
Institut für Informatik
Lehr- und Forschungseinheit für Kommunikationssysteme und

Systemprogrammierung

Ludwig-Maximilians-Universität München

Evaluation of
Task Scheduling Algorithms and

Wait-Free Data Structures for
Embedded Multi-Core Systems

Master Thesis

Tobias Fuchs
Matrikel-Nummer 10393480

Betreuer Dr. Karl Fürlinger (LMU)
Dr. Tobias Schüle (Siemens AG)

Aufgabensteller Prof. Dr. Kranzlmüller
Bearbeitungszeitraum 01. April 2014 - 14. Oktober 2014

Tobias Fuchs:
Evaluation of Task Scheduling Algorithms and Wait-Free Data Structures for Embedded Multi-
Core Systems
October 14, 2014

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

SUPERVISORS:
Dr. Karl Fürlinger (LMU)
Dr. Tobias Schüle (Siemens AG)

LOCATION:
Munich, Germany

TIME FRAME:
April - October 2014

Ohana means family.
Family means nobody gets left behind, or forgotten.

— Lilo & Stitch

Dedicated to Corinna and my grandmother Gabriele.

“For a while” is a phrase whose length can’t be measured.
At least by the person who’s waiting.

— Haruki Murakami, South of the Border, West of the Sun

Abstract

Scaling computational power on embedded systems is subject to the general restrictions
and laws observed in the last decade: Single core architectures having reached their
physical limits, the importance of multi-core systems also grows in the embedded
domain. Wait-free progress conditions appear to be a perfect match for the demand
for bounded execution time in time-critical applications. However, strong progress
guarantees are even more challenging to achieve when real-time constraints apply
to the implementation of data structures. This thesis examines the state of the art of
non-blocking and wait-free algorithmic paradigms with respect to their applicability in
embedded- and real-time applications. Existing wait-free data structures are modified
to enable their use in time-critical tasks and compared to prevalent lock-free alternatives
in performance evaluation. In a complementary chapter, a comparison of work-stealing
strategies gives an outlook from data- to task parallelism.

V

Declaration of originality
I hereby declare that I have produced this paper without the prohibited assistance of third
parties and without making use of aids other than those specified; notions taken over di-
rectly or indirectly from other sources have been identified as such.

Tobias Fuchs City, Date

VII

Acknowledgements

I sincerely thank my advisor Dr. Karl Fürlinger at the Ludwig-Maximilians-Universität
München for his outstanding support and caring attitude throughout the course of this
thesis.

I would like to express the deepest appreciation to the outstandingly skilled team at
the multicore expert center at Siemens AG Corporate Technology. Results in this work
would not have been possible without the persistent guidance and rich knowledge of
my advisor Dr. Tobias Schüle and Dr. Christian Kern.

I owe my gratitude to Dr. Thomas Zander who introduced me to his project and gave
me the opportunity to work on fascinating problems with such exceptionally bright
minds.

IX

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Objectives and contributions . 2
1.3 Structure of this thesis . 2

2 Wait-free data structures 3
2.1 Introduction . 3

2.1.1 Definition of wait-freedom . 3
2.1.2 Motivation . 4
2.1.3 Theoretical foundations . 5
2.1.4 Technical foundations . 7

2.2 Related work . 12
2.2.1 Universal construction of wait-free data structures 13
2.2.2 Simulation of wait-free data structures and the helping mechanism 13
2.2.3 Memory management . 14
2.2.4 Queues . 17
2.2.5 Lists . 18
2.2.6 Stacks . 18

2.3 Verification and benchmark methodology 19
2.3.1 Explicit-state model checking . 19
2.3.2 Benchmark methodology . 21

2.4 Pools . 25
2.4.1 Definitions . 25
2.4.2 Array-based wait-free pools . 27
2.4.3 Thread-dependent search patterns 28
2.4.4 A compartment-based index pool 29
2.4.5 Verification . 29
2.4.6 Benchmarks . 30
2.4.7 Evaluation . 31

2.5 Queues . 32
2.5.1 Definitions . 35
2.5.2 Adapting the Kogan-Petrank wait-free queue for embedded systems 35
2.5.3 Benchmarks . 41
2.5.4 Evaluation . 42

2.6 Stacks . 44
2.6.1 An efficient wait-free stack for multiple producers and consumers 45
2.6.2 Verification . 47
2.6.3 Evaluation . 48

3 Task Scheduling 51
3.1 Introduction . 51

3.1.1 Technical foundations . 51

XI

3.1.2 Related Work . 52
3.2 Work-stealing with prioritization . 52

4 Summary 55
4.1 Revisiting the objective . 55
4.2 Recommendations . 55

Bibliography 57

Appendices 61

A List of Figures 63

B Code listings 65
B.1 Implementation of the modified Kogan-Petrank queue 65
B.2 Implementation of the modified wait-free stack 68

XII

1 Introduction

Among all computer systems that increasingly become a part of everyday life, embedded
systems most probably have the highest impact on our personal safety. By definition,
they interact with physical processes and therefore must meet real-time performance
criteria. As technical components in risk-classified domains such as transportation
and healthcare, embedded system applications are comprehensively audited for fault-
tolerance, and characteristic constraints on resource consumption and execution times
apply to the design of algorithms and data structures.

To harness the computational power of multi-core processors, applications must be
parallelized, yet few existing libraries comply with constraints in real-time software
applications. In addition, classical synchronization mechanisms such as locks introduce
potential hazards such as deadlocks and starvation.

According to formal definition, wait-free algorithms provide the strongest possible fault-
tolerance and guarantee an upper bound for their execution time.

1.1 Problem statement

Related work on wait-free data structures does not consider suitabilty for embed-
ded systems and employ mechanisms such as garbage collection that conflict with
wait-freedom or are not easily implemented using restricted resources. Application-
ready implementations of wait-free concurrent data structures are therefore of high
relevance for embedded system software engineering, especially for hard real-time
applications.

In this master thesis, wait-free data structures and task scheduling algorithms shall
be investigated regarding their suitability for embedded systems. This includes the
following tasks:

• Literature research and analysis of existing approaches
• Development of appropriate algorithms and data structures
• Analytical derivation of upper bounds on the timing behavior and memory con-

sumption
• Preparation of benchmarks and experimental evaluation on different hardware

platforms
• Documentation and presentation of the results

1

1.2 Objectives and contributions 1 Introduction

1.2 Objectives and contributions

We present an overview of state of the art approaches and methodologies in wait-free
data structures and algorithms, and practicable solutions for real-time and embedded
system applications. In addition, intra-task scheduling is evaluated in variants of work-
stealing strategies.

Characteristics of algorithms in real-time and embedded system applications are ex-
plained, and how they differ from general purpose software. Existing solutions are dis-
cussed with respect to their adequacy for real-time software.

Most relevant for practical use, this work contains application-ready implementations
of a wait-free concurrent pool, queue and stack that are meeting requirements of time-
critical applications.

For data structures, means of automated verification derived from their semantic defini-
tion are explained.

Evaluation of data structures in this work follows the principles of existing publications
as close as possible to keep results comparable to related work. Differing from most
existing performance comparisons, additional custom test scenarios emphasize metrics
that are relevant to embedded- and real-time applications in particular, such as maximum
latency and jitter. To illustrate the overall performance implications of wait-freedom, a
popular lock-free implementation of each data type is added to the candidate set of its
wait-free alternatives.

In addition, the benchmark framework implemented over the course of this thesis
is explained in detail. Measurements in publications on lock-free and wait-free data
structures are typically impossible to reproduce as little insight in the setup and imple-
mentation of the test tools is delivered. However, reproducible and precise performance
measurements are only rendered possible by intricate detail, and ideally take platform-
dependent behaviour into account.

1.3 Structure of this thesis

Concurrency in algorithms manifests in two main aspects: Data parallelism and task par-
allelism. Correspondingly, wait-free data structures and task scheduling are discussed
in separate chapters of this thesis. Both start with an introductory section covering
theoretical and technical foundations behind the problems and approaches presented.
Existing publications that have been starting positions for own approaches are discussed
in a separate section on related work in both chapters.

The sections following the review of related work describe own findings and results
that have not been presented in previous publications. Verification and performance
evaluations put own implementations in comparison to the status quo of lock-free
algorithms.

2

2 Wait-free data structures

In this chapter, an introduction to progress definitions is provided along with other
formal foundations for wait-free algorithms and data structures. This includes their
theoretical relevance for requirements in embedded and real-time computing, and how
wait-freedom is helping applications to guarantee task completion to critical dead-
lines.

In the following, concrete implementations of common data structures are presented
with respect to their dependency on micro-instructions. Finally, these implementa-
tions will be verified and compared using benchmarks representing real-world de-
mands.

2.1 Introduction

What guarantees could a data structure provide on the duration of its operations?
For sequential algorithms, we consider duration of an operation as an unconditional
consequence of its run-time complexity. Structural analysis gives reliable guarantees on
worst-case complexity in the O domain, and estimating upper bounds for data structures
is a daily routine in software engineering.

In concurrent data structures, the concept of duration unfolds into additional dimensions.
Operations might depend on scheduler characteristics, and deadlock situations can delay
the most efficient algorithm indefinitely. To account for these aspects, guarantees on
execution time and completion of operations on concurrent data structures are defined
in terms of progress.

In addition to their ranking by run-time complexity, concurrenct algorithms form a
hierarchical structure of progress guarantees, with wait-freedom as the strongest guarantee
in the classification.

This chapter summarizes the theoretical background of progress conditions in concurrent
data structures, and the technical foundations of their realization.

2.1.1 Definition of wait-freedom

In the following, terms are used according to their common definitions in literature
[HS11]: An object is an instance of a data structure, a container with a specific state that
implements an abstract data type. The data type defines a set of methods available to
manipulate it. An operation to an object is a single execution of a method according
to the method’s signature. Finally, data type semantics describe the methods’ concrete
effect on the object, i.e. how they transform the object from one well-defined state to
another.

3

2.1 Introduction 2 Wait-free data structures

Using these definitions, an implementation of a concurrent object is informally described
as wait-free if it guarantees that every process can complete any operation on the object
[Her88]

1. within a finite number of execution steps, and
2. independent from scheduling and the progress of other processes.

This description implicitly includes unconditional fault-tolerance, as any process can
complete its operation even if all other processes are aborted. Consequently, concurrency
control in wait-free algorithms cannot be based on locks. Non-blocking implementations
control concurrent access without exclusive access to any resource, which is necessary,
but not sufficient for wait-freedom.

Application of the term wait-freedom varies in literature. However, a formal logic
designed to verify progress properties of algorithms exists [Don06], and definitions of
non-blocking progress conditions have been established in linear temporal logic (LTL)
[PMS09].

An upper bound on number of execution steps for any operation is often presumed
as a requirement for wait-freedom of shared objects. In fact, wait-freedom requires a
finite number of execution steps. Existance of a limit for execution forms an additional,
stronger bounded wait-free property. A hierarchy of progress properties is discussed in
subsection 2.1.3, with explanations on their differentiation.

2.1.2 Motivation

Wait-freedom guarantees progress of a task independent from the scheduler strategy
and activity of other processes. On the one hand, any activity by any other pro-
cess can delay the completion of a wait-free procedure only for a limited number
of steps. On the other hand, wait-free algorithms do not rely on progress of other
processes. Whenever CPU time is assigned, they are guaranteed to progresss in their
task.

This description alone might give the misleading impression of wait-freedom as a general
performance improvement. The opposite can be true: For non-blocking implementations,
any stronger progress guarantee is earned at the expense of throughput and average
case performance. Stronger progress guarantees are bad advice when these metrics have
priority and varying worst-case performance is acceptable.

Wait-free algorithms are a solution to adversities that cannot be outrun by efficiency. In a
larger scale, they eliminate the common pitfalls in concurrent software engineering, not
just by reacting to them properly, but by making their occurrence impossible. Prominent
examples are:

Deadlocks Processes that cannot proceed because they are waiting for resources that
are mutually held by other processes

Priority inversion Low-priority processes hold a lock required by a higher priority
process

Convoying Several processes acquire locks in a similar order. If a slow process acquires
a lock first, all other processes slow to the speed of the first one, neutralizing
their scheduling priority.

Kill-sensitivity A thread is aborted before releasing an exclusive lock to a resource, for
example.

4

2 Wait-free data structures 2.1 Introduction

Async-signal safety Signal handlers cannot use lock-based primitives, especially malloc
and free

These formal guarantees are invaluable for real-time software applications. In this
domain, priorities are shifted to fail tolerance and adherence to timing schedules. Then
again, specific guidelines and restrictions apply for implementations of time-critical
software, especially in embedded software engineering. As a result, most published
algorithms cannot be employed in real-time applications in their original form, and have
to be modified first. This chapter closes with characteristic constraints in embedded-
and real-time software engineering, and how they relate to wait-free data structures and
their implementation.

2.1.3 Theoretical foundations

Designing wait-free data structures is an ambivalent challenge between complex formal
conditions as well as meticulous technical obstacles. This subsection gives an introduc-
tion to terms and definitions from theoretical aspects of concurrent algorithms, focusing
on progress guarantees and correctness conditions.

Classification of progress

Herlihy and Shavit give concise and comprehensive definitions of progress conditions in
their work On the Nature of Progress [HS11]. They explain the elementary vocabulary of
progress in concurrent methods and continue to construct a unified model for progress
conditions using just two aspects: Whether guaranteed progress is minimal or maximal,
and how progress depends on scheduling. The combination of both aspects leads to an
intuitive classification.

Considering any possible schedule of operations on a shared object, they define minimal
progress as a condition that guarantees at least one thread to make progress, and maximal
progress if progress is guaranteed for all threads.

For the second aspect, it is evident how blocking algorithms always depend on schedul-
ing characteristics. Deadlock- and starvation-freedom in blocking algorithms must
derive from the assumption that some thread will leave a critical section at some point
in the schedule. The non-blocking wait-free and lock-free properties, on the other hand,
hold as long as any thread is scheduled at any time, and do not depend on the order of
threads in the schedule.

Wait-freedom, the strongest possible condition, is independent from scheduling and
guarantees progress for all methods in any execution. The classification criteria cor-
respond to formal definitions previously stated by Petrank in linear temporal logic
[PMS09]:

Definition 2.1.1 (Wait-Freedom). An execution e ∈ P is wait-free if and only if e satisfies

∀t (GF sched(t))→ (GF prog(t)).

A program P is wait-free if every execution e ∈ P is wait-free.

5

2.1 Introduction 2 Wait-free data structures

Rephrased informally, program is wait-free if it makes progress in any scheduling
of any execution at any time. There is no statement on how long a program would
have to make progress until completion, yet. In related work, as mentioned earlier,
wait-freedom is often used as synonym for a limited number of execution steps for
all operations. This requires a further restriction of maximal progress. Petrank de-
fines:

Definition 2.1.2 (Bounded Wait-Freedom). An execution e ∈ P is k-bounded wait-free if
the execution satisfies

∀t GFsched(t)
k prog(t).

A program P is bounded wait-free if for any n ∈ N, there exists a k ∈ N such that all
executions in P(n) are k-bounded wait-free.

It is worth mentioning that the upper bound of steps to completion k in any history is
not necessarily constant and may depend on other parameters, such as the number of
threads or a data structure’s capacity. The limit has to exist as a concrete value for any
specific execution, though [Her, p. 59].

Linearizability and serializability

Correctness conditions are not related to progress or wait-freedom in particular. They
prove sequential consistency of concurrent operations in general, i.e. that their semantics
are robust in any parallel execution.

Serializability is a correctness condition well-known from databases and distributed
computing. Essentially, a scheduling of parallel operations is serializable if the effect
of its actions would also result from their sequential execution[Pap79]. Then, a concur-
rent object is serializable if and only if all schedulings of parallel operations to it are
serializable.

Herlihy defined linearizeability as an additional correctness condition for concurrent
objects [Her91].

Both conditions relate to the problem that operations to an object execute over an
interval of time. Without additional conditions granted, the object’s state between
invocation and completion of an operation is undefined, as its effect might only be
partially applied.

A shared object is linearizable if every operation appears to take effect instantaneously
at any time during its execution. The instant of effect is called linearization point of that
operation [HW90]. It defines the point in time where the effect of a concurrent operation
can be observed by other threads, and separates two observable, consistent states of
the object, before and after the operation. This reminds of characteristics of atomic
operations and atomicity in the transaction model.

Now, the essential detail is that two linearization points within the same object never
occur simultaneously. Also, the amount of time spend in an operation before and after
its linearization point is irrelevant. In conclusion, linearization points of concurrent oper-
ations indeed describe their equivalent sequential scheduling. In brief: If a linearization
point can be found for every method of a shared object, it can safely be claimed to be
linearizable.

6

2 Wait-free data structures 2.1 Introduction

Serializability can only be decided globally by means of possible execution histories of all
involved transactions. Linearizability is a condition local to a process. This is convenient,
as interactions of threads do not have to be examined when proving wait-free progress.
Just like serializability, linearizability states that one or more sequential schedules with
identical effect (linearizations) must exist for any history of operations on a data structure.
The described implications of linearization points are an intuitive way to prove this, and
an invaluable in communicaton on correctness.

For overlapping method calls, execution order is arbitrary and corresponds to the order
of their linearization points. Otherwise, the real-time ordering of operations must be
respected in their linearizations.

Serialization does not define when a transaction must take effect relative to the time of
invocation and response. Linearizable operations are required to take effect between
their invocation and response, which is a useful restriction for use in real-time applica-
tions.

2.1.4 Technical foundations

In this work, low-level implementation details are omitted in favor of explanations of
algorithmic patterns and theory. Obviously, a comprehensive documentation of a CPU
instruction set is readily available, while new paradigms in data structures are hard to
elaborate.

This section covers technical foundations that are essential prerequisites for lock-free
data structures, but does only explain details necessary to understand implementations
presented in this work.

