
Institut für Informatik der Ludwig-Maximilians-Universität München Prof. Dr. D. Kranzlmüller, Prof. Dr. H.-G. Hegering (em.), Dr. V. Danciu Rechnernetze und verteilte Systeme – Sommersemester 2010

Übungsblatt 10

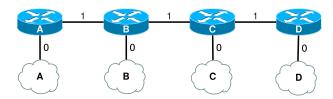
Abgabe am 02.07.2010 in der Vorlesung, oder im Briefkasten in der Oettingenstraße 67 (bis 11:00 Uhr). Hinweis: Schreiben Sie unbedingt Ihre Übungsgruppe auf Ihre Abgabe!

1. IP und ARP im LAN (H)

Betrachten Sie die Ethernet-Topologie in der Abbildung! Auf allen Rechnern sind statische IP-Adressen konfiguriert und die IP-Adresse des Standard-Gateways korrekt eingestellt; auf dem Router ist statisches Routing konfiguriert.

- (a) Kennzeichnen Sie Kollisionsdomänen (schwarz), Broadcast-Domänen (blau) und Subnetze (grün), indem Sie um die jeweils dazugehörigen Leitungen und/oder Komponenten eine Hülle in der entsprechenden Farbe malen!
- (b) Rechner B sendet ein IP-Paket mit dem Inhalt "Machen Rechnernetze Spaß?" an Rechner F. Dieser antwortet mit einem IP-Paket mit dem Inhalt "Na klar!".

Erstellen Sie eine Tabelle mit jeweils einer Zeile für jeden Rahmen, der auf einer **Leitung** versendet wird! Jede Zeile soll, wie das Beispiel am Ende dieser Aufgabe zeigt, die Leitung, das enthaltene Protokoll, sämtliche Adressen und die Bedeutung der Nutzdaten aufzählen.

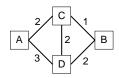

Hinweis: sämtliche Speicher aller Komponenten sind zu Beginn leer. Sie können in diese Aufgabe MAC-Adressen auf die letzten 3 Bytes verkürzen.

Beispielzeilen (ohne Bezug zur Lösung):

	MAC			IP		
Leitung	Src	Dest	Prot	Src	Dest	Nutzdaten
A-Switch	48:2a:c9	ff:ff:ff	ARP	_	_	ARP:,,wer hat 10.3.0.1?"
A-Switch	48:2a:c9	2f:0a:9c	IP	10.3.0.3	10.3.0.1	Nachricht:,,Hallo, wie geht's?"

2. Count to Infinity (H)

Betrachten Sie ein Netz, bestehend aus vier Routern A, B, C, und D, von denen jeder der (einzige) Zugangspunkt zu einem Subnetz ist. Die Routing-Distanz zwischen zwei benachbarten Routern betrage 1 über die Leitungen (A;B), (B;C), (C;D), während die Routing-Distanz eines Routers in "sein" Subnetz 0 betrage.

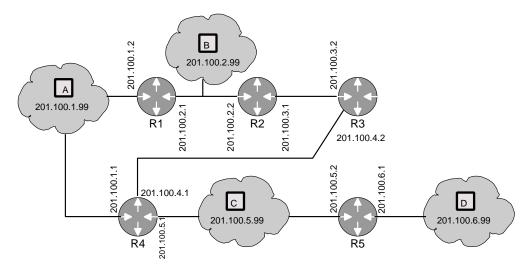

Betrachten Sie einen Ausgangszustand, bei dem alle Router die richtige Distanz zum Subnetz A kennen:

Router	A	В	С	D
Distanz	0	1	2	3

- (a) Eine Baumaschine durchtrennt versehentlich die Leitung zwischen den Routern A und B. Vervollständigen Sie die obige Tabelle bis die Router B, C und D festgestellt haben, dass das Subnetz A nicht mehr erreichbar ist (d.h. Abstand > 15 Hops)! *Hinweis:* gehen Sie davon aus, dass der Austausch der Distanzvektoren zwischen den Routern gleichzeitig statt findet.
- (b) Zur Verbesserung des Verfahrens wird folgende Regel eingeführt: ein Router annonciert die Erreichbarkeit eines Subnetzes niemals den Nachbarn, von denen er die Route zu diesem Subnetz gelernt hat (sogenanntes *split horizon*). Erstellen Sie eine Tabelle, analog zu oben, für den Fall, dass split horizon zum Einsatz kommt! split horizon?

