
Master-Seminar: Hochleistungsrechner - Aktuelle Trends und

Entwicklungen

Winter Term 2017/2018

Fault Tolerance in High Performance Computing

Simon Klotz
Technische Universität München

Abstract

Fault tolerance is one of the essential characteristics
of High-Performance Computing (HPC) systems to
reach exascale performance. Higher failure rates
are anticipated for future systems because of an in-
creasing number of components. Furthermore, new
issues such as silent data corruption arise. There
has been significant progress in the field of fault
tolerance in the past few years, but the resilience
challenge is still not solved. The most widely used
global rollback-recovery method does not scale well
enough for exascale systems which is why other ap-
proaches need to be considered. This paper gives
an overview of established and emerging fault tol-
erance methods such as rollback-recovery, forward
recovery, algorithm-based fault tolerance (ABFT),
replication and fault prediction. It also describes
how LAIK can be utilized to achieve fault tolerant
HPC systems.

1 Introduction

Fault tolerance is the ability of an HPC system to
avoid failures despite the presence of faults. Past
HPC systems did not provide any fault tolerance
mechanisms since faults were considered rare events
[1]. However, with the current and next generation
of large-scale HPC systems faults will become the
norm. Due to power and cooling constraints, the in-

crease in clock speed is limited, and it is expected
that the number of components per system will con-
tinue to grow to improve performance [2] following
the trend of the current Top500 HPC systems [3]. A
higher number of components makes it more likely
that one of them fails at a given time. Furthermore,
the decreasing size of transistors increases their vul-
nerability.

The resilience challenge [4] encompasses all issues
associated with an increasing number of faults and
how to deal with them. Commonly used meth-
ods such as coordinated checkpointing do not scale
well enough to be suited for exascale environments.
Thus, the research community is considering other
approaches such as ABFT, fault prediction or repli-
cation to provide a scalable solution for future HPC
systems. This paper presents existing and current
research in the field of fault tolerance in HPC and
discusses their advantages and drawbacks.

The remainder of this paper is structured as fol-
lows: Section 2 introduces the terminology of fault
tolerance. Fault recovery methods such as rollback-
recovery, forward recovery and silent error detection
are covered in Section 3. Section 4 discusses fault
containment methods such as ABFT and replica-
tion. Section 5 is concerned with fault avoidance
methods including failure prediction and migration.
Finally, Section 6 presents LAIK, an index space
management library, that enables all three classes
of fault tolerance.

1



2 Background

First, essential concepts of the field have to be in-
troduced for an efficient discussion of current fault
tolerance methods. This paper relies on the defini-
tions of Avizienis [5], who defines faults as causes
of errors which are deviations from the correct total
state of a system. Errors can lead to failures which
imply that the external and observable state of a
system is incorrect. Faults can be either active or
dormant whereas only active faults lead to an error.
However, dormant faults can turn into active faults
by the computation or external factors. Further-
more, faults can be classified into permanent and
transient faults. Transient faults only appear for a
certain amount of time and then disappear with-
out external intervention in contrast to permanent
faults which do not disappear. Errors can be clas-
sified as detected, latent or masked. Latent errors
are only detected after a certain amount of time and
masked errors do not lead to failures at all. Errors
that lead to a failure are also called fail-stop errors
whereas undetected latent errors that only corrupt
the data are called silent errors. Silent errors have
been identified to be one of the greatest challenges
on the way to exascale resilience [1]. As an example,
cosmic radiation impacting memory and leading to
a discharge would be a fault. Then, the affected
bits flip which would be an error. If an applica-
tion now uses these corrupted bits the observable
state would deviate from the correct state which is
a failure.
An important metric to discuss fault tolerance
mechanisms is the Mean Time Between Failures
(MTBF). This paper is following the definition of
Snir et al. [6] who define it as

MTBF =
Total runtime

Number of failures

Several studies [7, 8] were conducted to classify
failures and determine their source in HPC sys-
tems. In order to analyze failures researchers de-
fine different failure classes based on their cause.
Schroeder et al. [7] distinguish between hardware,
software, network, environment, human, and un-
determined failures whereas Oliner et al. [8] only