Fundamental atomic read-modify-write instructions

The vocabulary available to phrase non-blocking algorithms consists of a surprisingly
small set of processor instructions. All of them realize atomic operations on one variable
in a read-modify-write cycle.

The conditions that define whether a single atomic instruction is available on a spe-
cific platform do not follow a predictable pattern. Non-blocking algorithms are in-
seperably coupled with low-level computation, and many elegant approaches are
known to fail on a wide range of platforms. In fact, more than just a few algorithms
have been published that are known to be disfunctional on conventional processing
architectures, as they depend on exotic instruction sets of special purpose architec-
tures.

The following gives a brief description of the most significant read-modify write opera-
tions with their semantics, and the architectures that support them [JP06]:

LL/SC abbreviates the pair of instructions load-linked (LL) and store-conditional (SC). An
additional operation validate-link (VL) is typically implied. LL/SC is available on ARM,
MIPS, and Alpha architectures.

• LL(R) returns the value of register R.

7

2.1 Introduction 2 Wait-free data structures

• SC(R,v) changes the value in register R to v and returns true, if and only if no
other process performed a successful SC since the most recent call of LL of the
current process. Simply put, SC fails if the value of the register has changed since
it has been read.
• VL(R) returns true if no other process performed a successful SC on register R,

which allows to test a register value without changing it.

RLL/RSC is the reduced variant of load-linked / store-conditional. Semantics are
weaker than LL/SC, as spurious failures are permitted for RSC where SC would suc-
ceed, and no shared variables must be accessed between the latest call of RLL and
RSC.

CAS is an umbrella term for Compare And Swap instructions which modifiy a variable
if and only if its current value is identical to an expected value. Nowadays, CAS is
supported on Intel x386, x64 and most general purpose architectures with operands are
restricted to pointer size.

• CAS(R,e,n) returns true and sets the value of R to n if the value in R is e. Otherwise,
it returns false.
• extended CAS is identical to regular CAS but the expected value is passed by

reference and set to the variable’s previous value on success. This signature is
most prevalent in academic literature and can be easily derived from regular CAS.
• DWCAS, ‘’Double-Wide" CAS, performs CAS on two adjacent memory locations and

is available on most modern x86 and x64 architectures via opcode CMPXCHG16B.
• DCAS (CAS2), frequently confused with DWCAS, performs CAS on two independent

memory locations. Despite of being used in some published algorithm designs, it
only supported on Motorola 680x0.

Fetch-and-Add increments the value of a variable by a given offset and returns the
result. This instruction always succeeds.

Both Compare-And-Swap and LL/SC might appear to execute the same task with
different semantics: updating a value atomically if some other thread did not succeed
first in doing so. The mechanism of a link that is invalidated when a register is changed
is, however, fundamentally more powerful.

Compare-and-Swap only allows to test against a value. A use case requires to first
read the value of a shared variable to a local copy. CAS is then called with the local
variable as expected value and the new value to store. But what if between reading
and updating the shared variable other threads changed the value, and eventually set it
back to its original state? The comparison with the expected value passes, so the CAS-
operation modifies the shared variable and succeeds, with no indication for intermediate
change.

This situation is known as the ABA problem in multithreaded computing. Considering
the scheduling in Figure 2.1 as an example.

If a value is changed from A to B, and finally back to A between reading and CAS-
updating a value, no change is detected. Especially in data structures, atomic variables
represent a global state, such as next-pointers in a linked list. Interleaving changes affect

8

2 Wait-free data structures 2.1 Introduction

Thread 1 Thread 2

A = read(atomicObj)

A = read(atomicObj)

new = A + 1

B = A + 22

CAS(&atomicObj, &A, B) → true

CAS(&atomicObj, &B, A) → true

CAS(&atomicObj, &A, new) → true . . .

Figure 2.1: Interleaving operations of two threads illustrating the ABA problem

consistency, and in an ABA-hazard, the same value represents two different states of the
data structure object.

This problem does not exist for LL/SC, as the first change from A to B invalidates an
existing link to the register, and a subsequent SC fails. With only CAS available, hazard
pointers or similar reclamation schemes as described in subsection 2.2.3 must substitute
the load-linked mechanism.

Publications on non-blocking algorithms often are restricted to either CAS or LL/SC as
a prerequisite. Is it possible to port an algorithm to platforms that do not provide atomic
instructions it utilitzes?

In theory, CAS and LL/SC can be implemented by means of each other. A lock-free
implementation of CAS from LL/SC is shown in listing 2.2 as an example, but no
wait-free reverse implementation is known. Jayanti presented wait-free bidirectional
constructions of LL/SC and CAS, but makes unrealistic assumptions on semantics of
LL/SC with respect to spurious failures of LL/SC [Jay98].

Michael found a wait-free implementation of LL/SC from CAS that is wait-free, albeit in
O (n2) worst case time complexity and O (t2 + k) space complexity for t threads and k
shared objects [Mic04b].

As LL/SC greatly simplifies the implementation of concurrent data structures, research
focused on efficient construction of LL/SC from CAS rather than the reverse construction
of CAS from LL/SC.

1 bool CAS(*addr, e, n)
2 {
3 atomic {
4 if (*addr == e) {
5 *addr = n;
6 return true;
7 }
8 return false;
9 }

10 }

Listing 2.1: Semantics of Compare-And-Swap

1 bool CAS_LLSC(*addr, e, n)
2 {
3 do {
4 if (LL(addr) != e)
5 return false;
6 }
7 while (!SC(addr, n));
8 // SC succedded
9 return true;

10 }

Listing 2.2: Lock-free CAS from LL/SC

9

2.1 Introduction 2 Wait-free data structures

Memory consistency

Rarely do programmers have to worry how instructions in source code will eventually
be executed on a concrete CPU architecture on micro-instruction level. Compilers and
processing architecture have a long history of robust optimization techniques that are
commonly trusted.

Again, the combination of non-blocking algorithms and embedded hardware poses a
challenge. Memory operations on general purpose processors can safely be considered
sequentially consistent under nearly all circumstances, and concurrent algorithms hence
can rely on (semantically) sequential memory consistency. In contrast, instruction order
on many prevalent architectures in the embedded system domain is only limited when
explicity enforced by memory barriers. Otherwise, load- and store- instructions may be
executed out-of-order and cause memory access hazards.

The following consistency models are common in literature:

Sequential consistency guarantees all reads and all writes are in-order.
Relaxed consistency essentially only prevents dependent loads, but allows some

reordering of regular loads and stores.
Weak consistency allows any reordering of reads and writes and is only lim-

ited by memory barriers.

Memory consistency is typically either ignored in algorithm-centered publications, or
presumed to be sequential for didactic brevity in literature. In reality, sequential con-
sistency that prevents any reordering of instructions on memory is not easily achieved.
Code optimization in compilers might weaken consistency even before execution and
must be explicitly disabled.

Strict sequential consistency is usually abandoned already in compilation, were a vast
amount of optimization techniques involves reordering of memory reads and writes.
Explicit keywords like volatile in C (not to be confused with the Java keyword with
the same name) allow to annotate code sections that depend on exact instruction or-
der.

Even with correct instruction order in the binary executable, the processor architecture
might take the liberty to manipulate memory access order in execution. The following ta-
ble lists an excerpt of memory reorderings on ARMv7, AMD64 and x86.

CPU Ld/Ld Ld after St St/St St after Ld atomic after St dep. Ld/Ld

ARMv7 yes yes yes yes yes no
x86/x64 no no no yes no no
AMD64 no no no yes no no

As mentioned initially, memory access on general purpose architectures like x86/x64
can almost be treated as sequentially consistent. In contrast, ARMv7, the most relevant
CPU architecture for embedded applications in this comparison, essentially knows no
restrictions on order. This allows aggressive optimization techniques at runtime, but
critical order must be enforced manually using memory barriers. Barriers (also: fences) are
instructions that, once reached in execution, force a all CPUs to complete a specific kind
of memory operation before proceeding. The barrier instruction itself is often written
in verbatim inline assembly and must be guarded from compiler optimization. Typical
memory barriers are:

10

2 Wait-free data structures 2.1 Introduction

SFENCE forces all stores to memory to complete before the next store operation.
LFENCE forces all loads from memory to complete before the next load operation.
MFENCE forces any access to memory to complete any following memory access.
LOCK implicitly has MFENCE as side-effect.

Finally, cache coherence and memory consistency might have less drastic consequences
for implementation of concurrent algorithms after all: Non- blocking algorithms are de-
signed to coordinate access to global states using atomic read-modify-writes. Atomic in-
structions automatically establish a full fence and clear the cache line of their operands. In
most cases, these implicit effects suffice to avoid consistency hazards.

Memory contention and false sharing

Local caches reduce memory access time of processors by several orders of magnitude,
but their contents must be kept consistent. For cache-coherent multiprocessors, local
caches are organized in regions of equal size. These cache lines are invalidated as a whole
if they differ from the latest value stored.

Slight differences in concurrent algorithms can make a considerable difference on how
much a program benefits from processor caches. Consider a simple lock, a shared
variable used for central coordination of threads. Assuming that the variable is read and
modified by every thread in a loop. Any modification of the object’s state invalidates
at least one cache line on every CPU core, in effect causing a cache miss whenever the
object is read.

A specific usage pattern known as false sharing causes avoidable cache invalidation and
is notorious for degrading performance: Assuming two separate shared objects that
are unrelated in an algorithm’s model. If two threads operate on one of the objects
exclusively, there are no mutual effects and no memory contention should occur. How-
ever, if the objects are stored in memory locations that fall into the same cache line, any
modification of one object invalidates the cache line that includes the other. The typical
countermeasure for false sharing is to instruct the compiler to align and pad objects
into memory regions of the size of a cache line. The respective cache alignment and cache
padding keywords vary between compilers.

The phenomenon of degrading memory access times and overhead from conflicting
operations with an increasing number of threads is referred to as contention, an umbrella
term for competing modifications to the same locations in memory. Effects of high
contention rates, i. e. a high amount of threads accessing an object at the same time, are
often overlooked in algorithm design, especially on simulated computing models. On
real hardware, memory access notably affects performance to a degree that can only be
estimated in micro-benchmarks [MS07, 1.1.1].

Restrictions in embedded- and real-time software engineering

Not all embedded systems host real-time applications, and not all real-time applica-
tions are deployed on embedded systems, of course. However, as the term suggests,
embedded systems frequently interact with processes in the physical world. A control
loop implemented in software periodically responds to its surrounding system. Hard
real-time applications operate in high loop frequencies of 1 KHz and more, and even

11

2.2 Related work 2 Wait-free data structures

extremely rare or slight variances in their response frequency might build up unrecov-
erable instability or result in other functional failures, like loss of image data from a
medical scanner.

The scheduled time of the next response is a critical deadline that must be met at all
cost. Software engineering in the real-time domain is understandably governed by the
concern for deterministic task execution.

Figure 2.2: Periodical task execution times, optimized average case versus guaranteed worst case

As a consequence, algorithms employed in embedded- and real-time applications are
optimized for guaranteed worst-case complexity as opposed to best average-case per-
formance, as illustrated in Figure 2.2. Despite limited resources and the demand for
low power consumption, predictable performance is preferred to optimizations of the
common case when facing critical deadlines.

In addition, embedded devices often are physically integrated in systems with long main-
tenance intervals of possibly several years, or difficult to access, raising high stability and
fault-tolerance to formal requirements. Therefore, common algorithmic practices might
render unusable due to otherwise acceptable risks of failure.

Industrial guidelines for embedded- and real-time software engineering, such as MISRA-
C and JSF C++, state variants of the following restrictions:

Dynamic memory allocation is guaranteed to introduce non-deterministic delays. Al-
location complexity depends on available space and heap fragmentation, which cannot
be avoided in general. To prevent delays in critical loops, a fixed-size memory area is al-
located in the initialization phase of the application, before performing any time-critical
tasks. The principle of worst-case optimization also applies to memory consumption:
because later allocation at run time is forbidden, the potential maximum of memory
required has to be allocated.
Garbage collection mechanisms obviously contradict determinism, but are also prone
to memory leaks, especially when in continuous duty over long periods of time.
Standard libraries such as the C++ STL use dynamic memory allocation indirectly, and
have to be replaced by alternatives specifically tailored to real-time constraints.
Monotonic counters are part of many algorithms, with the risk of overflow argued
as astronomically low. In long-running systems, however, this probability steadily
increases.

2.2 Related work

This section summarizes prior publications on wait-free data structures and founda-
tions that are relevant to their design and implementation. Applicability of exist-
ing approaches and necessary modifications for real-time systems are discussed in
brief.

12

2 Wait-free data structures 2.2 Related work

2.2.1 Universal construction of wait-free data structures

In a work that was later awarded with the Dijkstra Price, Maurice Herlihy presented a
novel systematic construction of wait-free algorithms in 1991 [Her91], three years after he
conducted a proof that all algorithms can be implemented wait-free [Her88]. A universal
construction procedurally transforms arbitrary sequential objects into wait- free counter-
parts. The wait-free algorithms produced by Herlihy’s pioneer methods might not be
known for their efficiency, but they represent a tangible example for the formal proof that
wait-freedom can be achieved for arbitrary shared objects.

Since then, several further universal constructions have been developed. Recent work
aims for improved performance of universally constructed algorithms. Fatourou ob-
tained an efficient wait-free universal construction named P-Sim [FK11]. The proposed
implementation of the P-Sim algorithm uses tagged pointers and therefore must be
adapted for embedded and real-time applications. We evaluate a wait-free stack based
on P-SIM in section 2.6,

Kogan and Petrank described the fast-path / slow path method [KP12], an implementa-
tion strategy where operations on a data structure are performed as a cheap lock-free
operation first, falling back to a slower wait-free operation if it fails. Data structures
based on this strategy showed performance results close to their lock-free counter-
parts.

Apart from achievements in practical wait-freedom, the fundamental theoretical implica-
tions of wait-freedom are subject to ongoing research. In 2012, Ellen, Faith and Fatourou
proved that the property of disjoint access on a data structure is mutually exclusive to
the wait-free property, with fundamental implications for future approaches in wait-free
constructions [EFK+12].

2.2.2 Simulation of wait-free data structures and the helping mechanism

Only recently, Timnat and Petrank presented a new variant to derive wait-free algorithms
from existing lock-free implementations [TP14]. Universal constructions utilize small
algorithmic building blocks to rework sequential objects gradually. In what they call a
wait-free simulation, Timnat and Petrank rather employ a modular and, in some cases,
less invasive refacturing scheme.

Wait-free simulation is an advancement from a helping scheme which is first known from
a publication by John Turek at IBM in 1992 [TSP92]. The mode of thought in recently pre-
sented helper schemes follows the basic principle presented by Turek.

A single lock-free operation, such as adding or removing an element, first is transformed
into linearizable, subsequent stages. The operation is then called a normalized algorithmn.
These sub-steps are partial applications of an operation, but leave the data structure
in a well-defined, consistent state. Also, operations are not executed directly, but only
announced: the state of a pending modification is stored in an operation description
object that then contains sufficient information to complete a single pending modification
on the data structure. As a result, every thread can help complete any pending operation
by performing its next sub-step.

The motivation behind this is to decouple operations from the thread that executes them.
As an additional benefit, the state of an operation description preserves partial progress

13

2.2 Related work 2 Wait-free data structures

of an operation, comparable to safepoints as known from transaction management. In
case of a conflicting access, an operation is retried starting from its last successful partial
execution instead of repeating a single procedure from its beginning until it succeeds as
a whole.

Acting in the spirit of wait-freedom, the helping scheme achieves that once a thread
announced an operation, it is guaranteed to be completed even if the thread is never
scheduled again.

thread 0 thread 1 thread n

announce

op.desc.

pending
step 2

op.desc.

pending
step 0

op.desc.

pending
step 3

help

thread 0 thread 1 thread n

op.desc.

pending
step 2

op.desc.

pending
step 0

op.desc.

pending
step 3

Figure 2.3: Announcing and helping operations in the general helping scheme

As every thread can only initiate one operation at any time at most, one operation
description object is required for every thread. These are stored in a global array with
every index dedicated to a specific thread. A thread can only modify the data structure
by initializing a corresponding description object in the thread’s dedicated slot in the
array.

An operation description object represents a safepoints on a stable, intermediate states,
and is thus only changed when one of their associated substeps has been completed.
It is initialized in pending state and marked as non-pending once its last substep suc-
ceeded.

A thread only returns from its original operation call when its description object has
been updated to the final, non-pending state. However, after they announced their
own operation, threads engage in all pending modifications, helping older operations
first. New operations on the data structure consequently cannot delay other ongoing
operations by more than one substep. This is essential to the guarantee for each operation
to be completed in a finite number of steps.

Timnat and Petrank published promising performance evaluations for simulated wait-
free data structures. Their candidate algorithms have been implemented in Java and rely
on garbage collection, however, and currently no wait-free garbage collector exists. With
the intention to deploy wait-free algorithms on long-running embedded systems, this
technical flaw is of high practical relevance.

To put it mildly, wait-free memory management offers many opportunities for future
work; it has been aptly put as the achilles heel of wait-free data structures, and reasons
for this will soon be evident in this chapter.

2.2.3 Memory management

A wide range of challenges in concurrent algorithms emerges from memory management
within data structures: As memory resources are acquired and read by several threads
simultaneously, it is not trivial to decide which accessor is responsible for acquisition

14

2 Wait-free data structures 2.2 Related work

and release of a specific memory region, especially when employing the helping pattern
as described in subsection 2.2.2.

In software development for embedded systems, garbage collection usually is not
provided by the runtime environment. Allocation and reclamation of memory therefore
has to be implemented explicitly, and, in the context of this work, with respect to
wait-free requirements.

Memory allocation

The problem of concurrent resource management has been reduced to an abstract data
structure named pool by Udi Manber [Man86]. Essentially, a pool is an container of
objects which abstracts their concrete allocation in memory.

