properties.

3 Library Operating Systems

The job of a traditional OS is to abstract away the
hardware and isolate different processes, owned by
potentially multiple users, from one another, as well
as from the kernel. This abstraction is commonly
realized by the differentiation, and therefore sepa-
ration, into kernel space and user space.

But as this makes the abstraction fix, this concept
can also limit performance and freedom of imple-
mentation. As a result applications are denied the
possibility of domain-specific optimizations; this

4



presetting also discourages changes to the abstrac-
tions.

Conceptually a library operating system (libOS)
is built around an absolutely minimalistic kernel,
which exports all hardware resources directly via
a secure interface. The operating system, which
implements higher level abstractions, uses this in-
terface.

Therefore the (untrusted) OS lives entirely in user
space, which effectively moves the whole resource
management to user space. This has the advantage
that parts like e.g. virtual memory are user defined
and offer more flexibility as well as specialization
to the application. Another strong point of this
design is the reduction of context switches for priv-
ileged operations the kernel would normally have to
execute [2].

In contrast to the previously described heteroge-
neous kernel approach, libraryOS concepts work
with exactly one kernel which is then used by mul-
tiple libOSs. Similar to our investigation of the het-
erogeneous kernel approach, we will discuss first the
concept of Exokernel in detail, then take a look at
the younger variants named Unikernels.

3.1 Exokernel

The challenge for the exokernel approach is to give
the libOSs maximal freedom while still secluding
them in such a way that they do not affect each
other. A low-level interface is used to separate pro-
tection from management. The kernel performs the
important tasks of i) keeping track of resource own-
ership, ii) guarding all resource binding points and
usage as well as, iii) revoking resource access.

In order to protect resources without managing
them at all, the designers of Exokernel decided to
make the interface in such a way that all hardware
resources could be accessed as directly as possible
because the libOS knows best about its needs. This
is supposed to be possible by exposing allocation,
physical names, bookkeeping data structures and
revocation. Additionally a policy is needed to han-
dle competing requests of different libOSs. In case

of an exokernel the decisions to make are all about
resource allocation and are handled in a traditional
manner with e.g. reservation schemes or quotas. In
the following paragraphs we will have a closer look
at some other mechanisms of the exokernel [2] ar-
chitecture.

Exokernel uses a technique referred to as secure
bindings in order to multiplex resources so that
they are protected against unintended use by dif-
ferent libOSs. The point in time where a libOS
requests allocation of a resource is called bind time,
subsequent use of that resource is known as access
time. By doing authorization checks only at bind
time this mechanism improves efficiency. Another
aspect is that this way of handling checks strength-
ens the separation of management and protection as
the kernel does not need to know about the complex
semantics of resources at bind time. Secure bind-
ings are implemented with hardware mechanisms,
caching in software and the download of application
code into the kernel. As this downloading mecha-
nism is not as common as the other two, an example
can be found in the paragraph about network mul-
tiplexing in this section.

The multiplexing of physical memory is done with
secure bindings as well. When the libOS requests
a page of memory, the kernel creates a binding for
that page with additional information on the ca-
pabilities of this page. The owner of a page is al-
lowed to manipulate its capabilities, and these ca-
pabilities are used to determine the access rights
for that memory page. Therefore applications can
grant memory access to other applications which
makes resource sharing easier.

Multiplexing of network resources efficiently is
rather hard with the design philosophy requiring
separation of protection, which includes delivering
packets to the correct libOS, and management, e.g.
creating connections and sessions. To deliver the
packets correctly it is necessary to understand the
logic of their contents. This can be done by either
requesting each possible recipient (every libOS), or,
more efficiently, with the use of downloaded appli-
cation code in the packet filter to handle the packet.

5



This code can be run with immediate execution on
kernel events which avoids costly context switches
or otherwise required scheduling of each applica-
tion. As this code is untrusted, it should be com-
bined with security mechanisms like sandboxing [2].

Finally there must be a way to reclaim allocated
resources. For this a resource revocation protocol
has been implemented. Typically a kernel does not
inform the OS when physical memory is allocated
or deallocated. But the design of exokernels strives
to give the libOS the most direct access to hard-
ware possible. Therefore the revocation is visible
for most resources which allows the libOS to react
to a revocation request accordingly by e.g. saving
a certain state. In cases where the application be-
comes unresponsive there is an abort protocol which
can be understood as issuing orders instead of re-
quests. Still if the libOS cannot comply, secure
bindings to allocated resources must be broken by
force. To complement this behavior, the libOS ac-
tively releases resources no longer needed.