Figure 1: Classification of faults, errors, and fail-
ures

distinguish between software, hardware, and unde-
termined failures. Depending on the studied system
the occurence of different failure classes differ signif-
icantly. A possible explanation is the discrepancy
in system characteristics and used failure classes.
Nevertheless, most researchers agree that software
and hardware faults are the most frequent causes
of failures [7]. Hardware faults can occur in any
component of an HPC system, such as fans, CPUs,
or memory. One of the most important classes of
hardware faults are memory bit errors due to cos-
mic radiation. Software faults can occur at any part
of the software stack. The most common faults in-
clude unhandled exceptions, null reference pointers,
out of memory error, timeouts and buffer overflows
[6]. Since hardware and software faults are most
common in HPC systems, the remainder of this pa-
per will focus on these two classes since also most
fault tolerance methods apply to them.

3 Fault Recovery

The objective of fault recovery is to recover a
normal state after the application experienced a
fault, thus preventing a complete application fail-
ure. Fault recovery methods can be divided into
rollback-recovery, forward recovery, and silent error
detection. Rollback-recovery is the most widely in-
vestigated approach and commonly used in many

2



large-scale HPC systems. Rollback-recovery meth-
ods periodically take snapshots of the application
state and in case of failure the execution reverts to
that state. Forward recovery, avoids this restart
by letting the application recover by itself using
special algorithms. A novel research direction is
silent error detection which can be combined with
rollback-recovery and forward recovery to recover
from faults.

3.1 Rollback-recovery

Rollback-recovery, which is also called checkpoint-
restart, is the most widely used and investigated
fault tolerance method [9, 10]. Checkpointing
methods can be classified into multiple categories
according to how they coordinate checkpoints and
at which level of the software stack they operate.
Each class has different approaches trying to solve
the challenge of saving a consistent state of a dis-
tributed system which is not a trivial task to achieve
since large-scale HPC systems generally do not em-
ploy any locking mechanisms. The two major ap-
proaches to checkpoint a consistent state of a HPC
system are coordinated checkpointing and uncoor-
dinated checkpointing with message-logging [10] as
depicted in Figure 2.
Coordinated protocols store checkpoints of all pro-
cesses simultaneously which imposes a high load on
the file system. They enforce a synchronized state
of the system such that no messages are in transit
during the checkpointing process by flushing all re-
maining messages. The advantage of coordinated
checkpointing is that each checkpoint captures a
consistent global state which simplifies the recovery
of the whole application. Furthermore, coordinated
protocols have a comparatively low overhead since
they do not store messages between processes [9].
However, if one process fails all other processes need
to be restarted as well [11]. Also, with a growing
number of components and parallel tasks the cost
of storing checkpoints in a coordinated way steadily
increases.
Message-logging protocols store messages between
nodes with a timestamp and the associated content,
thus capturing the state of the network [9]. They

are based on the assumption that the application
is piecewise deterministic and that the state of a
process can be recovered by replaying the recorded
messages from its initial state [9]. In practice, each
process periodically checkpoints its state so that re-
covery can continue from there instead of the ini-
tial state [12]. In contrast to coordinated proto-
cols, only the processes affected by failure need to
be restarted which makes it more scalable. How-
ever, each process needs to maintain multiple check-
points which increases memory consumption and
inter-process dependencies can lead to the so-called
Domino effect [9]. Furthermore, all messages and
their content need to be stored as well.

Figure 2: Difference of coordinated protocols and
uncoordinated protocols with message-logging [11]

Message-logging protocols can be further divided
into: optimistic, pessimistic and causal protocols
[13]. Optimistic protocols store checkpoints on un-
reliable media, e.g. the node running a process it-
self. Furthermore, a process can continue its exe-
cution during logging [11]. This method has less
overhead compared to others but can only toler-
ate a single failure at a time and if a node itself
fails the whole application has to be restarted. Pes-
simistic protocols store all checkpoints on reliable
media and processes have to halt execution until
messages are logged. This enables them to tolerate
multiple faults and complete node failures at the
cost of a higher overhead using reliable media and
halting execution. Causal protocols also do not use
reliable media but log the messages in neighboring
nodes with additional causality information. This
omits the need for reliable media and an applica-
tion is still able to recover if one node experiences
a complete failure.