In their book Concurrent Data Structures, Moir and Shavit discuss pools as a fundamental
tool for concurrent lists and queues [MS07, 1-17]. They mention an array-based imple-
mentation and suggest more sophisticated approaches based on counting networks or
diffracting trees [SZ96], but do not discuss wait-free variants.

It is important to point out that simulation of wait-free data structures from their
lock-free implementation as described in [CER10] and [ZZY+13] involves an opera-
tion description buffer. Therefore, wait-free algorithms for memory management cannot
be constructed using these simulation techniques, as the construction would again
rely on a wait-free pool. A scalable lock-free dynamic storage allocator is presented
by Michael [Mic04c], which cannot be transformed to a wait-free variant for this rea-
son.

Stellwag and Krainz specifically address wait-free storage allocation and present a
design that is apparently suitable for real-time applications [SKSP] which is discussed in
subsection 2.4.2

Wait-free memory allocation is rarely even addressed in related work. Most designs of
wait-free algorithms are conceptually presented in Java and benefit from garbage collec-
tion, leaving wait-free memory management out of scope.

Memory reclamation

In addition to the problem of concurrent memory allocation, an indirect variant of the
ABA problem is introduced when allowing shared memory objects to be reclaimed: After
a shared address has been obtained, the referenced object might have been reclaimed and
replaced by a new object instantiated at the same address.

A commonly used technique to guard referenced objects from reclamation objects is
reference counting: A global counter variable is introduced for every shared memory
block, which is incremented before referencing it, and decremented as soon as the
contained object is no longer used by the respective thread. A shared memory region
is consequently released when its associated reference counter reaches 0, as no thread
is holding a reference to it at this point. Efficient solutions for lock-free algorithms
are known [JP05] [GPST09], and a wait-free mechanism is conceptionally available
[Sun05].

15

2.2 Related work 2 Wait-free data structures

Regarding overflow of counters, reference counting methods formally do not solve the
ABA problem but only make it unlikely to occur, as an identical counter value may refer
to different references.

In a very popular work, Michael introduced Hazard Pointers, a patented scheme that
allows wait-free memory reclamation [Mic04a, p. 492] relying on available atomic
operations CAS or LL/SC: Each thread operating on a shared data structure owns a fixed
amount of hazard pointers. A single active hazard pointer guards one reference at any
time, so the amount of hazard pointers per thread depends on the maximum number of
simultaneous guards needed in any operation.

When a thread releases a node for reuse, as when removing an element from a linked
list, it is not deallocated but added to a local list of retired nodes. Nodes in this list are
only deallocated if no other thread is holding a hazard pointer to it. A grace period
is implicitly kept, as deallocation is only tried once the retired list reaches a certain
size.

The hazard pointer algorithm itself is proven to be wait-free, but has only been presented
as a solution in lock-free algorithms. The integration of hazard pointers in wait-free
data structures is not trivial in general, and applicability for real-time applications needs
additional considerations. How hazard pointers can be used in accordance with wait-
freedom has to be examined for each individual case. An example is discussed in detail
in subsection 2.5.2, which also includes a proof demonstrating how hazard pointers
comply to real-time constraints.

In order to integrate hazard pointers in a data structure, an upper bound for the amount
of guarded references for any operation has to exist, and to be known a-priori. Michael
demonstrated hazard pointers in lock-free implementations of a list and a stack, where
one hazard pointer per thread is sufficient, as no operation needs to guard more than
one element. For some implementations of recursively defined data types, e.g. graphs
and trees, a maximum amount of guarded nodes per operation does not inherently
exist, though. This even poses a problem for much simpler data structures: the original
deletion mechanism in Harris linked list requires an arbitrary amount of pointer guards
[Har01].

A memory reclamation scheme that overcomes this limitation is known from Herlihy,
Luchangco and Moir. Their algorithm pass the buck resembles hazard pointers in principle,
[HLM02].

A class of reclamation strategies is based on quiescent states, i.e system states where an
object is impossible to be referenced by another thread. The most prominent example is
Read-Copy-Update, introduced by McKenney [MS98] and added to the Linux kernel in
October of 2002. In RCU, multiple local copies of an object are kept, allowing wait-free
reads in single-writer / multiple reader scenarios. Updating the shared object cannot be
transformed to wait-free operations, however.

Fraser provided Epoch-Based Reclamation [Fra04] as another approach on reclamation
involving quiescent states. It avoids expensive memory barriers as required for Haz-
ard Pointers or Pass the Buck. Limbo lists are used to manage retired objects in this
strategy, which can be implemented with lock-free, but not wait-free properties. Also,
the EBR scheme itself is not strictly lock-free, as reclamation depends on progress of
another thread and makes assumptions on the fairness of the scheduler. In epoch-
based reclamation, no objects are deallocated as long as one thread is accessing the data
structure.

16

2 Wait-free data structures 2.2 Related work

Several other approaches for memory management in concurrent data structures have
been published [Har01], which suffer from dependency on CPU architecture or a certain
kind of scheduler.

More recently, Shin, Kim et al. introduced Strata, a wait-free memory reclamation scheme
based on linked lists and chronological access [SKKE11], and evaluated their solution
against user-space RCU.

2.2.4 Queues

Despite its unimposing functional capabilities, the concurrent queue is the functional
core of many data structures. Queues are the most frequently discussed complex data
type in publications in the wait-free domain, precisely because of their unsurprising yet
indispensabel semantics.

The classic concurrent queue originates from Lesley Lamport in 1977 [Lam77]. The
Lamport queue only supports synchronization for a single reader and writer but still is
an undisputed solution for this scenario.

Michael and Scott introduced another celebrity among concurrent queue algorithms.
The MS-queue is lock-free, and an imperative reference when discussing data structures
with queue semantics.

Notable improvements on wait-free queue algorithms are quite recent, with the first
practicable solution presented by Kogan and Petrank [KP11] in 2011, which employs a
helper scheme with prioritized operation descriptions as described previously to resolve
conflicting accesses.

The prioritization of pending operations is achieved using a monotonic counter: Each
operation description contains a phase number, interpreted as the operation’s timestamp.
After a thread has announced its operation, it traverses the operation description and
engages in every pending operation with a phase number less than or equal to its own.
The phase value of a newly announced operation is thus intended to be greater, thus
of lower priority, than phase values of older pending operations. This is argued to be
achieved by traversing all elements in the operation description buffer to resolve the
current maximum phase, incrementing it, and setting the result as a new operation’s
phase.

Kogan and Petrank complemented the wait-free queue with the fast-path / slow-path
methodology [KP12]. It describes the simple yet effective algorithmic pattern to try
wait-free operations as a fast, lock- free variant first, and only fall back to a slower
wait-free path if it fails. In some benchmark scenarios, a fast-path variant of the
Kogan-Petrank queue achieved throughput measurements close to lock-free candi-
dates.

Nearly all published evaluations confirm notable performance gains of wait-free algo-
rithms with an optimistic fast path.

17

2.2 Related work 2 Wait-free data structures

2.2.5 Lists

Valois succeeded in the first implementation of a lock-free list that only requires prevalent
compare-and-swap instructions [Val95]. Michael and Scott pointed out how the memory
reclamation as presented by Valois is prone to an ABA race condition, and also suggested
a solution [MS95]. The Valois list is still potentially causing memory leaks in the revised
version, and is therefore not evaluated in this chapter.

Comparable to the Michael-Scott queue, Harris’ linked list is an established reference for
lock-free ordered lists [Har01]. The Tim Harris algorithm executes dequeue operations
in two stages using tagged pointers. Nodes are first marked as logically deleted and
phyisically deallocated afterwards. This process is not kill-tolerant as a node would
never be physically deleted if a thread cancels its operation in the second phase. Michael
revised Harris’ algorithm and resolved pointer tags and vulnerability to cancellation
using his hazard pointer scheme.

Michael improved on Harris’ list in his publications on hazard pointers, where tagged
pointers and the two stages in the deletion of nodes are replaced by his safe memory
reclamation technique [Mic04a].

Timnat and Braginsky transferred the helper scheme and prioritization pattern from
Kogan and Petrank’s wait-free queue to Harris’ linked list [TBKP12]. Although they
again only evaluate an implementation in Java, their work presents a practicable design
of a wait-free linked list.

An implementation for real-time applications demands additional effort, similar to
Kogan and Petrank’s queue.

2.2.6 Stacks

Treiber proposed a lock-free concurrent stack implementation in which he represents
the stack as a singly-linked list. A top pointer for operations on the stack is modified
atomically using Compare-and-Swap [DT86].

Jayanti and Petrovic presendet a wait-free stack that supports multiple producers but
only a single consumer [JP05].

Hendler and Shavit applied an optimization method to a lock-free stack that benefits
from LIFO order [HSY04]. The elimination paradigm considerably reduces contention
in concurrent data structures and can be applied to any pair of methods that eliminate
their effects mututally: An additional execution path mediates between two parallel
push and pop operations directly so pop obtains its result from the value argument
in push without coordination in the data object. This way, operations that otherwise
might conflict can complete even faster compared to their sequential execution, because
there is no need to query or modify the state of the data structure in the elimination
path.

Moir optimized a lock-free FIFO queue and demonstrated that elimination is also benefi-
cial when it is only applicable for specific combinations [MNSS05] of access collisions. A
similar combining technique exists that coordinates colliding operations with identical
semantics, but is not wait-free in its original design.

18

2 Wait-free data structures 2.3 Verification and benchmark methodology

Timnat and Petrank mention they have constructed wait-free implementations of the
Harris-Linked-List, a skiplist, and a tree, using the aforementioned simulation technique
described in the same work [TP14], but did not apply their simulation technique to a
stack, where contention is more frequent in comparison as producers and consumers
logically operate on the same node. No algorithm code is provided for their data
structures. These had to be modified for use in real-time applications in any case, as they
rely on garbage collection.

A wait-free stack for multiple consumers and multiple producers is presented in sec-
tion 2.6 of this work. The implementation builds upon Fatourou’s universal construction
scheme P-Sim which achieves improved scalability using elimination.

Bar-Nissan evaluated elimination and combining for blocking and lock-free stack al-
gorithms [BNHS11]. In performance evaluation of stack algorithms in this work, we
examine if comparable improvements can be achieved while maintaining wait-free
progress.

2.3 Verification and benchmark methodology

Meaningful evaluation of algorithms requires to ensure that candidate implementations
realize identical semantics, and that identical conditions are used to measure their
performance. The means of verifiying semantics and correctness and the setup of the
benchmark suite is explained in this section.

2.3.1 Explicit-state model checking

In the software engineering process, testing has evolved as the most common and
important method to verify the correctness of a software system against its specification.
However, tests are limited to their concrete scenarios by nature and can only indicate
correctness for exemplary executions. As conventional unit tests are agnostic of non-
deterministic effects, they cannot be applied to specifications of parallel implementations.
As testing every possible scheduling of a given set of transactions is not feasible, model-
based verification is left as a viable option. In model checking, a system is abstracted as a
finite-state automaton corresponding to the system’s behavior which is represented and
verified logically against a specification, represented by a set of formulas. Elaborating
a formal model from an implementation manually - as well as the inverse process - is
prone to error and thus can result in critical differences between the source code used
in production and the verified model. In addition, code optimizations applied by the
compiler can introduce hazards that are not evident in the original source code. Ideally,
model checking operates on the compilation result as it is used in the software product’s
release.

For verification of the data structures presented in this chapter, a tool chain based on the
DiVine explicit state model checker [BBH+13] has been composed. Figure 2.4 illustrates
its steps.

The verification system is a custom source code implementation designed to execute
schedulings that lead to hazard situations in the examined data structure by calling
parallel operations on a single instance of it. The system is compiled to LLVM bitcode
using the clang compiler. In the linker stage, the C++11 standard library is replaced

19

2.3 Verification and benchmark methodology 2 Wait-free data structures

verification code LLVM compiler

stdlib supplement

native compiler

LLVM bitcode

executable

DiVine

unit test result

data structure

implementation

linked

linked

unit test code

stdlib release

LLVM interpreter

Model Checking Engine

verification results

.h

.cc

.cc

Figure 2.4: The verification tool chain

by substitutes provided by DiVine that allow detection of memory hazards within the
C/C++ runtime and parts of the STL.

The logical model for a data structure is derived directly from the LLVM bitcode. For
verification, DiVine’s integrated LLVM interpreter transforms the system to a nonde-
terministic Büchi automaton (NBA) considering all possible operation interleavings at
the level of bitcode instructions. On the NBA’s state space, a reachability test on every
negated assertion is performed, as well as cycle detection for deadlocks [BK08, p. 159].
A verification run results in a counter-example for the first violated verification property,
presented as an operation history of all threads.

DiVine’s explicit-state model checking can only verify assertions that are reachable
in at least one possible execution history of a program. Source code implementing a
verification program resembles unit tests, with assertions on expected values in execution
paths. Even with all possible interleavings explored, an incorrect implementation might
pass verification if program states that would lead to failures are impossible to be reached
in any schedule. It must therefore be argued individually that the verified system is
comprehensive enough to produce schedules that provoke all hazard conditions to be
tested.

On the other hand, it is advised to design a succinct verification system using the
minimum amount of threads and smallest data structure capacity possible. Known as
the phenomenon of state space explosion, the complexity of verified interaction schedules
grows at least exponentially with the degree of parallelism and the amount of concurrent
operations in the model. [BK08, p. 77]. Own findings and and related experiments
[vdB13] show that rapid growth of the explored state space might render seemingly
trivial verification setups impractical. Model checking of 5 or more threads operating on
even an arguably trivial shared data structure is not feasible as of this writing [vdB13,
p. 46], as its execution might take hours and days; higher degrees of concurrency have
not been necessary for this work, however. Instead of monolithic, complex scenarios
designed to cover all hazard situations, we define a series of scenarios that are verified
individually. In conclusion, the following general process for designing a verification
system for a data structure is recommended:

1. Declaring white-box conditions as assertions in the implementation of the data
structure, i. e. preconditions, postconditions, and loop invariants

2. Identifying potential hazards in the data structure
3. Deriving critical schedules that would trigger every hazard condition

20

2 Wait-free data structures 2.3 Verification and benchmark methodology

4. Implementation of a verification program that is capable of producing all critical
schedules

5. Assertions on black box correctness, i. e. expected return values, of the data struc-
ture in the verification main program

Still, this procedure provides no guarantee that a positive verification result is true positive
and evidence for correctness. As explained, a scenario might yield a false positive result if
it is insufficient to produce hazard situations in the first place.

A principle known from test-driven development gives a pragmatic solution. Here,
complete test scenarios are defined first and performed on a known incorrect imple-
mentation. All tests then are expected to fail. Similarily, we first use DiVine to detect
a counter-evidence that demonstrates a known error in an implementation. This true
negative result demonstrates how a hazard condition is in fact detectable. As a concrete
example, a necessary pointer guard is removed from a data structure. Verification is
supposed to disprove correctness and present a counter-example that depends on the
missing guard.

As shown in Figure 2.4, a unit test suite is build in addition to the model checking chain.
Unit tests are identical to the verification program, but configured with a higher amount
of threads and a higher capacity of the data structure. They are executed as a smoke test
before starting the DiVine chain, as state space exploration might take hours to complete.
Once all candidate implementations of a data type have passed the same verification
process, their semantics are considered correct and equivalent, a prerequisite for their
meaningful comparison.

2.3.2 Benchmark methodology

The benefit of an implementation approach can only be reasoned when it is presented
with means of a comprehensive comparison to its alternatives. Candidate implemen-
tations are embedded in a series of standardized scenarios which have been modeled
from real-world load conditions. The resulting performance metrics aggregated from
run-time measurements in each scenario give an intuitive understanding of fitness for
common application characteristics.

Relevant performance metrics

A single test case is repeated for every combination of the defined parameter settings
range, consequently testing scalability in all dimensions. These are at least the number
of elements managed by the test instance and the number of threads operating on the
instance. As only a single parameter is modified in every run, variations in performance
can be reasoned easily.

Similar to verification systems, benchmark scenarios are modeled based on properties
derived from semantics. However, the quality of a benchmark is defined by how
closely it is related to real-world applications. Because of this, performance criteria and
benchmark task definitions are not formally constructed but derive from common use
cases. The following performance measures are a standard in micro-benchmarks of
algorithms and data structures in general:

21

2.3 Verification and benchmark methodology 2 Wait-free data structures

Latency Timestamps are created right before calling an operation and after its
completion. Operation latency is measured as the difference of these
timestamps.

Jitter The overall fluctuation margin of operation latencies.
Throughput the total number of operations divided by their overall time to completion,

measured in operations per second. Throughput is measured individually
for every operation type.

Speedup The relation of execution time depending on the number of threads.
The same number of operations is executed by an increasing number of
processor cores to examine how throughput scales with the degree of
parallelization,

Evaluation of speedup follows the well-known Amdahl’s Law. For parallelization with p
as the proportion of a program that is executed in parallel using n processors, speedup
is defined as:

Speedup(n) =
1

(1 − p) + p/n

Concrete values of p allow to predict speedup for any degree of parallelization, but are
unknown for evaluated algorithms a priori. We measure execution time for an identical
problem size with an increasing number of cores n k . The estimated proportion of paral-
lelizable regions p e is then derived from speedup s e as:

p e =
1/ s e − 1
1/n k − 1

Amdahl’s law does not consider cache coherency and memory access in general, which
affect estimations based on actual performance measurement. Gunther presented the
Universal Scalability Law, which extends Amdahl’s model of scalability by contention
penalty 0 ≤ α and coherence penalty β < 1 [Gun93]:

C (n) =
n

1 + α (n − 1) + β · n (n − 1)

These models are not to be used to curve-fit measurements, but help to discuss observed
differences in performance of candidate algorithms. In particular, Gunther’s law explains
how throughput can actually worsen when a problem is distributed to an increasing
number of cores. In fact, this phenomenon will later be observed in evaluation in several
cases.