3. Link-State-Verfahren (H)

Betrachten Sie ein Netz bestehend aus vier Routern A, B, C, D.



- (a) Berechnen Sie den optimalen QSB für A mit Hilfe des Djikstra-Algorithmus und geben Sie eine Skizze für jeden Zwischenschritt an!
- (b) Geben Sie die endgültige Routing-Tabelle für A an!
- (c) Die Leitung A-C fällt aus. Wie sieht der optimale QSB für A nun aus?
- (d) Die Leitung A-C wird wieder repariert. Alle Knoten werden von A mit einer Nachricht, die mittels eines Flooding-Verfahrens verteilt wird, benachrichtigt. Wie oft geht dabei eine Nachricht über eine Leitung (d.h: wieviele Nachrichten werden insgesamt verschickt)?

Hinweis: gehen Sie davon aus, dass für eine Nachricht eine *time-to-live* (TTL) von 3 gilt (TTL wird zuerst ausgewertet und dann dekrementiert), und dass kein Knoten die Nachricht an jenen, von dem er sie selbst erhalten hat, zurückleitet.

4. Routing Information Protocol (RIP)

Sie betreiben ein Netz mit 5 Routern, die jeweils mit den Namen R1 bis R5 gekennzeichnet sind. Auf jedem Router sind mehrere Schnittstellen verfügbar, denen IP-Adressen zugeordnet sind. In bestimmten Netzsegmenten ist jeweils ein Rechner zur Erfassung von Traces angeschlossen. Zu Beginn sind die RIP-Funktionen aller Router deaktiviert und es sind keine statischen Einträge in den Routing-Tabellen vorhanden.

- (a) Nun wird die RIP Funktion auf R1 und R5 angeschaltet und die Rechner A und D beginnen, die Aktivitäten im Netz mit Wireshark zu erfassen. Die erfassten Mitschnitte (Traces) sind in den Dateien trace5_A.pcap und trace5_D.pcap abgespeichert.
 - i. Informieren Sie sich zuerst, wie oft die Routing-Information mit RIP zwischen Routern ausgetauscht wird! (z. B. mit Hilfe von RFC 1058)
 - ii. Können Sie anhand der beiden Dateien identifizieren, wann das erste Paket mit RIP-Protokoll-Informationen zwischen R1 und R5 ausgetauscht wird? Begründen Sie Ihre Antwort!
- (b) Zusätzlich wird die RIP-Funktion auf R2 und R4 angeschaltet. Die Schnittstelle mit der IP-Adresse 201.100.1.1 ist defekt, d.h. die Verbindung zwischen R1 und R4 bricht ab. Interpretieren Sie das Verhalten des RIP-Protokolls anhand der Datei trace7_A.pcap, die von Rechner A aufgezeichnet wurde!
- (c) Nehmen Sie an, dass die RIP-Funktion auf allen Routern angeschaltet ist und alle Verbindungen bestehen. Nach einer Weile fällt Router R5 aus. Beantworten Sie die folgenden Fragen anhand der Datei trace8_A.pcap, die einen Mitschnitt von Rechner A enthält!
 - i. Durch welches Paket wird die Information über den Ausfall von R5 bekanntgegeben? Begründen Sie Ihre Antwort!
 - ii. Welches besondere Verhalten zeigt R4 gegenüber den bisher in dieser Aufgabe behandelten RIP-Funktionen?
 - iii. Welche für das Routing relevante Bedeutung hat das Verhalten von R4?

Seite 3 von 3