3



Checkpointing methods can operate on different
levels of the software stack which has an important
impact on transparency and efficiency. Checkpoint-
ing can be implemented by the operating system,
a library, or the application itself [14]. Operating
system extensions can do global checkpoints that
provide transparent checkpointing of the whole ap-
plication state and do not require modifications of
the application code. There are also libraries that
act as a layer on top of MPI and enable global and
transparent checkpointing. However, global check-
pointing has a large overhead since the storage costs
are proportional to the memory footprint of the sys-
tem [15] which often includes transient data or tem-
porary variables which are not critical for recovery.
Approaches such as compiler-based checkpointing
intend to solve this issue by automatically detecting
transient variables and excluding them from check-
points which reduces the total size of checkpoints.
All of the previously mentioned approaches auto-
matically store checkpoints which does not allow
any control of the procedure. User-level fault tol-
erance libraries assume that developers know best
when to checkpoint and what data to store which
can significantly decrease the checkpoint size. How-
ever, this also increases application complexity [15]
and an application developer can be mistaken and
forget about critical data.
Researchers introduced different variations and ad-
ditions to the general checkpointing techniques
to reduce the number of needed resources to
reach feasible performance for exascale HPC sys-
tems. One of these approaches is diskless check-
pointing [16] which stores checkpoints in memory.
Other approaches include multi-level checkpointing
[17] which hierarchically combines multiple stor-
age technologies with different reliability and speed
allowing a significantly higher checkpointing fre-
quency since checkpointing on the first layer is gen-
erally fast.

3.2 Forward recovery

Forward recovery avoids restarting the application
from a stored checkpoint and lets the application
recover by itself. It is only applicable for algo-

rithms that can accept faults but ultimately con-
verge to a correct state, sometimes at the cost of
additional computations. Forward recovery algo-
rithms are non-masking since they can display er-
ratic behavior due to transient faults but finally dis-
play legitimate behavior again after a stabilization
period [18]. One class of algorithms having this
property are self-stabilizing algorithms.
Forward recovery can also be manually imple-
mented by application developers. Resilient MPI
implementations provide an interface which can be
used by application developers to specify behav-
ior in case a fault occurs. Using this, develop-
ers can implement custom forward recovery rou-
tines that recover a consistent, fault-free applica-
tion state. The advantage of forward recovery
methods is that they often allow faster recovery
compared to rollback-recovery. However, they are
application specific and not applicable to all algo-
rithms.

3.3 Silent Error Detection

The objective of silent error detection methods is to
detect latent errors such as multi-bit faults. Silent
error detection is a relatively novel research area of
increasing importance since smaller components are
more vulnerable to cosmic radiation [1]. It is appli-
cation specific and uses historic application data to
detect anomalous results during the computations
of an application which indicates a silent data cor-
ruption (SDC).
Several methods can be used to detect anomalies in
the application data. Vishnu et al. [19] use different
machine learning methods able to correctly detect
multi-bit errors in memory with a 97% chance. Af-
ter a silent error is detected it has to be corrected.
Gomez et al. [20] just replace corrupted values with
their predictions. Since it is not always desirable
to use approximate predictions, rollback-recovery
can be used, to revert to a consistent application
state instead. Application developers can also im-
plement application-specific routines to recover a
normal state.
One drawback of silent error detection is that it in-
troduces computational overhead. Another limita-

4



tion is the false positive rate which has a significant
impact on the overall performance of an applica-
tion. Furthermore, it takes significant effort to de-
velop silent error detection methods since they are
application specific. Nevertheless, silent error de-
tection is one of the few methods able to deal with
silent errors and has less resource overhead com-
pared to replication [21].