In literature and related work, performance evaluations of data structures typically rank
candidates exclusively on average measures, such as the mean throughput |o p |/ s e c, an
arguably sensible initial performance indicator for container types. Publications on wait-
free algorithms follow this convention and disregard latency measurements completely.
All known publications on wait-free algorithms only discuss averaged throughput
measurements [KP11] [ZZY+13], despite guaranteed global progress and bounded time
to completion being the actual benefit of wait-freedom.

For the data structures presented in the following, worst-case performance is interpreted
from measurements in addition to average costs. To give an intuition for complexity

22

2 Wait-free data structures 2.3 Verification and benchmark methodology

overhead of wait-free implementations compared to their lock-free alternatives, verifica-
tion and evaluation will also include popular lock-free implementations. The benchmark
scenarios and the performance metrics include the methods typically found in related
publications, disregarding their significance for wait-freedom or applicability on embed-
ded systems. Some test scenarios are not even representative for any realistic use case,
but pose an informal standard as they are used in many published evaluations. Results
from these benchmarks are presented to allow comparison with results published in
related work.

A consolidated metric of worst-case latency is not provided in any related work. Presum-
ably, this is because operation latency highly depends on the test environment and hence
measurements are difficult to reproduce. As a matter of fact, distribution of latency is the
most valuable metric when deciding for an algorithm in embedded applications. More
precisely, worst-case latency is the single criterion to decide if a candidate implementa-
tion is better suited than another to meet critical deadlines within hard-timed control
loops. For this reason, experiments in this work are also performed on a complementary
setup specifically configured for latency measurements.

Experimental setup

We conducted performance evaluation of candidate implementations in this work based
on measurements of throughput and latency. Benchmarks have been performed on
two system configurations, each chosen and configured for a specific performance
metric:

AMD Opteron 48-core, 1.9 GHz AMD Opteron 6168, NUMA, Linux 3.11.0-26-generic
kernel. Memory access adds non-deterministic latencies on this platform,
but the high number of available cores allow throughput measurements
varying in degree of parallelism.

ARM Cortex-A9 4-core, 996 MHz ARM Cortex-A9, SMP. Configured for latency mea-
surements, with a minimal Linux installation and hardware interrupts
disabled where possible.

The basis of evaluation are experiments executed on a benchmark suite that has been
specifically designed for this work. Its mandatory parameters to execute a benchmark
are:

u the concrete implementation variant (unit) to test. Implicitly also defines
available benchmark scenarios.

S the benchmark scenario to execute.
nT the number of threads operating on the shared container in total, or
nP , nC the number of producer and consumer threads, if applicable
c the number of elements managed by the data structure, or container

capacity
i the number of iterations, configuring how many times each thread exe-

cutes its operation sequence.

The benchmark suite provides platform-independent, reproducible time measurements,
utilizing the most precise performance counters (native constant Time Stamp Counter)
and wall-clock time available on each of the test platforms. Integrated self-test routines
help to ensure correct functionality of internal methods used to measure performance

23

2.3 Verification and benchmark methodology 2 Wait-free data structures

on a specific test platform. Most importantly, self-tests detemine precision and accu-
racy of time measurements by comparing performance counter measurements of busy
loops with elapsed wall-clock time. Operations are measured using both timestamp
counters (RDTSC on AMD Opteron with monotonic, constant TSC, PMU on ARM) and the
platform’s native clock (clock_gettime) for a series of varying busy loops. Measure-
ments of timestamp- and clock-based timers are expected to be identical, ensuring that
fluctuations from expected measurements originate from usleep. A setup on a platform
is considered adequate for performance tests if precision and accuracy is near-constant
for any measured period.

Accuracy and precision of time measurements are tedious to verify and optimize for
a specific architecture. The Performance API library 1 is a helpful starting point for
stable measurements for a wide range of platforms. It is selectable in the benchmark
suite as a substitute for custom performance counter implementations. Custom timing
implementations gave marginally improved precision and reduced the constant latency
overhead of measurements by approximately 40%.

As another prerequisite for meaningful measurements, influences by external processes
during the execution of a benchmark and overhead from measurements must be elim-
inated. All scenarios utilize auxiliary data structures, such as containers to collect
measurement data. Their instantiation or any other memory allocation within a scenario
would interfere with measured operations. A benchmark run therefore consists of three
isolated, sequential steps:

Initialization generates all test data in advance, and pre-allocates all auxiliary container
instances to their maximum size required for the benchmark scenario. No
further allocation occurs in the execution step to avoid non-determinism
in execution times.

Execution starts all threads of the benchmark scenario. Measurements are stored
unprocessed in pre-allocated, thread-local containers that provide O (1)
access.

Reporting collecting and processing measurement data from all threads after the sce-
nario has completed. Writes measurements as unprocessed timestamps
to sample files, and processed performance metrics derived from these
samples to a summary file.

To avoid influence from external processes and to reduce the probability of outlier
measurements caused by the system environment, active threads in an execution are
pinned to a dedicated processor core. Benchmark scenarios are performed multiple
times with individual results collected in individual data frames. Plots presented in this
work have been generated directly from output of the benchmark suite using automated
procedures in GNU R.

Benchmark code was compiled using the prevalent GNU Compiler Collection (GCC)
version 4.8.2 with the -O3 flag for all algorithms.

Limitations of evaluation

Performance metrics are exclusively derived from time measurements. Memory con-
sumption is not tested, but only deduced from the implementation in the verification

1 PAPI official website: http://icl.cs.utk.edu/papi/

24

2 Wait-free data structures 2.4 Pools

phase. As all tested implementations solely rely on static memory allocation, worst-case
upper bounds of memory consumption must be determined and asserted in verifica-
tion.

It must be emphasized that latency measurements only describe observed latencies within
a limited number of task iterations. Evaluation of maximum latency hence only refers to
a limited set of measured operations within a single test scenario which only define a
lower bound of theoretical worst-case execution time.

2.4 Pools

All data structures presented in the following sections are dynamic collections, i. e. their
number of elements is variable; however, this must be achieved without heap allocation,
following the guidelines described in section 2.1.4. In this section, pools are discussed as
a solution for dynamic object allocation in real-time systems.

2.4.1 Definitions

In conventional software engineering terms, a pool describes a container providing
reuse of its elements. Pools can be used to cache instances of types with expen-
sive initialization, or to manage limited resource entities, such as blocks of mem-
ory.

In the context of this work, pools are used for dynamic allocation of shared objects.
They manage a dedicated coherent range of memory, and provide indexed access to
objects previously added to them them. Effectively, pools described in this section act
as dynamic storage allocators for a specific object type: They transparently manage
instantiation and reclamation of objects in static memory ranges, and eliminate memory
fragmentation. Pools divide memory into segments of identical size which, in theory,
reduces allocation to linear worst-case complexity.

Upper bounds of memory allocation complexity are substantial. The progress guarantee
of any data structure that itself is implemented as a wait-free algorithm is restricted to
the progress of its memory management mechanisms.

When threads acquire instances from a pool concurrenly, the pool implementation
ensures that every instance is only obtained once. Differing from general dynamic
storage allocation, a pool is bound to a specific element type and therefore operates on
memory blocks with fixed size.

Formally, the term concurrent pool [Man86] refers to an abstract data structure represent-
ing a multiset, supporting the following operations:

Add(p,x) add element x to pool p. No effect if x is already present.
RemoveAny(p,y) remove any element from pool p and assign it to y.

To specialize this definition to the purpose of dynamic object allocation, the signature
is extended by object pointers. As an object pool is coupled with a single object type,
its elements occupy constant memory and their addresses can be represented by an
index.

25

2.4 Pools 2 Wait-free data structures

newIndexPool() = p (2.1)
newElement(p) = i (2.2)

addIndex(p , removeAnyIndex(p)) = p (2.3)
removeAnyIndex(newIndexPool()) = ERROR (2.4)

addIndex(addIndex(p , i) , i) = ERROR (2.5)

Figure 2.5: Semantics of the index pool data type (axiomatic specification)

FreeObject(p, (i,e)) add a tuple of an element e and its index i to pool p. Ele-
ment values are arbitrary and may contain duplicates.

AllocateObject(p, (i,e)) remove any previously added element from pool p and
return the element and its index in the tuple (e , i).

Functions FreeObject and AllocateObject correspond to addElement and removeElement as
defined for the multiset data type. Allocating an elements is removing it from the set,
releasing an element is adding it back. The dynamic object allocation consists of two
concepts: an allocation strategy organizing elements in memory by index, and a data
structure managing concurrent access to these indices.

Disregarding implementation, pools can be modeled as a combination of an indexed
list of pool elements and a set of indices in the list. By obtaining a dedicated index
from the set, the memory block in the list at this index position is reserved for the
thread that obtained it. Conflicting accesses therefore only occur on the set of indices.
Systematically, concurrent access to objects in a pool can be reduced to the problem of
acquiring dedicated pool indices atomically, which then implicitly serialize operations
on their referenced memory blocks.

Finally, the fundamental data structure crucial for concurrent dynamic object allocation
is similar to a set of integers, with relaxed semantics of the r emo ve operations. As the
value returned from an index pool is previously unknown to the caller, the operation
r emo ve Any is specified instead, which removes and returns any element from the
set.

RemoveAnyIndex(p,i) Removes and returns any index from the pool
AddIndex(p,i) Adds index i back to pool p

While an object pool has multiset semantics and may contain duplicates, an index pool
corresponds to the set data type as its elements are unique: An element can only be freed
if it has been acquired before. Correspondingly, an index can only be added back if it is
not contained in the pool.

1 bool Lookup(const string & key, list<const T &>);
2 bool Insert(const string & key, const T & value);

Listing 2.3: Interface of the map data structure

Sets and maps share identical semantics when considering a map as a set of objects
(k ey 7→ o b j). . In case of a map, the user defines values of key and value, while on a
pool, index values are set by the data structure.

26

2 Wait-free data structures 2.4 Pools

1 index_t removeAny() {
2 bool expected;
3 for (index_t i = 0; i < capacity; ++i)

{
4 expected = false;
5 if (CAS(reservationFlags[i], expected

, true))
6 return i;
7 }
8 }
9 }

1 void add(index_t index) {
2 elements[i] =

element;
3 reservationFlags[i] =

false;
4 }

Figure 2.6: Implementation of acquisition and release in the array-based pool

2.4.2 Array-based wait-free pools

In a basic approach, the index pool stores its elements in an array, along with a second
array of the same size containing atomic boolean objects. These can be modified using
CAS and represent reservation flags. When an element is acquired from the pool, any
reservation flag is atomically swapped from f a l s e to t r ue, and the element at the same
index in the element array is returned. The flag is reset when this element has been
added back to the pool.

It is an important detail to ensure that cache-aligned allocation is used for the array to
prevent false sharing, which would harm performance.

The crucial problem is selecting an available reservation flag, and the search mechanism
used. A possible wait-free solution is a linear search starting at the beginning of the
reservation flag array.

On high allocation levels, the O (n) complexity of the search is drastically impair-
ing performance. Pools may have large capacity, so n is potentially big. Every ac-
quired pool element increases the duration of every following acquisition, which is
especially problematic when large coherent ranges in the pool are held for long-runnig
tasks.

All of the few practicable wait-free memory management strategies implicitly involve
a mechanism semantically equivalent to a wait-free index-pool. This also applies to
solutions that are substantially different from from hazard pointers, such as reference
counting algorithms [Sun05] [SKKE11].

Many straight-forward optimizations of this strategy are known for lock-free implemen-
tations [MS07]. A solution for wait-free dynamic storage allocation using a tree as index
structure for logarithmic search has been proposed by Stellwag and Krainz who sketch a
helping pattern functioning without a subjacent pool [SKSP]. The mechanism is not suit-
able as it requires a machine instruction that is not supported by any known architecture,
though. Also, the authors explain it as not linearizable. We use a lock-free predecessor of
the tree-based pool algorithm as a reference in evaluation.

Currently, no suitable wait-free solution for pools has been published that improves on
the array-based approach. Especially when real-time constraints are taken into account,
all approaches in related work are found inadequate. Improvements on the array-based

27

2.4 Pools 2 Wait-free data structures

pool aiming for reducing search complexity do not seem promising and feasible as of
this writing.

However, indexed search is not the only thinkable solution: If the average amount
of failed reservation attempts until successful acquisition is minimized by any means,
worst case latency improves as well. Two approaches are derived from this assump-
tion:

Diffuse search Linear, sequential search in the array is replaced by pseudo-randomized
search patterns. Hypothetically, non-linear scans prevent repeated reser-
vation attempts on coherent ranges of reserved cells.

Redundancy Implying a tradeoff at the expense of memory overhead, additional
index elements are held available for every thread, similar to thread-
specific storage.

2.4.3 Thread-dependent search patterns

In non-linear search, every thread traverses the reservation array in a different pat-
tern. Here, an iteration function depending on the thread ID t is to be defined. As
an example, the iteration could skip t + 1 indices, so thread 0 traverses reservation
flags as before, thread 1 would test every second reservation flag, and so on. The
iteration patterns could be further optimized to minimize conflicting accesses probabilis-
tically.

This mechanism seems simple and apparently reduces the size of ranges that only consist
of reserved cells. The altered search pattern evidently does not introduce situations
where an operation could be delayed arbitrarily. When verifying for correctness, how-
ever, the algorithm is found to conflict with linearizabity.

thread 0

10

reserve 0

thread 1

try reserve 1

reserved free

thread 0

10

free 0

thread 1

reserve 1

free reserved

thread 0

10

thread 1

reserve fails

free reserved

Figure 2.7: Structure of the array-based pool with thread-specific compartments

An example using two threads and two cells illustrates this conflict when threads iterate
using different search patterns. As shown in Figure 2.7, both threads try to reserve and
release one of two available cells. There is a possible schedule where thread 0 reserves
cell 0, and thread 1 starts its search at cell 1 and is about to reserve it, but is preempted.
Thread 0 continues to release cell 0 and reserve cell 1. When thread 1 is activated, it fails
to reserve cell 1.

This pattern can be applied in reverse when thread 1 should try to reserve cell 0 after
his failed reservation attempt. In any sequential history, both threads would always
succeed in reserving a cell. Consequently, a reservation algorithm based on different
search patterns is not linearizable.

This leaves the second approach, where more cells are held available for every thread.

28

2 Wait-free data structures 2.4 Pools

2.4.4 A compartment-based index pool

The following modification on the array-based pool does not reduce complexity of
scans in acquisition of elements, but at least improves performance for some use
cases.

Expensive contentions on reservation flags can be avoided when definining ranges in the
pool that are allocated by a dedicated thread exclusively. The pool is thus divided into a
public range that is identical to the conventional array-based pool, and thread-specific
compartments. As opposed to thread-local storage, elements in compartments are also
accessible to all other threads, but can only be acquired by the compartment’s owner.
The total size of the pool’s private range is proportional to its capacity and defined by a
factor k.

t thread specific regionspublic region

pool capacity = n

n - (k/t) k/t
k0 k1 ... kt

Figure 2.8: Structure of the array-based pool with thread-specific compartments

This simple addition eliminates competition for pool elements up to a specific number
of allocated elements per thread, depending on the pool’s capacity and its partitioning
defined by k. The layout of a compartment pool is illustrated in Figure 2.8. Evidently,
introducting compartments increases the memory overhead of the array-based pool.
Its capacity of n elements must be entirely available not to all threads in total, but
to every single thread. For t threads and n k elements in every compartment, the
actual number of elements held in the pool increases by n k · (t − 1). If all elements in
compartments have been acquired, the actual pool capacity of n + n k · (t − 1) is made
available.

2.4.5 Verification

For the array-based pool implementations, we found no apparent hazard situation. Its
mechanism is so simple, however, that violation of correctness conditions are easily de-
tectable in straight-forward verification setups. As an example, disproving linearizability
of thread-specific search patterns in the array-based pool only required two threads
and two elements capacity. The compartment-based implementation was verified for
different partitionings of public and thread-specific ranges.

The following schedulings of enqueue (E) and dequeue (D) operations have been verified
for all pool implementations using DiVine:

(E||D);E;E;D;D
E;(D||(E;D;D;E))
E;E;(D||(D;E);D)

Similar setups have also been used for verification of memory barriers in the Michael-
Scott queue in related work [vdB13].

29

2.4 Pools 2 Wait-free data structures

2.4.6 Benchmarks

A common-place scenario for allocation strategies is enqueue-dequeue pairs (e.g. [SKSP]),
where threads each allocate and immediately deallocate memory with a fixed size for
a given number of iterations. The corresponding use case is a highly parallelizable
task distributed to threads with short modification cycles. This applies to some image
processing algorithms.

Finally, reader- and writer-intensive race are commonly used to evaluate memory alloca-
tion efficiency under imbalanced work loads for reading and writing (e.g. [SKKE11]).

In the fill-up test, threads allocate single memory blocks in a loop until no more memory
is available. Results from fill-up tests did not lead to new findings, as the scenario is im-
plicitly covered by enqueue-dequeue pairs with preallocation.

Custom scenarios

In order to provide results that are meaningful for realistic applications in particu-
lar, benchmarks and setup variations have been designed to measure performance in
situations that are known as challenging in this domain.

In real-time applications, long-running procedures typically allocate resources at startup
in bulk instead of smaller chunks on demand at run time. The scenario enqueue-
dequeue bulk is designed to reflect this use case: Threads acquire and release a large
amount of pool elements in parallel as opposed to the enqueue-dequeue pairs scenario
where a single element is allocated and released per iteration. For comparable results,
the total amount of operations is to be constant in every execution, so the number of
allocations per iteration is i a = n/ i. The impact of allocation bulk size on throughput
and latency of the periodical operations is evaluated. Supposedly, effects of auxiliary
index structures in the pool implementation are more noticeable when removing and
adding elements in bulk.