In sum we have seen that exokernel approaches do
not provide the same functionality as a traditional
OS, but offer a way of running specialized systems
with high performance implemented mostly in user
space. Engler et al. [2] already show that the con-
cept of exokernels and their implementation can be
very efficient, and that it is efficient as well to build
traditional OS abstractions on application level.
Yet, as the experiments are quite a few years old
already, we will investigate more recent approaches
based on this concept in the next subsection.

3.2 Unikernels

As it is difficult to support a wide range of
real-world hardware with the exokernel approach,
libOSs have never been widely deployed. This prob-
lem can be solved with the use of virtualization hy-
pervisors which are already very popular today es-
pecially in cloud environments [7].

The key difference between the previously shown
exokernel architecture and a unikernel is that
unikernels are single-purpose, single-image and

single-address-space applications that are, at
compile-time, specialized into standalone kernels.
To make the deployment of unikernels easier, the
configuration is integrated into the compilation pro-
cess. In comparison, Linux distributions rely e.g.
on complex shell scripting to pack components into
packages. When deployed to e.g. a cloud platform,
unikernels get sealed against modifications. In re-
turn they offer significant reduction in image size,
improved efficiency and security, and should also
reduce operational costs [7].

In the following paragraphs we will now have a
closer look at the architecture of such a single-
purpose application, often referred to as an appli-
ance.

Application configurations are usually stored in
dedicated files, one for each service. The view of
services in the unikernel architecture is not the one
of independent applications but are seen as libraries
of one single application. As a result the configura-
tion is either done at build time for static param-
eters or with library calls for dynamic ones. This
concept eases the configuration of complex layouts
and also makes configurations programmable, ana-
lyzable and explicit.

Another advantage of linking everything as a li-
brary, even functions that would normally by pro-
vided by an operating system, results in very com-
pact binary images. The system can by optimized
as a whole without including unnecessary function-
alities. And the static evaluation of linked configu-
rations helps to eliminate dead code segments. This
compile time specialization is also a measure of se-
curity, especially effective in the combination with
the isolating hypervisor and possibly, as it is the
case for the work of Madhavapeddy et al. [7], type-
safe languages.

A special protection mechanism made possible by
the design of unikernels is sealing. When the appli-
ance starts up, it allocates all the memory it needs
in a set of page tables with the policy that no page
is writable and executable. After this a call to the
hypervisor is used to seal these pages, which in turn
makes the heap size fixed. The hypervisor has to be

6



Figure 1: Fixed Time Quanta benchmark for
Linux and FusedOS; adapted from Park et al.
[9].

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2C
um

ul
at

iv
e 

fre
qu

en
cy

 (%
)

Jitter (ms)

Mirage
Linux native
Linux PV

Figure 2: Figure 2: CDF of jitter for 106 parallel
threads in Linux and Mirage OS; adapted from
Madhavapeddy et al. [7].

modified in order to provide the sealing mechanism.
This action makes all code injection attacks inef-
fective. The use of this technique is optional. The
second security mechanism for unikernels is possible
because most of the time a reconfiguration requires
recompilation. Therefore the address space layout
can be randomized at compile time [7].

Madhavapeddy et al. [7] show with their Mirage
prototype that CPU-heavy applications are not af-
fected by the virtualization “as the hypervisor ar-
chitecture only affects memory and I/O.” [7]

According to Briggs et al. [1] the performance of
Mirage OS, the prototype of Madhavapeddy et al.
[7], is not easily evaluated as e.g. the DNS server as
well as the HTTP server are still example skeletons.
They are missing important features or are unsta-
ble. But the evaluation of the Mirage DNS server
nevertheless showed that it is able to handle much
higher request rates than a regularly used one on
Linux. Mirage OS might need some more time to
mature but shows other advantageous results, such
as lower and also more predictable latency which
can be seen in Figure 2 [7].

In conclusion, the drawback of the Mirage proto-
type is that it only runs specifically ported applica-
tions written in OCaml, like the system itself. But

by this design it provides “type-safety and static
analysis at compile-time.” [1]

4 Hermit Core

Hermit Core is the combination of the approaches
we have seen above. It combines a Linux kernel
with a unikernel and promises maximum perfor-
mance and scalability. Common interfaces and non-
performance critical tasks are realized by Linux [6].
But as this project is focused on HPC programming
models (e.g. MPI, OpenMP), performance has been
improved in exchange for full POSIX compliance.

Hermit Core is extremely versatile. It can be run
as a heterogeneous kernel, standalone like a pure
unikernel, in a virtualized environment as well as
directly on hardware as single- or multi-kernel. It
can be booted without a Linux kernel directly by
virtualization proxies, but in multi-kernel mode a
special loader is required.

When running as a multi-kernel, one instance of
Hermit Core runs on each NUMA node abstracting
this fact so the application is presented a traditional
UMA architecture.