4 Fault Containment

Fault containment methods let an application con-
tinue to execute until it terminates even after mul-
tiple faults occur. Compensation mechanisms are
in place to contain the fault and avoid an appli-
cation failure. They also ensure that the applica-
tion returns correct results after termination. The
most commonly used fault containment methods
are replication and ABFT. Replication systems run
copies of a task on different nodes in parallel and if
one fails others can take over providing the correct
result. ABFT includes all algorithms which can
detect and correct faults, that occur during compu-
tations.

4.1 Replication

Replication methods replicate all computations on
multiple nodes. If one replica is hit by a fault the
others can continue computation and the applica-
tion terminates as expected.
Replication methods can be distinguished into
methods that either deal with fail-stop or silent er-
rors. MR-MPI [22] deals with fail-stop errors and
uses replicas for each node. As soon as one node
fails the replica is taking over and continues execu-
tion. Only if both nodes fail the application needs
to be restarted. In contrast, RedMPI [23] is not ad-
dressing complete node failures but silent errors. It
compares the output of all replicas to correct SDCs.
A novel research direction is to use approximate
replication to detect silent errors. A complemen-
tary node is running an approximate computation
which is then compared to the actual result to de-
tect SDCs. Benson et al. [24] use cheap numerical

computations to verify the original results which
reduces the overhead compared to other replication
methods.
Replication generally has a high overhead because
multiples of all resources are needed depending on
the replication factor. Furthermore, it is costly
to check the consistency of all replications and it
is difficult to manage non-deterministic computa-
tions [25]. Also, an overhead of messages is needed
to communicate with all replicas. Nevertheless,
Ferreira et al. [25] showed that replication meth-
ods outperform traditional checkpointing methods
if the MTBF is low.

4.2 ABFT

ABFT was first proposed by Huang and Abraham
in 1984 [26] and includes algorithms able to auto-
matically detect and correct errors. ABFT is not
applicable to all algorithms but researchers are con-
tinuously adapting new algorithms to be fault toler-
ant because of the generally low overhead compared
to other methods. The core principle of ABFT is
to introduce redundant information which can later
be used to correct computations.
ABFT algorithms can be distinguished into online
and offline methods [11]. Offline methods correct
errors after the computation is finished whereas on-
line methods repair errors already during the com-
putation. The most prominent examples for offline
ABFT are matrix operations [27] where checksum
columns are calculated which are later used to ver-
ify and correct the result. Online ABFT can also be
applied to matrix operations [28] whereas they are
often more efficient than their offline counterparts
since they can correct faults in a timely manner,
when their impact is still small, compared to of-
fline ABFT methods that correct faults only after
termination.
The main drawback of ABFT is that it requires
modifications of the application code. However,
since most applications rely on low-level algebra li-
braries the methods can be directly implemented
in those libraries hidden from an application pro-
grammer. Another disadvantage of ABFT is that
it cannot compensate for all kinds of faults, e.g.

5



complete node failures. Furthermore, if the num-
ber of faults during the computation exceeds the
capabilities of the algorithm it cannot correct them
anymore. ABFT also introduces overhead in the
computations which is however comparatively small
to other fault tolerance methods.

5 Fault Avoidance

In contrast to fault recovery and fault containment,
fault avoidance or proactive fault tolerance methods
aim at preventing faults before they occur. Gener-
ally, fault avoidance methods can be split in two
phases. First, predicting the time, location and
kind of upcoming faults. Second, taking preven-
tive measures to avoid the fault and continue exe-
cution. Proactive fault tolerance is a comparatively
new but promising field of research [1]. The pre-
diction of fault occurrences mainly relies on tech-
niques from Data Mining, Statistics and Machine
Learning which use RAS log files and sensor data.
The most common preventive measure is to migrate
tasks running on components which are about to
fail to healthy components.

5.1 Fault Prediction

It is important to consider which data and model to
use to accurately predict faults. Engelmann et al.
[29] derived four different types of health monitor-
ing data that can be used to predict faults whereas
most prediction methods rely on Type 4 which uti-
lizes a historical database that is used as training
data for machine learning methods. It mostly in-
cludes sensor data such as fan speed, CPU tem-
perature and SMART metrics but also RAS logfiles
containing failure histories.
The success of fault avoidance methods mainly de-
pends on the accuracy of the predictions. It is
important that predictors can predict both loca-
tion and time of a fault in order to successfully
migrate a task [30]. Furthermore, the accuracy of
the prediction is of high importance. If too many
faults are missed the advantage of a prediction-
based model is small compared to other approaches

such as rollback-recovery. On the other hand, if
the predictor detects too many false positives too
much time is spent on premature preventive mea-
sures. Models used for fault prediction mainly in-
clude Machine Learning models [31] and statistical
models [32].