Allocators also tend to decrease in performance when their managed resources run
low. We introduce an additional benchmark parameter pre-allocation ratio, which
sets the percentage of the pool capacity that is allocated before executing a bench-
mark. This modification has no effect in the fill-up scenario, but should yield insight-
ful results when running enqueue-dequeue pairs with gradually increasing allocation
level.

For benchmarks on pools, the reader- and writer-intensive race scenarios are adapted and
combined into a single scenario allocator/deallocator race. Here, n P allocator threads run
in parallel to nC deallocator threads, each acquiring or releasing i a elements respectively.
The number of active threads in total n T = n P + nC is constant, starting with a single
allocator thread (n P = 1). The allocation / deallocation balance is gradually shifted from
release-intensive to acquisition-intensive in every execution, until a single deallocator
thread runs in parallel to n T − 1 allocator threads.

As the total number of operations is constant, we expect that measurements demonstrate
how latency and throughput depend on aquisition / release balance.

Pool elements must be acquired first before they can be released, so a deallocator
thread reserves i a elements in the initialization phase, and adds them back to the

30

2 Wait-free data structures 2.4 Pools

pool in execution. As an unintended side effect, preallocation ratio then varies de-
pending on allocator / deallocator balance, as the total number of preallocated ele-
ments ranges from i a · (n P = 1) to i a · (n P = n T − 1). To take preallocation out
of the equation, deallocator threads each acquire (n T − 1) · i a / n P elements in ini-
tialization phase in every exection, so the total amount of preallocated elements is
constant.

2.4.7 Evaluation

In every scenario, standard measurements as described in section 2.3.2 are recorded
for every operation call on the data structure. For throughput measurements, the
experiments with their test parameters are:

test n T threads capacity c pre-allocation r i iterations i a alloc / i

ED-P 2-32 100 k 0 - 0.9 2500 190
ED-B 2-32 i a · n T 0 100 k / i a 1 - 1000
ADR 1:32-32:1 320 k 32 · i a = 0.5 1 5000

Results from the original enqueue-dequeue-pairs scenario are summarized in Figure 2.9.
The array-based algorithm shows superior throughput compared to the lock-free imple-
mentation when no elements are pre-allocated. This is explicable by their reservation
mechanism: Flags in the reservation array are reset to their original state when elements
are immediately released.

For i a elements allocated and released in each iteration of t threads, at most t · i a
reservation flags have to be traversed for removing an element from the pool. This
upper bound is very unlikely to be reached, the actual amount of failed reservation
attempts is lower by orders of magnitude. As threads only operate on the head of the
array, the scan complexity of O (n) does not come to effect. Repeapting the scenario
with an increasing number of preallocated elements eliminates this bias. As expected,
the amount of removed elements has no effect on performance of the lock-free pool,
while throughput of the wait-free implementation gradually decreases by orders of
magnitude.

In the same plot, performance of the array-based pool with no preallocated elements
initially increases proportional to the number of cores. Throughput gradually drops
after reaching a sweet-spot at 12 threads. Gunther’s law explains this phenomenon:
The lookup-time in the array-pool’s scan routine directly relate to the number of failed
reservation attempts. As more threads compete for the same atomic objects, memory
contention increases proportionally.

Speedup of the variants depending on the degree of parallelism has substantially dif-
ferent characteristics for both implementations. Most notably, an asymptotic limit for
throughput is observed for the tree-based pool. We assume that this is an effect of
contention rate as explained earlier, as cache miss rate increases with the number of
threads operating on the pool.

Related to the Universal Scalability Law, we define a general term for this choke point
effect for later reference in comparable situations:

31

2.5 Queues 2 Wait-free data structures

Definition 2.4.1 (Central point of conflict). An atomic variable that is affected in any
invocation of a method f and thus causes a lower bound for contention penalty in this
method is a single point of conflict in f . An atomic variable s is a global point of conflict
if all methods that change the state of a data structure have s as a common central point
of conflict.

A data structure with n s central points of conflict can guarantee to complete at most
n s operations in parallel. By this definition, the atomic counter in the root node of the
lock-free pool’s tree index is a global point of conflict. It is easily argued that in a tree
where atomic variables manage access to child nodes, every node is a local point of
conflict for operations to its descendants. From a probabilistic view, a node on level
l in such trees with branching factor d contributes to 1/ (d · l) of overall contention
penalty.

In the tree pool implementation used for evaluation, a threads decides on which branch
to descend with a deterministic left-first strategy, so leaf elements are reserved from left to
right. A thread-specific descending pattern could distribute accesses to all children of any
node, and hereby reduce contentions by a linear rate proportional to the branching factor
d. Analogical to the optimization approach previously described for array-based pools,
this approach would have to be verified for linearizability.

Plots in Figure 2.12 represent measured throughput of the tested pools in the alloca-
tor/deallocator race scenario. The lock-free implementation descends and modifies
a tree index in allocation as well as deallocation. Adding an element back to the ar-
ray pool has constant complexity and is embarrassingly parallel, so it never causes
contention. Operation Add is evidently entirely parallelizable, and throughput mea-
sured depending on the number of deallocators grows with the expected speedup rate
n p .

In conclusion, thread-specific compartments can account for drastic improvements of
both latency and throughput, even if they span just a small fraction of an array pool’s
capacity. This improvement does not hold for the general case and has no effect on
maximum latency. The compartment scheme cannot be argued as an ideal conclusive
solution, of course. Then again, its performance is nearly impossible to beat in use cases
where threads acquire and release few elements with high frequency, especially when
memory overhead is not a concern.

The fact that the simple semantics of an index pool cannot be trivially transformed to a
more efficient, wait-free, and linearizable algorithm is counter-intuitive to say the least.
The complexity of such a transformation does not relate to semantics but from additional
restrictions that prevent the use of otherwise common patterns like hazard pointers and
counters.

2.5 Queues

Concurrent queues, containers with First-In-First-Out (FIFO) semantics, are one of the
most fundamental and widely studied concurrent data structures in literature. As a fun-
damental building block of inter-process and inter-thread communication, queue algo-
rithms are essential components in multi core applications in general.

32

2 Wait-free data structures 2.5 Queues

Tree pool Array pool

45 k

650 k

1.3 M

1.9 M

2.5 M

3.1 M

2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

threads

op
er

at
io

ns
/

s

Pre-allocated elements 0 5 k 10 k 15 k 20 k

EDP: Throughput tree-based pool

Figure 2.9: Throughput of wait-free array-based pool and lock-free tree-based pool in scenario
enqueue/dequeue-pairs, by preallocation ratio

Tree pool Array pool

610 k

1.7 M

2.8 M

4 M

5.1 M

6.2 M

2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

threads

op
er

at
io

ns
/

se
c

Number of iterations 1 M 100 k 10 k 1 k

EDB: Throughput tree-based pool

Figure 2.10: Throughput of wait-free array-based pool and lock-free tree-based pool in scenario
enqueue/dequeue-bulk, by number of iterations

2.1 M

13 M

24 M

35 M

46 M

57 M

2 4 8 12 16 20 24 28 32

threads

op
er

at
io

ns
/

se
c

Number of iterations 1 M 100 k 10 k 1 k

EDB: Throughput compartment pool

Figure 2.11: Throughput of wait-free array-based compartment pool in scenario
enqueue/dequeue-bulk with K = 5, by number of iterations

33

2.5 Queues 2 Wait-free data structures

Tree pool Array pool Compartment pool

64 k

1.1 M

2.1 M

3.2 M

4.2 M

5.2 M

3231292725211713951 3231292725211713951 3231292725211713951

threads

op
er

at
io

ns
/

se
c

Implementation Tree pool Array pool Compartment pool

Scenario ADR: Overall throughput

Figure 2.12: Throughput of wait-free array-based pool and lock-free tree-based pool in scenario
allocator/deallocator race, for increasing number of producers and decreasing number of
consumers, by number of producers

RemoveAny

max: 316.728 ms

max: 67.728 ms
max: 44.82 ms

max: 530.868 ms max: 492.024 ms

max: 38.844 ms

max: 756.96 ms max: 683.256 ms

max: 80.676 ms

190

379

568

757

190

379

568

757

190

379

568

757

prealloc:0%
prealloc:33%

prealloc:66%

arraypool compartmentpool treepool

Implementation

Queue benchmark scenario ED-B: Enqueue/dequeue with increasing preallocation

Figure 2.13: Observed latencies in pool benchmark scenario enqueue/dequeue-pairs with
preallocation ratio from 0-66%, pool capacity of 300000 objects, 1000 iterations

34

2 Wait-free data structures 2.5 Queues

2.5.1 Definitions

The sequential queue data type is well known and semantics need little clarification. It
provides the following operations:

Dequeue(q, e, s)) add element e to queue q. Returns a boolean value s indi-
cating whether the operation was successful.

Enqueue(q, (e,s)) remove an element from queue q and assign its value to
e. Returns a tuple of e and a boolean value s indicating
whether the operation was successful.

A concurrent queue must be linearizable to a sequential queue with FIFO semantics
[MS07]. Linearizability permits arbitrary execution order of overlapping operations
[Her, p. 57] as their linearization points may occur anywhere between their invocation
and response. In effect, FIFO element order is not necessarily maintained within small
intervals or even impossible to argue for high contention.

2.5.2 Adapting the Kogan-Petrank wait-free queue for embedded systems

A practicable wait-free queue for an arbitrary number of enqueuers and dequeuers has
been presented by Kogan and Petrank based upon the helping pattern [KP11]. Their
algorithm is a construction from the Michael-Scott queue, which is represented as a
single-linked list.

Mechanisms in the Kogan-Petrank queue closely resemble the wait-free simulation tech-
nique presented recently by the same authors. Enqueue- and dequeue operations are
transformed into three subsequent sub-steps: A preparation method announcing the op-
eration, a method that applying an operation to the queue that also contains its lineariza-
tion point, and a final cleanup procedure passing the operation’s result to its owner. The
full implementation is listed in Appendix B of this work.

The pseudo code in the original publication could be directly reimplemented in C++, but
some aspects of the data structure’s design do not comply with restrictions of real-time
and embedded software:

Dynamic memory management Underlying containers are allocated dynamically and
have to be replaced by pools with limited capacity.

Garbage collection The published design originates from an implementation in Java
and therefore requires automatic memory management.

Atomic instructions Compare-And-Swap is used on operation description objects which
are 64 bit wide. This instruction is not universally supported.

Monotonic counter To help operations in FIFO order, operation descriptions contain a
monotonic phase counter that is prone to overflow.

As an alternative to garbage collection, Kogan and Petrank suggest hazard pointers. They
argue that wait-freedom of the queue algorithm was maintained as the safe memory recla-
mation scheme is wait-free. This argument is incomplete: While the hazard pointer algo-
rithm achieves wait-freedom, aperations establishing a hazard pointer guard is a lock-
free routine, as explained in subsection 2.2.3 of this work.

Dynamic memory allocation can be easily replaced by pools in principle, but a maxi-
mum capacity must be known for every pool. With hazard pointers guarding queue

35

2.5 Queues 2 Wait-free data structures

nodes, some amount of pool elements is retained as retired nodes. The element pool’s
capacity must be extended by the maximum number of retired nodes, which is un-
known.

Eventually, we successfully in ported the Kogan-Petrank queue to an implementa-
tion in C++ that respects all mentioned restrictions and meets the following require-
ments:

C++03
The queue data structure must be implemented C/C++ following the C++03 lan-
guage standard, and must not rely on architecture-specific conditions.

Memory reclamation
The data structure and its memory reclamation mechanisms must be wait-free.

Storage allocation
Memory must only be acquired via automatic or static allocation within object
initialization, i. e. in the constructor.

Counters
An alternative for the phase counter has to be found that does not utilitze a monotonic
counter.

This required modifications on the original algorithms which are discussed in detail in
the following.

Integration of hazard pointers in the Kogan-Petrank queue

Michael describes the following state of an allocatable node that can guarded by a hazard
pointer:

Allocated Acquired, but not inserted into a data structure
Reachable Reachable by following links from the root of a data structure
Removed Not reachable, but still being accessed by the removing thread
Retired Flagged as retired by the removing thread
Free The node’s memory is available for allocation.
Unavailable The node’s memory is used by an unrelated object.

The Free and Unavailable states must be published to all threads when they engage
in concurrent operations of a guarded node. Most relevant for ARM architectures,
reordering of instructions must be taken into account whenever a hazard pointer guard
is established.

Accesses to atomics, such as operation description objects, implicitly flush the cache line
they are loaded into, which conveniently prevents false sharing. Our implementation
builds upon atomic primitives from the EMBB library which automatically perform a full
fence before and after read-modify-write operations. Still, specific coding conventions
must be followed to prevent reordering.

Consider the code snippet in Figure 2.14. in line 9 depend on states of head and next,
and appear to be safe: According to the source code, guards on both variables are in
effect before changing the object’s state. The atomic read on next was put before the
loop body to cache its value, and it will only be guarded if the state of head is unchanged
to avoid an unnecessary guard. This paradigm is common practice with the intent to
minimize active guards and avoid expensive atomic instructions within a loop. As a

36

2 Wait-free data structures 2.5 Queues

1 // ...
2 aptr head = Head.Load();
3 aptr next = head->Next.Load();
4 while(cond) {
5 hp.GuardPointer(0, head);
6 if (head == Head.Load()) {
7 // -- mfence ---------------------
8 hp.GuardPointer(1, next);
9 ModifyState(head, next);

10 hp.ReleaseGuard(1);
11 }
12 else {
13 hp.ReleaseGuard(0);
14 }
15 }
16 // ...

1 // ...
2 aptr head = Head.Load();
3 aptr next = head->Next.Load();
4 while(cond) {
5 hp.GuardPointer(0, head);
6 hp.GuardPointer(1, next);
7 if (head == Head.Load()) {
8 // -- mfence ---------------------
9 ModifyState(head, next);

10 hp.ReleaseGuard(1);
11 }
12 else {
13 hp.ReleaseGuard(0);
14 }
15 }
16 // ...

Figure 2.14: Use cases of hazard pointers and effect of atomic operations on reordering

1 // ...
2 pointer p = node.Next;
3 // -- possible change of node.Next --
4 while(hp.GuardPointer(p) && p != node.Next) {
5 hp.ReleaseGuard(p);
6 }
7 // ...

Figure 2.15: A retry-loop guarding a reference using hazard pointers

consequence, there is no memory barrier between guarding and passing next, though.
Any reordering of operations within the loop body could result in an access hazard. This
can be easily corrected by a small change: The guard operation on next is moved before
reading from head, so the implicit memory barrier in line 7 ensures that the guard state
is published to all threads.

The Hazard Pointers technique introduces an inconvenient problem when used in wait-
free algorithms in particular: As a pointer value can be changed by another thread before
the its guard is taking effect, it has to be re-checked after calling Guard. In the examples
given by Michael, this is implemented by retrying in an infinite loop as illustrated in Fig-
ure 2.15, a solution that conflicts with wait-free requirements.

For wait-free algorithms, additional effort is needed to guarantee guarding will only fail
for a limited number of times. For integration in the Kogan-Petrank queue, retry loops
are avoided by taking advantage of its proven linearizability.

An obvious ABA-hazard are pointers to queue nodes in operation descriptions. Nodes
are only deallocated in dequeue operations, and guarding the pointer to the element
to be dequeued is sufficient in this case. After the guard is established, a CAS on the
operation description of the current dequeue is performed. There is no need to check
whether the node pointer has changed:

• If the CAS succeeds, no other thread can be engaged in any operation affecting this
element. Consequently, no other thread could have changed the pointer before its

37

2.5 Queues 2 Wait-free data structures

guard was in effect, so the guard is valid.
• If it fails, the operation description has changed. This, however, strictly implies

that another helper thread completed the dequeue first. The guarded pointer value
is invalid, but also became irrelevant: The operation that lost the CAS is cancelled
and releases the guard.

Redesign of operation prioritization in the Kogan-Petrank queue

Kogan and Petrank mention the possibility of an overflow of the phase value, as it is
incremented monotonically. An overflow of the phase would not lead to an inconsistent
state of the queue, but could lead to arbitrary delay of an operation, given very specific
circumstances.

In Kogan and Petranks pseudo code, also phase values of inactive operation descriptions
are considered when obtaining the maximum phase. This is surprising, as completed
operations cannot affect the state of the queue. The original work gives no expla-
nation for this algorithmic detail. Presumably, the intention is to increment phase
values monotonically. A specific counter value will not reocurr in any operation
that is announced in a later phase when following the pseudo code in the publica-
tion.

thread

op.desc.

pending
phase

false

4

op.desc.

pending
phase

true

10

op.desc.

pending
phase

true

5

op.desc.

pending
phase

true

3

op.desc.

pending
phase

true

7

help

Figure 2.16: Order of helping operations by phase in the Kogan-Petrank queue

A monotonically incremented phase counter provides an obvious guarantee for cor-
rect prioritization. On the other hand, considering that ABA conditions might arise
from overflow, it is highly undesirable. Kogan and Petrank mention the possibil-
ity of an overflow of the phase value, but consider it unlikely for a wide integer
type.

When modifying the algorithm so phase values of completed operations are ignored, the
phase count might fall back to any prior value. If no prior operation is in pending state,
a new operation is initiated with phase value starting over at 1. In experiments, this
reduced the maximum phase value used in long-running scenarios by several orders
of magnitude, rendering overflow of the phase counter less likely. However, it must be
ensured that this modification does not harm correctness.

To give a sketch for a proof of correctness of the Kogan-Petrank queue using the modified
phase counter:

1. In the queue’s initial state, prioritization is irrelevant for the first announced
operation.

2. Assuming any amount of operations on the Kogan-Petrank queue have been
completed so all operation descriptions are in non-pending state.