7



0 100 200 300
0

0.2

0.4

0.6

0.8

1
·105

T ime in s

G
ap

in
T
ic
ks

(a) Linux

0 100 200 300
0

0.2

0.4

0.6

0.8

1
·105

T ime in s

G
ap

in
T
ic
ks

(b) Hermit Core

0 100 200 300
0

0.2

0.4

0.6

0.8

1
·105

T ime in s

G
ap

in
T
ic
ks

(c) Hermit Core without IP thread

Figure 3: Scatter plots observing OS noise in different configurations
adapted from Lankes et al. [6].

The communication between the kernel instances
are realized either by using a virtual IP device or via
a message passing library. Also the communication
with the Linux kernel in the heterogeneous setup
happens over an IP connection as well.

Just as in the unikernel design previously seen,
some parameters, like the number of system
threads, are set at compile time. As a result internal
data structures can be built as static arrays, which
provides fast accesses and good cache-usage. For
tasks like garbage collectors in the runtime of man-
aged languages it is still necessary for Hermit Core
to provide a scheduler. Yet the scheduling overhead
is reduced by the fact that the Hermit Core kernel
does not interrupt computation threads. Computa-
tion threads run on certain cores and are not using
a timer which would be a source for OS noise.

For building applications a slightly modified version
of the GNU binutils and gcc is used with the build
target x86 64-hermit. By this design, hermit core
applications can be built in any language supported
by gcc. But it is even possible to use a different
C-compiler by including the special Hermit Core
header files instead of the Linux ones.

Figure 3 shows scatter plots from the Hourglass
benchmark. The gaps in the execution time are
used to indicate points in time where the operating
system took time from an application process for

maintenance tasks.

In comparison to a standard Linux, which can be
seen in Figure 3a, the Hermit Core with a network-
ing thread, seen in Figure 3b, shows significantly
smaller gaps than the Linux. But Hermit Core is
designed to spawn only one thread for handling IP
packets, therefore all computation threads run with
a profile similar to Figure 3c which shows the small-
est noise distribution. Lankes et al. [6] also show
that their prototype is approximately twice as fast,
with regard to basic system services on the Intel
Haswell architecture, as Linux.

We have seen Hermit Core, which is a versatile,
well performing symbiosis of Linux and unikernels
designed for HPC. The benchmark results still show
OS noise to be present, but on a much smaller scale
than on Linux.

5 Comparison

As the mOS project is still in a prototype phase,
and the Interface for Heterogeneous Kernels as well
is in an early stage, the stability of the projects
has still to show as they both progress. As the
concept of library operating systems is much older,
the systems investigated in this work seem to be
stable yet are facing different issues.

8



The development of applications to run on a het-
erogeneous kernel should be not much different than
for traditional Full-Weight-Kernel systems as both
projects presented set Linux compatibility as one
of their goals. Additionally the symbiotic system
presents itself as a single system to applications.
Even with a stable exokernel already present, the
implementation of an application together with a
specialized OS suited for it involves much more
manual work than with the heterogeneous kernel
concept. Virtualization helps to cope with hard-
ware abstractions for the exokernel, but the libOS
has to be written for every application. Hermit
Core provides the combination of the aforemen-
tioned concepts by uniting a libOS in form of a
unikernel with a Full-Weight-Kernel. It makes it
possible to use high-level languages for application
development and provides an adapted software col-
lection with familiar build tools.

If we take the performance evaluation of FusedOS
into account, as mOS as well as IHK are not
ready yet for macro-benchmarks, the Light-Weight-
Kernels run with much less jitter and deterministic
behavior. Results of the unikernel prototype Mi-
rage OS benchmarks are all at the micro-level as
most applications for it are still stubs or have lim-
ited functionality. Yet this approach as well shows
a clear reduction in jitter and more predictable be-
havior can be expected. As can be seen in Figure 3,
Hermit Core offers a considerable reduction in OS
noise. Additionally the performance for basic sys-
tem services and scheduling has been shown to be
higher compared to Linux.

6 Conclusion

On the way to exascale computing there is a need
for new concepts in HPC OS design in order to make
full use of the hardware. One step in this direction
is the elimination of jitter.

In this paper we introduced the two currently most
popular concepts for new operating system designs
focusing on high performance computing. To sum

up, both approaches show great promise for per-
formance and the reduction of OS noise. Even
their combination is possible and the so constructed
prototype system performs equally well. Yet all
projects are missing comprehensive evaluation re-
sults as a consequence of their youth. Heteroge-
neous kernel concepts seem to have high poten-
tial yet are not mature enough to be considered
at the moment. Application development should
be straightforward and compatibility with already
existing ones should be provided. The concept of li-
brary operating systems has been around for a long
time and it might be a good option if the perfor-
mance boost compensates the cost for virtualization
layers, but more manual work is involved in order
to write a tailored libOS in addition to the desired
application. A combination of both concepts is pos-
sible and seems to have excellent properties.