5.2 Migration

Once a fault is predicted measures have to be taken
to prevent it from happening. The most common
approaches for prevention are virtualization-based
migration and process migration which both move
tasks from failing nodes to healthy ones. Both ap-
proaches can be divided into stop&copy and live
migration [33]. Stop&copy methods halt the exe-
cution as long as it takes to copy the data to a tar-
get node which depends on the memory footprint,
whereas live migration methods continue execution
during the copy process reducing the overall down-
time.
Both virtualization and process-based methods
need available nodes for migration. They can ei-
ther be designated spare nodes, which are expected
to become a commodity in future HCP systems, un-
used nodes, or the node with the lowest load [33].
Two tasks sharing the same node can however re-
sult in imbalance and an overall worse performance.
Most approaches generally use free available nodes
first, then spare nodes, and as a last option the least
busy node [33].
Nagarajan et al. [34] use Xen-virtualization-based
migration while there approach is generally trans-
ferrable to other virtualization techniques as well.
Each node runs a host virtual machine (VM) which
is responsible for resource management and con-
tains one or more VMs running the actual appli-
cation. Xen supports live migration of VMs [35]
which allows MPI applications to continue to exe-
cute during migration.
Process-based migration [36] has been widely stud-
ied on several operating systems. It generally fol-
lows the same steps as virtualization-based migra-
tion but instead of copying the state of a VM it
copies the process memory [33]. Process-based mi-
gration also supports live migration.

6



Applications do not need to be modified for both
process-based and VM-based migration. Virtual-
ization offers several advantages such as increased
security, customized operating system, live mi-
gration, and isolation. Furthermore, VMs can
be more easily started and stopped compared
to real machines [37]. Despite of these advan-
tages virtualization-based techniques have not been
widely adopted in the HPC community because of
their larger overhead.

Fault avoidance cannot fully replace other ap-
proaches such as rollback-recovery since not all
faults are predictable. Nevertheless, fault avoid-
ance can be combined with other approaches such
as ABFT, replication and rollback-recovery. Since
it can significantly increase the MTBF it allows an
application to take less checkpoints which is shown
by Aupy et al. [38] who study the impact of fault
prediction and migration on checkpointing.

6 LAIK

LAIK (Leichtgewichtige Anwendungs-Integrierte
Datenhaltungs Komponente) [39] is a library cur-
rently under development at Technical University
Munich which provides lightweight index space
management and load balancing for HPC applica-
tions supporting application-integrated fault toler-
ance. Its main objectives are to hide the complex-
ity of index space management and load balancing
from application developers, increasing the reliabil-
ity of HPC applications.

LAIK decouples data decomposition from the ap-
plication code so that applications can adapt to a
changing number of nodes, computational resources
and computational requirements. The developer
needs to assign application data to data containers
using index spaces. Whenever required, LAIK can
trigger a partitioning algorithm which distributes
the data across nodes where the respective data
container is needed. This allows higher flexibility
in regard to fault tolerance and scheduling mecha-
nisms. It also avoids application specific code which
can become increasingly complex and hard to main-
tain. Furthermore, LAIK is designed to be portable

by defining an interface which supports multiple
communication backends and allowing application
developers to incrementally port their application
to LAIK. Figure 3 shows an overview of how LAIK
is integrated in HPC systems.