38

2 Wait-free data structures 2.5 Queues

3. In this case, the queue’s state is indiscernable from its initial state and prioritization
is irrelevant.

4. Otherwise, a phase value will only be reused if and only if all pending operation
have a lower phase.

5. Consequently, if a phase value is reused for an operation, all operations will be
helped before executing this operation.

6. In conclusion, prioritization is intact.

This intuition has been confirmed by verification using DiVine, but even when allowing
the counter to fall back, overflow is still possible.

It is thinkable to use a kind of windowed arithmetic (“bounded counter”) for phase
numbers in order to employ a comparison operator that is robust against overflow.
Finally, we found that prioritization also can be achieved with strategies that replace the
phase entirely.

thread

op.desc.

pending false

op.desc.

pending true

op.desc.

pending true

op.desc.

pending true

op.desc.

pending true

help

Figure 2.17: Order of helping operations without phase in the modified Kogan-Petrank queue

In the final implementation, the phase scheme is removed, which also eliminates the
need to resolve its maximum for every enqueue and dequeue operation. Instead, every
thread iterates pending operations in the global array starting at the index succeed-
ing its own, until it reaches its own operation. Consequently, every other thread is
helped first, disregarding the age of its operation announcement. The C++ imple-
mentation of the modified help procedure is shown in Listing 2.4 and illustrated in
Figure 2.17.

1 if (!desc.Pending) continue;
2 if (desc.Enqueue)
3 HelpEnqueue(tId % numThreads);
4 else
5 HelpDequeue(tId % numThreads);
6 }
7 }
8 void DeleteNodeCallback(index_t releasedNodeIndex) {
9 nodeIndexPool.Add(releasedNodeIndex);

10 }
11 };

Listing 2.4: Implementation of the modified help procedure in the wait-free Kogan-Petrank without phase
counter

A different condition for prioritization is achieved: When a thread t0 traverses oper-
ations its helping loop, it possibly helps operations first that have been announced
after its own. But likewise, any helped thread ti is guaranteed to first complete the

39

2.5 Queues 2 Wait-free data structures

operation announced by t0 before their own, so prioritization is intact even for high
contention.

Wait-freedom and linearizability are maintained. The probability for an operation to
be helped monotonically increases while at least one thread is engaging in an opera-
tion.

This principle is not restricted to the Kogan-Petrank queue. It applies to all wait-free
data structures that employ the operation state helping scheme, including any algorithm
that follows the wait-free simulation technique.

Defining an upper bound for memory overhead of hazard pointers

In embedded system application development, dynamic memory allocation at run-time
is forbidden as it introduces non-determinism. Data structure are therefore allocated
statically, based on their worst-case memory consumption. Therefore, upper bounds
for memory consumption are required for every data structure, possibly depending on
their initialization arguments like container capacity, or any other parameter known at
boot-time.

For the Hazard Pointers technique, memory is allocated for the global array of hazard
pointers and the thread-local lists of retired nodes; the latter pose a problem.

The mechanisms behind the hazard pointers scheme need to be explained in more detail
for a solution: Whenever a thread’s retired list exceeds a threshold, it performs the scan
routine to free retired nodes that have no associated active guard in the global hazard
pointer list. The maximum amount of all nodes in the threads’ retired lists must be held
available for allocation in addition to the queues capacity, as they are not yet freed, but
also unused.

Upper bounds for the number of nodes in retired lists contribute to the memory footprint
of any data structure employing hazard pointers, and include the maximum amount of
nodes at any time that are eligible for reuse, but not deallocated yet. Michael presents a
maximum of the number of retired nodes that are not eligible for reuse (guarded), and
a lower bound for nodes freed in a deallocation scan. The following definitions are
given:

K hazardpointersperthread
N = K · T hazardpointersintotal (2.6)
R = Ω(N) = 1.25 · K · T threshold

with N hazard pointers in T threads. The threshold R defines the size of the local retired
list that triggers the Scan procedure. The lower-bound function Ω(x) is usually defined
as x · 1.25 in implementations.

From the definition of the hazard pointers’ Scan routine, we derive the following upper
memory bounds:

40

2 Wait-free data structures 2.5 Queues

UBC = C · size(E) container capacity (2.7)
UBRG = K · T · size(HPRecord) max. guarded nodes in a retired list (2.8)
UBRF = R · size(HPRecord)−UBRG (2.9)

retired nodes eligible for reuse (2.10)

UB = T2 · 1.25 · K + UBC (2.11)
hazard pointers in total (2.12)

With UB as an upper bound for memory consumption overhead in a data structure
with capacity C that require at most one guard for every element of type E, such as the
Kogan-Petrank queue.

Finally, UB is the maximum number of nodes that must be available for allocation
and thus the minimum element pool capacity in the modified wait-free Kogan-Petrank
queue.

In general, a maximum amount of guarded nodes for any operation has to be known to
employ hazard pointers. Michael demonstrated hazard pointers in lock- free implemen-
tations of a list and a stack in his original publication on hazard pointers [Mic04a]. In
these cases, at most two hazard pointer per thread is sufficient, as no operation needs to
guard more than two node indexes at any time. For some implementations of e.g. graphs
and trees, a maximum amount of guarded nodes per operation does not inherently exist,
though.

2.5.3 Benchmarks

Publications on queue algorithms present results from the same common benchmark
scenarios for decades. The enqueue/dequeue pairs scenario as described for pools in
the last section has originally been defined for queue data structures, but applies to set
semantics in general.

The most prevalent metric in evaluation of queues derives from FIFO order: when used
for buffered communication between threads, how long will it take to transfer a specific
amount of elements?

In the buffer benchmark scenario, producer threads add a set of elements to a shared
queue. In parallel, consumer threads continuously try to dequeue elements until all
elements have been transferred to consumers. The scenario corresponds to common
real-world use cases where computation is distributed to parallel tasks yielding partial
results.

Buffer performance is then evaluated for overall throughput as the amount of elements
transferred per second, and buffer latency, the amount of time elements spent in the
buffer.

Also, some publications on queue and stack data structures mention a random 50/50
scenario. Threads initially acquire some elements and randomly either release or
acquire a single element in a loop; performance is measured in operations per sec-
ond.

41

2.5 Queues 2 Wait-free data structures

Custom scenarios

FIFO buffer latency highly depends from the buffer’s fill rate. For an empty queue,
a single element can be enqueued and dequeued immediately, yielding minimum
buffer latency. Results in parallel scenarios may depend from scheduling, however.
Latency increases significantly if producer threads are executed predominantly, even
if this inbalance only occurs once and for a limited time span in the entire bench-
mark run: Once a large amount of elements has been enqueued without interleav-
ing dequeue operations, fill rate increases and measured latency of all following el-
ements is raised by a near-constant time interval until the fill rate drops back to 0
again.

Related work does not consider influences from scheduling, presumably because fair
scheduling is assumed and evaluation is based on averaged measurements. For a
reasonably high number of iterations, measurements will level out in mean and me-
dian.

Fluctuation of maximum latency due to slight differences in scheduling cannot be
eliminated this way, and even worsens for higher numbers of iterations. Scenarios
have to be specifically designed for measuring maximum latency, but fortunately, a
slight modification to the buffer scenario is sufficient: At the end of the iteration loop
of a producer threads, it is put to sleep for a short period of time. The producers’
think time allows consumer threads to reduce fill rate, and imitates real-world use cases
even better: Producer threads spend time on computing a result before it is put in a
buffer.

In our implementation of the buffer benchmark, producers enqueue a series of indexed
queue elements which contain their respective enqueue timestamp. The same amount of
consumers threads continously try to remove an element from the queue and measure
buffer latency as the difference of an element’s timestamp and the point in time it has
been removed from the queue.

The time measured from enqueueing the first element until dequeueing the last element
is overall throughput, represented as elements per second.

2.5.4 Evaluation

test nT threads capacity c pre-allocation r i iterations ia allocs / i

ED-P 2-32 100 k 0 - 0.9 2500 190
ADR 1:32 - 32:1 320 k 32 · ia = 0.5 1 5000
BUF 2:2 - 16:16 nP · ia 0 10 k 8

The evaluated queue implementations allocate nodes from a pool, so performance of
allocation is supposed to affect execution time especially of enqueue operations. We
add two test candidates koganpetrank-pl-tp and michaelscott-ap, a Kogan-Petrank
queue allocating nodes from a lock-free tree-based pool, and a Michael-Scott queue with
an instance of the wait-free array pool. This allows to compare performance of the queue
algorithms on eye level, without implicitly benchmarking their allocation mechanism.
Furthermore, the impact of pool algorithms on the performance of data structures using
them becomes apparent.

42

2 Wait-free data structures 2.5 Queues

The Michael-Scott queue has two central points of conflict according to the previous
definition in Figure 2.4.7 for enqueue- and dequeue operations if a queue instance holds
more than one element. As a consequence, performance of either operation should not
be affected by the other. In principle, this also applies to the Kogan-Petrank queue,
as it is a construction of the Michael-Scott queue. But the helping pattern makes a
difference in the wait-free implementation: Any enqueue operation possibly helps
pending dequeue operations first, and vice versa. Consequently, both methods access
their central points of conflict mutually which might affect contention under high
load.

op
er

at
io

ns
/

se
c

87 k

230 k

360 k

500 k

640 k

780 k

2 4 8 12 16 20

threadspreallocation % 0 25 50 75

Throughput KP queue, with phase counter

87 k

230 k

360 k

500 k

640 k

780 k

2 4 8 12 16 20

threads

Throughput MS queue, with tagged pointers

op
er

at
io

ns
/

se
c

76 k

210 k

350 k

490 k

630 k

760 k

2 4 8 12 16 20

threadspreallocation % 0 25 50 75

Throughput KP queue, without phase counter

76 k

210 k

350 k

490 k

630 k

760 k

2 4 8 12 16 20

threads

Throughput MS queue, with hazard pointers

Figure 2.18: Throughput of the modified Kogan-Petrank queue without phase, and modified
Michael-Scott queue with hazard pointers, by preallocation

The principle of the allocator/deallocator race scenario seems ideal to put this intuition
to the test. Unfortunately, it is impracticable for test of queues using the array-based
pool. As described in the previous section, the test setup requires to pre-allocate about
half of the pool capacity. To little surprise, execution time of allocation occluded the
performance of the actual queue operations in experiments on queues that use the
array-based pool. Therefore, we use tree-based pools for both queue instances in this
scenario. This modification gives meaningful measurements displayed in Figure 2.20,
but memory management and consequently all operations in the Kogan-Petrank queue
are formally not wait-free.

As an alternative, the buffer scenario allows to evaluate for different numbers of en-
queuers and dequeuers, too. Surprisingly, all queue implementations are en par when

43

2.6 Stacks 2 Wait-free data structures

Add RemoveAny
max: 801.78 ms

max: 676.284 ms

max: 302.784 ms

max: 297.804 ms max: 320.712 ms max: 276.888 ms

max: 279.876 ms

max: 55.776 ms

max: 295.812 ms

max: 394.416 ms
max: 286.848 ms

max: 75.696 ms

max: 273.9 ms max: 271.908 ms max: 292.824 ms

max: 274.896 ms

max: 51.792 ms

max: 307.764 ms

202

402

602

802

202

402

602

802

202

402

602

802

1000
x

60
enq,deq

100
x

600
enq,deq

10
x

6000
enq,deq

koganpetrank koganpetrank-pl michaelscott koganpetrank koganpetrank-pl michaelscott

Implementation

Queue benchmark scenario ED-B: Enqueue/dequeue with increasing bulk size

Figure 2.19: Observed latencies in queue benchmark scenario enqueue/dequeue-pairs with
preallocation ratio from 0-66%, queue capacity of 300000 objects, 1000 iterations

comparing maximum latency in this test configuration. On closer inspection of the
distribution of latencies illustrated in Figure 2.19, the wait-free Kogan-Petrank queue
even achieves lower buffer latencies for most elements, especially in the two produc-
ers / two consumers setup. The helping pattern is a logical explanation: Unlike the
Michael-Scott queue, all threads help both enqueue- and dequeue operations whenever
they modify the queue. In fact, upper bound and median of measured buffer latency of
the Kogan-Petrank queue even improve when more threads are active in the tested con-
figurations. Presumably, this is because announced operations are reached sooner when
more threads traverse the operation description array.

2.6 Stacks

Like pools and queues, stack data structures implement bag semantics and are frequently
used to represent pools in literature. The well-known operations of the stack data type
are:

Push(s,e) Puts an element e on stack s
Pop(s,e) Removes and returns element e from stack s

44

2 Wait-free data structures 2.6 Stacks

Buffer

max: 5446.144 us max: 5257.984 us max: 4789.76 us

max: 3396.352 us

max: 6479.872 us

max: 8705.024 us

2178

4353

6529

8705

2178

4353

6529

8705

p:1
c:1

p:2
c:2

koganpetrank-pl michaelscott michaelscott-ap

Implementation

O
bs

er
ve

d
la

te
nc

y
(u

s)
Queue buffer benchmark scenario

Figure 2.20: Observed latencies in queue benchmark scenario buffer with 1/1 and 2/2
producer/consumer threads

Literature and related work do not agree on the behaviour of concurrent stacks, especially
when trying to remove an element from an empty stack, or how LIFO consistency should
be maintained under high load.

We define semantics for the stack data type as the following axiomatic specification:

isEmpty(emptyStack()) = TRUE (2.13)
isEmpty(push(e, s)) = FALSE (2.14)

pop(s = emptyStack()) = (FALSE, Unde f ined, s) (2.15)
pop(push(e, s), s) = (TRUE, e, s) (2.16)
push(pop(e, s), s) = (TRUE, e, s) (2.17)

Considering element order, we follow the definition of linearizability which allows arib-
trary execution order for operations that overlap in a history.

2.6.1 An efficient wait-free stack for multiple producers and consumers

It is tempting to derive a stack data structure from the Kogan-Petrank queue, now that a
suitable implementation is available. However, the helping procedure in the wait-free
queue is not easily adapted for LIFO semantics.

One could transform Treiber’s lock-free stack using the wait-free simulation technique
explained in subsection 2.2.2. A core element of its design is an instance of the Kogan-

45

2.6 Stacks 2 Wait-free data structures

Add RemoveAny

max: 40.836 us
max: 48.804 us

max: 46.812 us max: 44.82 us

max: 48.804 us
max: 36.852 us

max: 43.824 us

max: 26.892 us

max: 48.804 us max: 47.808 us

max: 55.776 us
max: 47.808 us

2

15

29

42

56

2

15

29

42

56

2

15

29

42

56

p:3
c:1

p:2
c:2

p:1
c:3

koganpetrank-pl-tp michaelscott koganpetrank-pl-tp michaelscott

Implementation

O
bs

er
ve

d
la

te
nc

y
(u

s)
Queue benchmark scenario ADR

Figure 2.21: Observed latencies in queue benchmark scenario allocator- / deallocator race with
varying balance of allocator- and deallocator threads

Petrank queue as a container of operation descriptions to achieve wait-free, linearizable
access to announced operations. As all operations interact with the operation buffer,
performance of any algorithm based on this method is limited by the underlying wait-
free queue.

In general, semantics of the stack introduce a drawback considering efficient parallel
access: Concurrent modifiying accesses interfere in every operation as accessors operate
on the same head reference, which is a single point of contention as described in subsec-
tion 2.4.7. Evidently, the contention rate is thus considerably higher as compared to a
concurrent queue where enqueue- and dequeue-operations do not conflict if the queue
is non-empty.

Semantics in Equation 2.13 describe that methods push and pop are idempotent in
composition, that is: the state of a stack object is effectively unchanged if two subsequent
operations do not invoke the same method. Obviously, a call to pop reverts the effect
of an immediately preceeding call to push on the stack. It is desireable to employ the
elimination scheme explained in subsection 2.2.6 which is known to improve scalability
of stack algorithms in related work. Fatourou’s wait-free universal construction P-Sim
achieves scalability based on elimination, and it is argued that it can be directly applied
to stack algorithms in its original publication [FK11].

We implemented a wait-free stack for multiple enqueuers and dequeuers following

46

2 Wait-free data structures 2.6 Stacks

Fatourou’s methodology. Compared to Kogan and Petrank’s wait-free simulation, P-Sim
describes a more flexible and concise interface.

The construction is essentially contained in a central function ApplyOperation that
accepts a generic reference to a shared object, and a reference to a function. The latter
implements a modification on it in a sequential manner, i. e. disregarding concurrency.
A any concurrent operation on the shared object. In Fatourou’s helping mechanism,
threads announce their activity by setting a dedicated bit in a global atomic variable that
serves as a bit field. This method is in effect identical to the announcement of pending
operation descriptions in the wait-free queue. Using an atomic variable, however,
thread can easily obtain a snap shot of all pending operations at the time of their own
announcement.

In the helping phase of the wait-free stack, all ative push operations are completed
before all pending pop operations, which also realizes eliminiation of these operations.
The complete implementation in C++ is listed in section B.2. Pointer tags have been
replaced by Michael’s hazard pointers scheme.

Different from the Kogan-Petrank queue, threads do not perform own or helped opera-
tions on the shared object, but on a local copy of its global state. Once all operations are
applied, they try to replace the global state with their modified local copy atomically
using CAS. A successful CAS is the algorithms linearization point. A thread has to retry
this copy-modify-apply cycle only once, as its operation is guaranteed to be completed
by another thread if a second CAS fails.

While this is an elegant design, SIM and its variant P-SIM require that the object’s state
is contained in a CAS-compatible variable. This is easily achieved for a stack, and also
for a queue’s head and tail pointers. However, the state of data structure objects with
higher order, such as trees and graphs, is not limited and therefore not compatible with
existing atomic read-modify-write instructions. As data structures exist that cannot be
implemented using P-SIM, it is actually not a universal construction due to technical
restrictions.