References

[1] Ian Briggs, Matt Day, Yuankai Guo, Peter
Marheine, and Eric Eide. A performance eval-
uation of unikernels. 2015.

[2] Dawson R Engler, M Frans Kaashoek, et al.
Exokernel: An operating system architecture
for application-level resource management, vol-
ume 29. ACM, 1995.

[3] Kurt B Ferreira, Patrick G Bridges, Ron
Brightwell, and Kevin T Pedretti. The im-
pact of system design parameters on applica-
tion noise sensitivity. Cluster computing, 16
(1):117–129, 2013.

[4] Balazs Gerofi, Masamichi Takagi, Yutaka
Ishikawa, Rolf Riesen, Evan Powers, and
Robert W Wisniewski. Exploring the design
space of combining linux with lightweight ker-
nels for extreme scale computing. In Pro-
ceedings of the 5th International Workshop on
Runtime and Operating Systems for Supercom-
puters, page 5. ACM, 2015.

9



[5] Torsten Hoefler, Timo Schneider, and An-
drew Lumsdaine. Characterizing the influ-
ence of system noise on large-scale applica-
tions by simulation. In Proceedings of the 2010
ACM/IEEE International Conference for High
Performance Computing, Networking, Storage
and Analysis, SC ’10, pages 1–11, Washing-
ton, DC, USA, 2010. IEEE Computer Soci-
ety. ISBN 978-1-4244-7559-9. doi: 10.1109/SC.
2010.12. URL https://doi.org/10.1109/

SC.2010.12.

[6] Stefan Lankes, Simon Pickartz, and Jens Bre-
itbart. Hermitcore: A unikernel for extreme
scale computing. In Proceedings of the 6th In-
ternational Workshop on Runtime and Oper-
ating Systems for Supercomputers, ROSS ’16,
pages 4:1–4:8, New York, NY, USA, 2016.
ACM. ISBN 978-1-4503-4387-9. doi: 10.1145/
2931088.2931093. URL http://doi.acm.org/

10.1145/2931088.2931093.

[7] Anil Madhavapeddy, Richard Mortier, Char-
alampos Rotsos, David Scott, Balraj Singh,
Thomas Gazagnaire, Steven Smith, Steven
Hand, and Jon Crowcroft. Unikernels: Li-
brary operating systems for the cloud. In ACM
SIGPLAN Notices, volume 48, pages 461–472.
ACM, 2013.

[8] José Moreira, Michael Brutman, Jose Cas-
tano, Thomas Engelsiepen, Mark Giampapa,
Tom Gooding, Roger Haskin, Todd Inglett,
Derek Lieber, Pat McCarthy, et al. Designing
a highly-scalable operating system: The blue
gene/l story. In SC 2006 Conference, Proceed-
ings of the ACM/IEEE, pages 53–53. IEEE,
2006.

[9] Yoonho Park, Eric Van Hensbergen, Marius
Hillenbrand, Todd Inglett, Bryan Rosenburg,
Kyung Dong Ryu, and Robert W Wisniewski.
Fusedos: Fusing lwk performance with fwk
functionality in a heterogeneous environment.
In Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), 2012 IEEE
24th International Symposium on, pages 211–
218. IEEE, 2012.

[10] Taku Shimosawa, Balazs Gerofi, Masamichi
Takagi, Gou Nakamura, Tomoki Shirasawa,
Yuji Saeki, Masaaki Shimizu, Atsushi Hori,
and Yutaka Ishikawa. Interface for heteroge-
neous kernels: A framework to enable hybrid
os designs targeting high performance comput-
ing on manycore architectures. In High Perfor-
mance Computing (HiPC), 2014 21st Interna-
tional Conference on, pages 1–10. IEEE, 2014.

[11] Robert W Wisniewski, Todd Inglett, Pardo
Keppel, Ravi Murty, and Rolf Riesen. mos: An
architecture for extreme-scale operating sys-
tems. In Proceedings of the 4th International
Workshop on Runtime and Operating Systems
for Supercomputers, page 2. ACM, 2014.

10

https://doi.org/10.1109/SC.2010.12
https://doi.org/10.1109/SC.2010.12
http://doi.acm.org/10.1145/2931088.2931093
http://doi.acm.org/10.1145/2931088.2931093

	The Impact of System Noise
	Heterogeneous Kernels
	mOS
	Interface for Heterogeneous Kernels

	Library Operating Systems
	Exokernel
	Unikernels

	Hermit Core
	Comparison
	Conclusion