Figure 3: Integration of LAIK in HPC systems [39]

The capabilities of LAIK can be utilized for
application-integrated fault tolerance. It is possible
to implement fault recovery, fault containment and
fault avoidance methods as layers on top of LAIK
using its index space management and partitioning
features.
LAIK can be used for local checkpointing by main-
taining copies of relevant data structures on neigh-
boring nodes [39]. Once a node failure is detected,
the application can revert to the checkpointed state
of these copies and resume execution from there on
a spare node using LAIKs partitioning feature.
Furthermore, it is possible to implement replica-
tion in a similar way as checkpointing using LAIK.
Again multiple redundant copies of the data con-
tainers are maintained on different nodes whereas
one node acts as the master node. Instead of only
using the redundant data after a failure as in check-
pointing, tasks can be run in parallel on each repli-
cated data container. Additional synchronization
mechanisms have to be utilized to keep the repli-
cas in a consistent state. In case the master node
experiences failure one of the replicas becomes the
new master node and execution continues without
interruption.
LAIK also allows proactive fault tolerance. Once a
prediction algorithm predicts a failure the nodes are
synchronized, execution is stopped, and the failing
node is excluded. Then, LAIK triggers the reparti-
tioning algorithm and execution can be continued

7



on a different node preventing a complete applica-
tion failure.

7 Conclusion

Fault tolerance methods aim at preventing failures
by enabling applications to successfully terminate
in the presence of faults. Several distinct fault
tolerance methods were developed to solve the re-
silience challenge. Since the most common method
global rollback-recovery is not feasible for future
systems new methods have to be considered. How-
ever, currently no other method is able to fully
replace rollback-recovery. Nevertheless, methods
such as user-level fault tolerance, multi-level check-
pointing and diskless checkpointing aim at increas-
ing the efficiency of checkpointing. Also, additional
methods such as replication, failure prediction, and
process migration can be used complementary to
rollback-recovery to decrease the MTBF and ap-
plication specific methods such as ABFT, forward
recovery and silent error detection can further im-
prove the fault tolerance.

It is challenging to use the various existing fault tol-
erance libraries complementary since they rely on
different technologies. In order to reach exascale
resilience an integrated approach, which is able to
combine fault tolerance methods, is of high impor-
tance. LAIK has the capabilities to act as a ba-
sis for such an approach. Researchers could build
layers on top of LAIK implementing new meth-
ods in a standardized and compatible way utilizing
LAIKs features. Furthermore, additional partition-
ing algorithms, data structures and communication
backends could be implemented because of LAIKs
modular architecture. This would enable a comple-
mentary use of multiple fault tolerance methods to
significantly increase the overall fault tolerance of
HPC systems.

References

[1] F. Cappello, A. Geist, W. Gropp, S. Kale,
B. Kramer, and M. Snir, “Toward exascale re-

silience: 2014 update,” Supercomputing fron-
tiers and innovations, vol. 1, no. 1, pp. 5–28,
2014.

[2] J. Shalf, S. Dosanjh, and J. Morrison, “Exas-
cale computing technology challenges,” in In-
ternational Conference on High Performance
Computing for Computational Science, pp. 1–
25, Springer, 2010.

[3] E. Strohmaier, “Top500 supercomputer,” in
Proceedings of the 2006 ACM/IEEE Confer-
ence on Supercomputing, SC ’06, (New York,
NY, USA), ACM, 2006.

[4] K. Bergman, S. Borkar, D. Campbell, W. Carl-
son, W. Dally, M. Denneau, P. Franzon,
W. Harrod, K. Hill, J. Hiller, et al., “Exas-
cale computing study: Technology challenges
in achieving exascale systems,” 2008.

[5] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE
transactions on dependable and secure comput-
ing, vol. 1, no. 1, pp. 11–33, 2004.

[6] M. Snir, R. W. Wisniewski, J. A. Abraham,
S. V. Adve, S. Bagchi, P. Balaji, J. Be-
lak, P. Bose, F. Cappello, B. Carlson, et al.,
“Addressing failures in exascale computing,”
The International Journal of High Perfor-
mance Computing Applications, vol. 28, no. 2,
pp. 129–173, 2014.

[7] B. Schroeder and G. A. Gibson, “Understand-
ing failures in petascale computers,” in Jour-
nal of Physics: Conference Series, vol. 78,
p. 012022, IOP Publishing, 2007.