As common in related work, the publication of the P-SIM algorithm does not include
wait-free memory reclamation. In fact, memory is not reclaimed at all in the presented
pseudo code. Also, allocation and deallocation need an additional undo-methodolody
in P-SIM: Whenever a thread allocates an element for a Push operation, it must be freed
if the final CAS on the global state fails. Likewise, elements cannot be freed in Pop
immediately, as the overall operation might fail.

In the modified implementation listed in Appendix B of this work, allocation and
deallocation is delayed and only performed after the linearization point. For this, the
capacity of the stack’s shared element pool must be increased by the maximum amount
of thread operating on the stack, as every thread can only enqueue at most one element
at any time.

2.6.2 Verification

Most verification scenarios defined for the queue data type can be reused for stacks as
both implement bag semantics.

Assertions on element order are straight-forward in tests for queue objects: It suffices to
enqueue timestamp elements and verify total order of dequeued elements. Verification

47

2.6 Stacks 2 Wait-free data structures

0 1 2 3 5 6 74Tpush

3 1 56 0Tpop1

2 4 7Tpop2

t

Figure 2.22: Schedule demonstrating dequeued element order on a concurrent SP/MC stack

of LIFO order requires a more complex technique. The observed order of dequeued
elements from a concurrent stack can seem arbitrary despite being correct, even for just
one enqueuer and one dequeuer. An example of a schedule with observed dequeued
elements is illustrated in Figure 2.22. The order of elements potentially even degenerates
to FIFO order, i. e. in a schedule that is alternating between enqueue- and dequeue
operations.

A decision on correct temporal element order for more than one consumer thread seems
even more complex. There is no apparent pattern that could be used within the consumer
threads dequeue-loops to identify out-of-order cases. Monotonic time-stamps could
serve as sequence numbers, but are not equidistant.

A viable solution for run-time assertions on LIFO element order is sketched in Figure 2.23.
Producer threads put elements on the stack that contain a tuple (p, seq) containing the
producer thread’s identifier and a sequence number that is local to the producer thread
and incremented for every element. Consumer threads cannot assert on a complete
series of sequence numbers, but an assertion on the maximum dequeued sequence
number is an equivalent solution. Every dequeued element dequeued in iteration i then
must contain a sequence number seqdeq[p][i]:

1. that is smaller by exactly one increment than the sequence number in the last
dequeued element from the same producer thread p

2. that is greater than all sequence numbers from the same producer thread dequeued
in previous iterations.

This test does not require any synchronization mechanism between the threads. For
an element dequeued in iteration i with sequence value seqi, the assertion is defined
as:

assert (seqi = seqdeq[p][i− 1]− 1 ∨ seqi > seqmax[p])

After all threads, the series of all dequeued sequence numbers is simply asserted
against gaps and duplicates to verify that all elements have been enqueued and de-
queued.

2.6.3 Evaluation

For performance analysis of the stack algorithms, we apply benchmark scenarios that
have earlier been defined for pools and queues:

48

2 Wait-free data structures 2.6 Stacks

v
a
lu

e
 r

e
t
u
rn

e
d
 f
ro

m
 P
o
p
(
)

time

thread 0 thread 1

max 0

max 1

2

4

6

8

Figure 2.23: Maximum value constraints in verification of concurrent LIFO order for a series of
monotonically incremented values

test nT threads capacity c pre-allocation r i iterations ia allocs / i

ED-P 2-32 100 k 0 60 k 190
BUF 2:2 - 14:14 nP · ia 0 10 k 8

Effects of elimination that is only integrated in the wait-free stack are evident. The
lock-free stack shows coomparable constant overhead and achieves higher completion
rates if only a few threads are active. Already for 4 threads, contention is high enough to
observe benefits from elimination.

Both implementations can be considered en par in latency measurements of operations
Add and RemoveAny summarized in Figure 2.25. These results are different from pre-
vious experiments with the Kogan-Petrank queue, where latency was notably higher
compared to a lock-free queue implementation. Consequently, the effective constant
overhead of the wait-free operations is arguably low compared to other constructions
such as wait-free simulation, despite additional complexity due to wait-free progress
guarantees.

49

2.6 Stacks 2 Wait-free data structures

WF stack LF stack

390\,k

620\,k

850\,k

1.1\,M

1.3\,M

1.5\,M

1 2 4 8 12 14 1 2 4 8 12 14

producer threads = consumer threads

op
er

at
io

ns
 /

se
c

Implementation WF stack LF stack

BUF: Throughput of lock−free and wait−free stack

Figure 2.24: Throughput in stack benchmark scenario buffer, 200000 iterations

Add RemoveAny

max: 27.904 ms max: 28.928 ms

max: 31.744 ms
max: 37.888 ms

max: 24.832 ms max: 25.856 ms

max: 25.856 ms max: 28.928 ms

max: 26.88 ms max: 23.808 ms

max: 27.904 ms
max: 23.808 ms

10

20

30

40

10

20

30

40

10

20

30

40

2
thread

3
threads

4
threads

lockfreestack simstack-ap lockfreestack simstack-ap

Implementation

O
bs

er
ve

d
la

te
nc

y
(m

s)

Stack benchmark ED-P: Enqueue/dequeue with increasing number of threads

Figure 2.25: Observed latencies in stack benchmark scenario enqueue/dequeue pairs, 60000
iterations

50

3 Task Scheduling

Different from scheduling on operating system level, intra-task scheduling coordinates
the execution of short, light-weight tasks in worker threads within a single process in
user space. This chapter reviews related work on work stealing and work dealing, two
common paradigms in this context. Finally, we present a variant of work-stealing that
integrates task priorities in a practicable way.

3.1 Introduction

Most concurrency frameworks such as OpenMP1 provide integrated patterns for paral-
lelization of small program blocks. For example, iterations of loops annotated as parallel
for are unfolded into single tasks and distributed to multiple worker threads. With many
task groups competing for CPU time, user-space scheduling mechanisms coordinate their
execution similar to system-wide scheduling within the kernel.

The next subsection describes fundamental principles of task-scheduling that are com-
mon in literature, followed by a summary of related work on specific approaches.

3.1.1 Technical foundations

As a common principle of work distribution on application level, fine-granular tasks are
instantiated as objects consisting of a the task body, typially a closure in the sense of a
lambda-function, and the task context. Tasks are only executed by a number of worker
threads in user space. Worker threads are created during initialization of the concurrency
framework and each assigned to a dedicated CPU core. Their life cycle only ends with
termination of the program.

To schedule a task object for execution, it is enqueued in a worker thread’s pub-
licly accessible task queue. This abstraction and short-living tasks allows to reassign
tasks between worker threads (and thus, CPU cores) easily, but with additional over-
head.

The basic principle of work stealing is to occupy idle cores with scheduling, and to allow
busy cores to focus on finishing their work. For scheduling fully-strict computations
This mode of thought has been proven as optimal [Pol13]. Workers obtain the next task
to execute either by dequeuing from the bottom of their local double-ended queue, or by
stealing from the bottom of other workers’ task queues. In the latter case, the threads are
named thief and victims respectively.

The term work sharing refers to load-balancing strategies where a scheduler actively mi-
grates tasks from processors under high load to those with capacity available [BL99].

1 Official OpenMP Website: http://openmp.org

51

3.2 Work-stealing with prioritization 3 Task Scheduling

It is sometimes beneficial to prevent worker threads from migration. For this, they
are configured with an affinity mask that instructs the operating system to execute
them on a given set of cores preferably. This practice is also referred to as CPU pin-
ning.

3.1.2 Related Work

Various paradigms for work sharing are known from related work, with work stealing
being the most prevalent. Compared to work sharing, Blumofe argues that work stealing
leads to less frequent migration of tasks, as worker threads only request tasks when they
have capacity available [BL99]. Supposedly, the locality of work sharing is inferior in the
common case. In addition, workers deal tasks from the top of queues in work sharing.
Work stealing ensures the oldest task is dequeued when stealing, and with it potentially
a coherent set of child tasks that it could spawn. This has a positive effect on locality and
reduces the frequency of (expensive) stealing [BJK+94].

Hendler and Shavit discussed the effects of cache locality on performance of real-time
systems and introduced work dealing as a suggested solution. Their method derives from
work-stealing, and borrows the concept of worker threads and task queues. As opposed
to work stealing, the latter are not owned by a single thread, the number of task queues
is not limited. An arbitrarily defined policy determines the queue a newly generated
task is added to, and from which queue an idle thread will retrieve the next task to
execute.

Herlihy raises the objection that under high load, exchange of tasks might rarely succeed
in work dealing. In this case, the mediation scheme has no benefit but only creates
additional overhead [Her, 16.4].

Nogueira focuses on work-stealing in real-time systems in a recent publication, but
does not provide empirical results [Pol13]. He describes an approach utilizing a global
earliest-deadline-first queue, where processor- specific queues are used as priority
queues of queues of tasks, and idle processors steal from the priority schedule upon all
processors. As an alternative, a constant bandwidth server processes high-prioritized
tasks in parallel to a work-stealing scheduler.

Additional schemes exist, such as work balancing, where worker threads actively exchange
tasks periodically [Her, p.].

3.2 Work-stealing with prioritization

The original description of work-stealing and related work do not consider preferred
execution of tasks by priority. The approaches presented by Nogueira are promis-
ing, but difficult to implement as portable components. As a pragrmatic solution, we
build upon a conventional design with worker threads that actively steal tasks from
victims. We introduce prioritization in the worker loops and stealing methodolgy as
follows:

Worker threads maintain a queue for every priority level provided by the runtime
framework. Tasks in the queue with highest priority will be executed first, as displayed in

52

3 Task Scheduling 3.2 Work-stealing with prioritization

Figure 3.1. Considering this modification, more specific strategies can be described that
define how and when tasks are stolen from victim threads.

core 2

worker
thread

pinned

core 1

worker
thread

pinned

-- empty --task

task

low priority

task

high priority

task

thiefvictim

Figure 3.1: Work stealing with task queues and pinned worker threads

Our implementation is based on the MTAPI standard and part of the current release 0.2.0
of the Embedded Multicore Building Blocks (EMBB) library 2.

In the default configuration of the scheduler, task migration follows the so-called Local
First principle: stealing only occurs if queues on all priority levels are empty, minimizing
overhead in task migration. The alternative Victim High Priority First allows to steal
from a victim queue with highest possibly priority as soon as the local queue with equal
priority is empty.

2 EMBB project website: http://github.com/siemens/embb

53

4 Summary

Referring to the problem statement in introduction, this last chapter summarizes results
and points out the most significant findings obtained in the course of this work.

4.1 Revisiting the objective

In this thesis, we discussed the state of the art of wait-free data structures and thor-
oughly examined related work for their suitability in embedded- and real-time applica-
tions.

Existing designs of a wait-free queue and stack algorithm have been adapted, resulting in
implementations of a wait-free queue and stack for an arbitrary number of threads. While
doing so, we described techniques and best practices that allow to achieve wait-free
progress guarantees, and to adapt general purpose data structure designs to constraints
on resource consumption and fault-tolerance.

Publications on wait-free algorithms leave memory management out of scope and refer
to hazard pointers as a proposed solution. We pointed out that hazard pointers do not
guarantee wait-freedom when employed, and also demonstrated how safe memory
reclamation can be integrated in the Kogan-Petrank queue and the P-SIM universal
construction. Allocation has been entirely replaced by pools presented in this work,
and no counter mechanisms are required. The resulting modified designs comply with
guidelines and constraints in real-time applications.

We discussed viable methodologies of evaluation and verfication in detail, and explained
common pitfalls, and how to avoid them. Benchmark scenarios have been derived from
data type semantics and real-world use cases in real-time applications. Obtained results
allow evaluation of worst-case performance criteria of and are easily applied to designs
presented in prior or future work.

4.2 Recommendations

Evaluation in this work demonstrated that effective optimization techniques can improve
throughput and latency of wait-free algorithms, rivaling performance of their lock-
free alternatives. This, however, only applies when allocation overheads have similar
complexity. Pools are an essential component in all dynamic containers regardless
of their semantics, and in effect limit their efficiency. A slightly optimized wait-free
pool has been discussed, but worst-case performance of wait-free allocation could
not be achieved below linear complexity. The most challenging restrictions apply for
the implementation of pools that are suitable for dynamic memory allocation within

55

4.2 Recommendations 4 Summary

containers; known optimization techniques thus cannot be applied without profound
modifications.

With a wait-free pool algorithm that itself does not rely on dynamic memory allocation
or techniques permitted by embedded software constraints, applicability of wait-free
data structures in general would greatly improve. The modified wait-free stack pre-
sented in this work could serve as a foundation of an efficient pool that benefits from
the elimination strategy. For this, safe memory reclamation must be redesigned to
eliminate the need for underlying memory management. With a promising solution
on its way, it is recommended to follow upcoming releases of the open source EMBB
project.

56

Bibliography

[BBH+13] J. Barnat, L. Brim, V. Havel, J. Havlicek, J. Kriho, M. Lenco, P. Rockai, V. Still,
and J. Weiser. DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded
C & C++ Programs. In Computer Aided Verification (CAV 2013), volume 8044
of LNCS, pages 863–868. Springer, 2013.

[BJK+94] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded
runtime system, 1994.

[BK08] C. Baier and J.P. Katoen. Principles of Model Checking. Mit Press, 2008.

[BL99] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46(5):720–748, September 1999.

[BNHS11] Gal Bar-Nissan, Danny Hendler, and Adi Suissa. A dynamic elimination-
combining stack algorithm. In Proceedings of the 15th International Conference
on Principles of Distributed Systems, OPODIS’11, pages 544–561, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[CER10] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal con-
struction for wait-free transaction friendly data structures. In Proceedings of
the Twenty-second Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’10, pages 335–344, New York, NY, USA, 2010. ACM.

[Don06] Brijesh Dongol. Formalising progress properties of non-blocking programs.
In Proceedings of the 8th International Conference on Formal Methods and Software
Engineering, ICFEM’06, pages 284–303, Berlin, Heidelberg, 2006. Springer-
Verlag.

[DT86] International Business Machines Corporation. Research Division and R.K.
Treiber. Systems Programming: Coping with Parallelism. Research Report RJ.
International Business Machines Incorporated, Thomas J. Watson Research
Center, 1986.

[EFK+12] Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, and
Corentin Travers. Universal constructions that ensure disjoint-access par-
allelism and wait-freedom. In Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, PODC ’12, pages 115–124, New York, NY,
USA, 2012. ACM.

[FK11] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-
free universal construction. In Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages
325–334, New York, NY, USA, 2011. ACM.

[Fra04] Keir Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge,
2004.

57

Bibliography Bibliography

[GPST09] Anders Gidenstam, Marina Papatriantafilou, Hakan Sundell, and Philippas
Tsigas. Efficient and reliable lock-free memory reclamation based on reference
counting. IEEE Trans. Parallel Distrib. Syst., 20(8):1173–1187, August 2009.

[Gun93] Neil J Gunther. A simple capacity model of massively parallel transaction
systems. In CMG-CONFERENCE-, pages 1035–1035. COMPSCER MEASURE-
MENT GROUP INC, 1993.

[Har01] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists.
In Proceedings of the 15th International Conference on Distributed Computing,
DISC ’01, pages 300–314, London, UK, UK, 2001. Springer-Verlag.

[Her]

[Her88] Maurice P. Herlihy. Impossibility and universality results for wait-free syn-
chronization. In Proceedings of the Seventh Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC ’88, pages 276–290, New York, NY, USA,
1988. ACM.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, January 1991.

[HLM02] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender prob-
lem: A mechanism for supporting dynamic-sized lock-free data structures.
Technical report, Mountain View, CA, USA, 2002.

[HS11] Maurice Herlihy and Nir Shavit. On the nature of progress. In Antonio
Fernández Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles of
Distributed Systems, volume 7109 of Lecture Notes in Computer Science, pages
313–328. Springer Berlin Heidelberg, 2011.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack
algorithm. In Proceedings of the Sixteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’04, pages 206–215, New York, NY, USA,
2004. ACM.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–
492, July 1990.

[Jay98] Prasad Jayanti. A complete and constant time wait-free implementation of
cas from ll/sc and vice versa. In Shay Kutten, editor, Distributed Computing,
volume 1499 of Lecture Notes in Computer Science, pages 216–230. Springer
Berlin Heidelberg, 1998.

[JP05] Prasad Jayanti and Srdjan Petrovic. Logarithmic-time single deleter, multiple
inserter wait-free queues and stacks. In Proceedings of the 25th International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS ’05, pages 408–419, Berlin, Heidelberg, 2005. Springer-Verlag.

[JP06] Prasad Jayanti and Srdjan Petrovic. Efficiently implementing a large number
of ll/sc objects. In JamesH. Anderson, Giuseppe Prencipe, and Roger Watten-
hofer, editors, Principles of Distributed Systems, volume 3974 of Lecture Notes
in Computer Science, pages 17–31. Springer Berlin Heidelberg, 2006.

[KP11] Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers
and dequeuers. SIGPLAN Not., 46(8):223–234, February 2011.

58

Bibliography Bibliography

[KP12] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data
structures. SIGPLAN Not., 47(8):141–150, feb 2012.

[Lam77] Leslie Lamport. Concurrent reading and writing. Communications of the ACM,
20(11), 1977.

[Man86] Udi Manber. On maintaining dynamic information in a concurrent environ-
ment. SIAM J. Comput., 15(4):1130–1142, nov 1986.

[Mic04a] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, June 2004.

[Mic04b] Maged M. Michael. Practical lock-free and wait-free ll/sc/vl implementations
using 64-bit cas. In In DISC 2004, vol. 3274 of LNCS, pages 144–158, 2004.

[Mic04c] Maged M. Michael. Scalable lock-free dynamic memory allocation. SIGPLAN
Not., 39(6):35–46, June 2004.

[MNSS05] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elimination
to implement scalable and lock-free fifo queues. In Proceedings of the Seven-
teenth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’05, pages 253–262, New York, NY, USA, 2005. ACM.