[8] A. Oliner and J. Stearley, “What supercom-
puters say: A study of five system logs,”
in Dependable Systems and Networks, 2007.
DSN’07. 37th Annual IEEE/IFIP Interna-
tional Conference on, pp. 575–584, IEEE,
2007.

[9] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and
D. B. Johnson, “A survey of rollback-recovery

8



protocols in message-passing systems,” ACM
Computing Surveys (CSUR), vol. 34, no. 3,
pp. 375–408, 2002.

[10] G. Bosilca, A. Bouteiller, E. Brunet, F. Cap-
pello, J. Dongarra, A. Guermouche, T. Her-
ault, Y. Robert, F. Vivien, and D. Zaidouni,
“Unified model for assessing checkpoint-
ing protocols at extreme-scale,” Concurrency
and Computation: Practice and Experience,
vol. 26, no. 17, pp. 2772–2791, 2014.

[11] F. Cappello, “Fault tolerance in petas-
cale/exascale systems: Current knowledge,
challenges and research opportunities,” The
International Journal of High Performance
Computing Applications, vol. 23, no. 3,
pp. 212–226, 2009.

[12] S. Rao, L. Alvisi, and H. M. Vin, “The cost of
recovery in message logging protocols,” IEEE
Transactions on Knowledge and Data Engi-
neering, vol. 12, no. 2, pp. 160–173, 2000.

[13] L. Alvisi and K. Marzullo, “Message logging:
Pessimistic, optimistic, causal, and optimal,”
IEEE Transactions on Software Engineering,
vol. 24, no. 2, pp. 149–159, 1998.

[14] E. Roman, “A survey of checkpoint/restart im-
plementations,” in Lawrence Berkeley National
Laboratory, Tech, Citeseer, 2002.

[15] J. Dongarra, T. Herault, and Y. Robert, “Fault
tolerance techniques for high-performance
computing,” in Fault-Tolerance Techniques
for High-Performance Computing, pp. 3–85,
Springer, 2015.

[16] J. S. Plank, K. Li, and M. A. Puening, “Disk-
less checkpointing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 9, no. 10,
pp. 972–986, 1998.

[17] N. H. Vaidya, “A case for two-level dis-
tributed recovery schemes,” in ACM SIGMET-
RICS Performance Evaluation Review, vol. 23,
pp. 64–73, ACM, 1995.

[18] S. Tixeuil, “Self-stabilizing algorithms,” in Al-
gorithms and theory of computation handbook,
pp. 26–26, Chapman & Hall/CRC, 2010.

[19] A. Vishnu, H. van Dam, N. R. Tallent, D. J.
Kerbyson, and A. Hoisie, “Fault modeling
of extreme scale applications using machine
learning,” in Parallel and Distributed Pro-
cessing Symposium, 2016 IEEE International,
pp. 222–231, IEEE, 2016.

[20] L. A. B. Gomez and F. Cappello, “Detecting
and correcting data corruption in stencil appli-
cations through multivariate interpolation,” in
Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pp. 595–602,
IEEE, 2015.

[21] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan,
and F. Cappello, “Lightweight silent data cor-
ruption detection based on runtime data anal-
ysis for hpc applications,” in Proceedings of
the 24th International Symposium on High-
Performance Parallel and Distributed Comput-
ing, pp. 275–278, ACM, 2015.

[22] C. Engelmann and S. Böhm, “Redundant ex-
ecution of hpc applications with mr-mpi,”
in Proceedings of the 10th IASTED Interna-
tional Conference on Parallel and Distributed
Computing and Networks (PDCN), pp. 15–17,
2011.

[23] D. Fiala, F. Mueller, C. Engelmann, R. Riesen,
K. Ferreira, and R. Brightwell, “Detection
and correction of silent data corruption for
large-scale high-performance computing,” in
Proceedings of the International Conference
on High Performance Computing, Networking,
Storage and Analysis, p. 78, IEEE Computer
Society Press, 2012.

[24] A. R. Benson, S. Schmit, and R. Schreiber,
“Silent error detection in numerical time-
stepping schemes,” The International Journal
of High Performance Computing Applications,
vol. 29, no. 4, pp. 403–421, 2015.

9



[25] K. Ferreira, J. Stearley, J. H. Laros, R. Old-
field, K. Pedretti, R. Brightwell, R. Riesen,
P. G. Bridges, and D. Arnold, “Evaluating
the viability of process replication reliability
for exascale systems,” in High Performance
Computing, Networking, Storage and Analy-
sis (SC), 2011 International Conference for,
pp. 1–12, IEEE, 2011.

[26] K.-H. Huang et al., “Algorithm-based fault tol-
erance for matrix operations,” IEEE transac-
tions on computers, vol. 100, no. 6, pp. 518–
528, 1984.

[27] Z. Chen and J. Dongarra, “Algorithm-based
checkpoint-free fault tolerance for parallel ma-
trix computations on volatile resources,” in
Parallel and Distributed Processing Sympo-
sium, 2006. IPDPS 2006. 20th International,
pp. 10–pp, IEEE, 2006.

[28] P. Wu, C. Ding, L. Chen, F. Gao, T. Davies,
C. Karlsson, and Z. Chen, “Fault tolerant
matrix-matrix multiplication: correcting soft
errors on-line,” in Proceedings of the second
workshop on Scalable algorithms for large-scale
systems, pp. 25–28, ACM, 2011.

[29] C. Engelmann, G. R. Vallee, T. Naughton, and
S. L. Scott, “Proactive fault tolerance using
preemptive migration,” in Parallel, Distributed
and Network-based Processing, 2009 17th Eu-
romicro International Conference on, pp. 252–
257, IEEE, 2009.

[30] A. Gainaru, F. Cappello, M. Snir, and
W. Kramer, “Fault prediction under the mi-
croscope: A closer look into hpc systems,”
in Proceedings of the International Conference
on High Performance Computing, Networking,
Storage and Analysis, p. 77, IEEE Computer
Society Press, 2012.

[31] E. W. Fulp, G. A. Fink, and J. N. Haack, “Pre-
dicting computer system failures using sup-
port vector machines.,” WASL, vol. 8, pp. 5–5,
2008.

[32] L. Yu, Z. Zheng, Z. Lan, and S. Coghlan,
“Practical online failure prediction for blue
gene/p: Period-based vs event-driven,” in De-
pendable Systems and Networks Workshops
(DSN-W), 2011 IEEE/IFIP 41st International
Conference on, pp. 259–264, IEEE, 2011.

[33] C. Wang, F. Mueller, C. Engelmann, and
S. L. Scott, “Proactive process-level live migra-
tion and back migration in hpc environments,”
Journal of Parallel and Distributed Comput-
ing, vol. 72, no. 2, pp. 254–267, 2012.

[34] A. B. Nagarajan, F. Mueller, C. Engelmann,
and S. L. Scott, “Proactive fault tolerance for
hpc with xen virtualization,” in Proceedings
of the 21st annual international conference on
Supercomputing, pp. 23–32, ACM, 2007.

[35] C. Clark, K. Fraser, S. Hand, J. G.
Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live migration of virtual ma-
chines,” in Proceedings of the 2nd Confer-
ence on Symposium on Networked Systems De-
sign & Implementation-Volume 2, pp. 273–286,
USENIX Association, 2005.

[36] D. S. Milojičić, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou, “Process migration,”
ACM Computing Surveys (CSUR), vol. 32,
no. 3, pp. 241–299, 2000.

[37] W. Huang, J. Liu, B. Abali, and D. K. Panda,
“A case for high performance computing with
virtual machines,” in Proceedings of the 20th
annual international conference on Supercom-
puting, pp. 125–134, ACM, 2006.

[38] G. Aupy, Y. Robert, F. Vivien, and
D. Zaidouni, “Checkpointing algorithms and
fault prediction,” Journal of Parallel and Dis-
tributed Computing, vol. 74, no. 2, pp. 2048–
2064, 2014.

[39] J. Weidendorfer, D. Yang, and C. Trinitis,
“Laik: A library for fault tolerant distribu-
tion of global data for parallel applications,” in
Konferenzband des PARS’17 Workshops, p. 10,
2017.

10