[MS95] Maged M. Michael and Michael L. Scott. Correction of a memory manage-
ment method for lock-free data structures. Technical report, Rochester, NY,
USA, 1995.

[MS98] Paul E. McKenney and John D. Slingwine. Read-copy-update: Using execu-
tion history to solve concurrency problems, 1998.

[MS07] M. Moir and N. Shavit. Concurrent data structures. In D. Metha and S. Sahni,
editors, Handbook of Data Structures and Applications, pages 47–14 – 47–30,
2007. Chapman and Hall/CRC Press.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database updates.
J. ACM, 26(4):631–653, October 1979.

[PMS09] Erez Petrank, Madanlal Musuvathi, and Bjarne Steesngaard. Progress guar-
antee for parallel programs via bounded lock-freedom. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’09, New York, NY, USA, 2009. ACM.

[Pol13] Polytechnic Institute of Porto (ISEP-IPP). On the use of Work-Stealing Strategies
in Real-Time Systems, Berlin, Germany, 2013.

[SKKE11] Eunhwan Shin, Inhyuk Kim, Junghan Kim, and Young Ik Eom. Strata: Wait-
free synchronization with efficient memory reclamation by using chronologi-
cal memory allocation. In Proceedings of the 2011 International Conference on
Computational Science and Its Applications - Volume Part V, ICCSA’11, pages
217–231, Berlin, Heidelberg, 2011. Springer-Verlag.

[SKSP] Philippe Stellwag, Jakob Krainz, and Wolfgang Schröder-Preikschat. A wait-
free dynamic storage allocator by adopting the helping queue pattern. In
Proceedings of the 9th IASTED International Conference, volume 676, page 79.

59

Bibliography Bibliography

[Sun05] Hakan Sundell. Wait-free reference counting and memory management. In
Proceedings of the 19th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS’05) - Papers - Volume 01, IPDPS ’05, pages 24.2–, Washington,
DC, USA, 2005. IEEE Computer Society.

[SZ96] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Trans. Comput. Syst.,
14(4):385–428, nov 1996.

[TBKP12] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free
linked-lists. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’12, pages 309–310, New York, NY,
USA, 2012. ACM.

[TP14] Shahar Timnat and Erez Petrank. A practical wait-free simulation for lock-
free data structures. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14, pages 357–368, New
York, NY, USA, 2014. ACM.

[TSP92] John Turek, Dennis Shasha, and Sundeep Prakash. Locking without blocking:
Making lock based concurrent data structure algorithms nonblocking. In
Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’92, pages 212–222, New York, NY, USA,
1992. ACM.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’95, pages 214–222, New York, NY, USA, 1995. ACM.

[vdB13] F.I. van der Berg. Model checking llvm ir using ltsmin. Master’s thesis,
University of Twente, December 2013.

[ZZY+13] Kunlong Zhang, Yujiao Zhao, Yajun Yang, Yujie Liu, and Michael Spear.
Practical non-blocking unordered lists. In Yehuda Afek, editor, Distributed
Computing, volume 8205 of Lecture Notes in Computer Science, pages 239–253.
Springer Berlin Heidelberg, 2013.

60

Appendices

61

A List of Figures

2.1 Interleaving operations of two threads illustrating the ABA problem . . 9

2.2 Periodical task execution times, optimized average case versus guaran-
teed worst case . 12

2.3 Announcing and helping operations in the general helping scheme . . . 14

2.4 The verification tool chain . 20

2.5 Semantics of the index pool data type (axiomatic specification) 26

2.6 Implementation of acquisition and release in the array-based pool 27

2.7 Structure of the array-based pool with thread-specific compartments . . 28

2.8 Structure of the array-based pool with thread-specific compartments . . 29

2.9 Throughput of wait-free array-based pool and lock-free tree-based pool
in scenario enqueue/dequeue-pairs, by preallocation ratio 33

2.10 Throughput of wait-free array-based pool and lock-free tree-based pool
in scenario enqueue/dequeue-bulk, by number of iterations 33

2.11 Throughput of wait-free array-based compartment pool in scenario enqueue/dequeue-
bulk with K = 5, by number of iterations 33

2.12 Throughput of wait-free array-based pool and lock-free tree-based pool
in scenario allocator/deallocator race, for increasing number of producers
and decreasing number of consumers, by number of producers 34

2.13 Observed latencies in pool benchmark scenario enqueue/dequeue-pairs with
preallocation ratio from 0-66%, pool capacity of 300000 objects, 1000
iterations . 34

2.14 Use cases of hazard pointers and effect of atomic operations on reordering 37

2.15 A retry-loop guarding a reference using hazard pointers 37

2.16 Order of helping operations by phase in the Kogan-Petrank queue . . . 38

2.17 Order of helping operations without phase in the modified Kogan-Petrank
queue . 39

2.18 Throughput of the modified Kogan-Petrank queue without phase, and
modified Michael-Scott queue with hazard pointers, by preallocation . . 43

2.19 Observed latencies in queue benchmark scenario enqueue/dequeue-pairs
with preallocation ratio from 0-66%, queue capacity of 300000 objects,
1000 iterations . 44

A List of Figures

2.20 Observed latencies in queue benchmark scenario buffer with 1/1 and 2/2
producer/consumer threads . 45

2.21 Observed latencies in queue benchmark scenario allocator- / deallocator race
with varying balance of allocator- and deallocator threads 46

2.22 Schedule demonstrating dequeued element order on a concurrent SP/MC
stack . 48

2.23 Maximum value constraints in verification of concurrent LIFO order for a
series of monotonically incremented values 49

2.24 Throughput in stack benchmark scenario buffer, 200000 iterations 50

2.25 Observed latencies in stack benchmark scenario enqueue/dequeue pairs,
60000 iterations . 50

3.1 Work stealing with task queues and pinned worker threads 53

64

B Code listings

Source code repositories

• Official EMBB release and development code base:
https://github.com/siemens/embb/
• Branch with wait-free containers and benchmark implementations for this thesis

(also contains R files used to generate plots):
https://github.com/fuchsto/embb/tree/benchmark

B.1 Implementation of the modified Kogan-Petrank queue

1 template<typename T,
2 typename ValuePool = WaitFreeArrayValuePool<bool, false>, [...] >
3 class WaitFreePhaselessQueue {
4 private:
5 typedef union OperationDesc_u {
6 struct OperationDesc_s {
7 bool Pending : 1;
8 bool Enqueue : 1;
9 index_t NodeIndex : 30;

10 } fields;
11 atomic_t Raw;
12 } OperationDesc;
13 static const index_t QUEUE_SIZE_MAX = 0x3FFFFFFE;
14 static const size_t NUM_GUARDS = 2;
15 CACHE_ALIGN Atomic<index_t> headIdx
16 CACHE_ALIGN Atomic<index_t> tailIdx;
17 size_t size, numThreads, node_pool_size;
18 Atomic<index_t> * operations;
19 ValuePool nodeIndexPool;
20 Node_t * nodePool;
21 inline size_t retiredListMaxSize(size_t nThreads) {
22 return static_cast<size_t>(1.25 *
23 static_cast<double>(nThreads) * static_cast<double>(num_guards)) + 1;
24 }
25 public:
26 WaitFreePhaselessQueue(size_t size, size_t numThreads) :
27 size(size),
28 numThreads(numThreads),
29 node_pool_size(retiredListMaxSize(numThreads) * numThreads + (size + 1)),
30 nodeIndexPool(0, node_pool_size)
31 {
32 nodePool = nodeAllocator.allocate(node_pool_size);
33 for (size_t i = 0; i < node_pool_size; ++i) {
34 Node_t nullNode;
35 nodePool[i] = nullNode;

B.1 Implementation of the modified Kogan-Petrank queue B Code listings

36 }
37 Node_t sentinelNode;
38 int sentinelNodePoolIndex = nodeIndexPool.RemoveAny();
39 // Guard sentinel node from deletion for the
40 // life time of the queue:
41 hp.GuardPointer(0, sentinelNodePoolIndex);
42 headIdx.Store(sentinelNodePoolIndex);
43 tailIdx.Store(sentinelNodePoolIndex);
44 operations = operationDescriptionAllocator.allocate(numThreads);
45 for (size_t accessorId = 0; accessorId < numThreads; ++accessorId) {
46 OperationDesc op(NONPENDING, NOOP, UndefinedIndex);
47 operations[accessorId].Store(op.Raw);
48 }
49 }
50 ~WaitFreePhaselessQueue() {
51 T val;
52 while (TryDequeue(val)) {}
53 nodeAllocator.deallocate(nodePool, node_pool_size);
54 operationDescriptionAllocator.deallocate(operations, numThreads);
55 }
56 bool TryEnqueue(T const & element) {
57 index_t accessorId = Node_t::UndefinedIndex;
58 Node_t poolNode;
59 int nodeIndex = nodeIndexPool.RemoveAny();
60 if (nodeIndex < 0) { return false; }
61 hp.GuardPointer(0, nodeIndex);
62 Node_t newNode(element, accessorId);
63 nodePool[static_cast<index_t>(nodeIndex)] = newNode;
64 OperationDesc enqOp(PENDING, ENDQUEUE, nodeIndex);
65 operations[accessorId].Store(enqOp.Raw);
66 Help();
67 HelpFinishEnqueue();
68 hp.GuardPointer(0, UndefinedGuard);
69 return true;
70 }
71 bool TryDequeue(T & retElement, size_t accessorId) {
72 OperationDesc curOp(operations[accessorId].Load());
73 OperationDesc newOp(PENDING, DEQUEUE, UndefinedIndex);
74 index_t curOpRaw = curOp.Raw;
75 operations[accessorId].CAS(curOpRaw, newOp.Raw));
76 Help();
77 HelpFinishDequeue(); // Reload own operation description
78 curOp = OperationDesc(operations[accessorId].Load());
79 index_t nodeIdx = curOp.NodeIndex;
80 Node_t & node = nodePool[nodeIdx];
81 if (nodeIdx == Node_t::UndefinedIndex) { return false; }
82 index_t deqIdx = node.NextPoolIdx();
83 retElement = nodePool[deqIdx].Value();
84 hp.RetireNode(nodeIdx);
85 return true;
86 }
87 private:
88 void HelpEnqueue(size_t accessorId) {
89 while (OperationDesc(operations[accessorId].Load()).Pending) {
90 index_t lastIdx = tailIdx.Load();
91 Node_t & lastNode = nodePool[lastIdx];
92 index_t nextIdx = lastNode.NextPoolIdx();
93 // Last node still is tail:

66

B Code listings B.1 Implementation of the modified Kogan-Petrank queue

94 if (lastIdx == tailIdx.Load()) {
95 if (lastNode.NextIsNull()) {
96 if (IsPending(accessorId)) {
97 OperationDesc opDesc(operations[accessorId].Load());
98 if (lastNode.Next.CompareAndSwap(nextIdx, opDesc.NodeIndex)) {
99 HelpFinishEnqueue();

100 return;
101 }
102 }
103 } else {
104 HelpFinishEnqueue();
105 }
106 }
107 }
108 }
109 void HelpFinishEnqueue() {
110 index_t lastIdx = tailIdx.Load();
111 Node_t & lastNode = nodePool[lastIdx];
112 if (!lastNode.NextIsNull()) {
113 index_t nextIdx = lastNode.NextPoolIdx();
114 Node_t & nextNode = nodePool[nextIdx];
115 index_t helpAID = nextNode.EnqueueAID();
116 OperationDesc helpOp(operations[helpAID].Load());
117 if (lastIdx == tailIdx.Load() &&
118 helpOp.NodeIndex == nextIdx) {
119 OperationDesc newOp(NONPENDING, ENQUEUE, nextIdx);
120 index_t helpOpRaw = helpOp.Raw;
121 operations[helpAID].CompareAndSwap(
122 helpOpRaw,
123 newOp.Raw);
124 tailIdx.CompareAndSwap(lastIdx, nextIdx);
125 }
126 }
127 }
128 void HelpDequeue(index_t accessorId) {
129 while (IsPending(accessorId)) {
130 index_t firstIdx = headIdx.Load();
131 index_t lastIdx = tailIdx.Load();
132 Node_t & first = nodePool[firstIdx];
133 if (firstIdx != headIdx.Load()) { continue; }
134 if (firstIdx == lastIdx) { // Queue might be empty
135 if (first.NextIsNull()) { // Queue is empty
136 hp.ReleaseGuard(0, firstIdx);
137 OperationDesc curOp(operations[accessorId].Load());
138 if (lastIdx == tailIdx.Load() && IsPending(accessorId)) {
139 // Undefined index signals failed dequeue
140 OperationDesc newOp(NONPENDING, DEQUEUE, UndefinedIndex);
141 index_t curOpRaw = curOp.Raw;
142 operations[accessorId].CompareAndSwap(curOpRaw, newOp.Raw);
143 }
144 } else {
145 HelpFinishEnqueue();
146 }
147 } else {
148 OperationDesc curOp(operations[accessorId].Load());
149 index_t nodeIdx = curOp.NodeIndex;
150 if (!IsPending(accessorId)) { break; }
151 if (firstIdx == headIdx.Load() && nodeIdx != firstIdx) {

67

B.2 Implementation of the modified wait-free stack B Code listings

152 hp.GuardPointer(0, firstIdx);
153 OperationDesc newOp(PENDING, DEQUEUE, firstIdx);
154 index_t curOpRaw = curOp.Raw;
155 if (!operations[accessorId].CAS(curOpRaw, newOp.Raw)) {
156 continue;
157 }
158 }
159 index_t curDeqAID = Node_t::UndefinedIndex;
160 first.DequeueAID().CAS(curDeqAID, accessorId)
161 HelpFinishDequeue();
162 }
163 } // while pending
164 }
165 void HelpFinishDequeue() {
166 index_t firstIdx = headIdx.Load();
167 Node_t & first = nodePool[firstIdx];
168 index_t nextIdx = first.NextPoolIdx();
169 hp.GuardPointer(0, nextIdx);
170 index_t accessorId = first.DequeueAID().Load();
171 if (accessorId != Node_t::UndefinedIndex) {
172 OperationDesc curOp(operations[accessorId].Load());
173 if (firstIdx == headIdx.Load() && nextIdx != UndefinedIndex) {
174 OperationDesc newOp(NONPENDING, DEQUEUE, curOp.NodeIndex);
175 index_t curOpRaw = curOp.Raw;
176 operations[accessorId].CAS(curOpRaw, newOp.Raw);
177 headIdx.CAS(firstIdx, nextIdx);
178 }
179 }
180 }
181 void Help() {
182 size_t nHelp = numThreads;
183 tid_t ownId = threadId();
184 tid_t startId = (ownAccessorId + 1) % numThreads;
185 for (tid_t tId = startId; nHelp > 0; ++tId, --nHelp) {
186 OperationDesc desc(
187 operations[tId % numThreads].Load());
188 if (!desc.Pending) continue;
189 if (desc.Enqueue)
190 HelpEnqueue(tId % numThreads);
191 else
192 HelpDequeue(tId % numThreads);
193 }
194 }
195 void DeleteNodeCallback(index_t releasedNodeIndex) {
196 nodeIndexPool.Add(releasedNodeIndex);
197 }
198 };

Listing B.1: Implementation of the modified wait-free Kogan-Petrank queue with safe memory reclamation
and without phase counter

B.2 Implementation of the modified wait-free stack

1 template<typename T>
2 class WaitFreeSimStackNode {
3 private:

68

B Code listings B.2 Implementation of the modified wait-free stack

4 typedef embb::containers::internal::WaitFreeSimStackNode<T> self_t;
5 public:
6 typedef int index_t;
7 typedef struct Element_s{
8 VOLATILE index_t next;
9 T value;

10 } Element;
11 };
12

13 template<
14 typename T = uint32_t,
15 T UndefinedValue = 0xFFFFFFFF,
16 size_t LocalPoolSize = 64,
17 class ElementPool = IndexedObjectPool< WaitFreeSimStackNode<T>::Element

>
18 class StateIndexPool = WaitFreeCompartmentValuePool< bool, false,

LocalPoolSize >
19 >
20 class WaitFreeSimStack
21 {
22 private:
23 static const unsigned int MAX_THREADS = 32; // 64 on x64
24 typedef T Object;
25 typedef T RetVal;
26 typedef T OperationArg;
27 typedef internal::WaitFreeSimStackNode<T> Node_t;
28 typedef internal::WaitFreeSimStackNode<T>::Element Element_t;
29 typedef internal::WaitFreeSimStackNode<T>::index_t ElementPointer_t;
30 typedef int32_t atomic_int_t; // int64_t on x64
31 typedef uint32_t atomic_uint_t; // uint64_t on x64
32 typedef uint32_t bitword_t; // uint64_t on x64
33 typedef embb::base::Atomic<bitword_t> AtomicBitVectorValue;
34 typedef struct ObjectState_s {
35 bitword_t applied;
36 typename internal::WaitFreeSimStackNode<T>::index_t head;
37 T ret[MAX_THREADS];
38 } ObjectState;
39 typedef struct StackThreadState {
40 CACHE_ALIGN bitword_t mask;
41 bitword_t toggle;
42 bitword_t bit;
43 ElementPointer_t localObjectStateIndex;
44 unsigned int backoff;
45 } StackThreadState;
46 typedef uint32_t bitfield_t;
47 typedef embb::base::Atomic< bitfield_t > atomic_bitfield_t;
48 typedef bool state_t;
49 static const bitword_t BitWordZero = 0U;
50 static const bitword_t BitWordOne = 1U;
51 static const int MAX_BACK = 0x000FFF;
52 /// Null-pointer representation for hazard pointers
53 static const ElementPointer_t UndefinedGuard = 0;
54 /// Global stack pointer state
55 embb::base::Atomic<ElementPointer_t> stackStateIndex;
56 AtomicBitVectorValue atomicTogglesVector;
57 /// Capacity of the queue instance.
58 size_t size;
59 /// Size of thread-local state pools.

69

B.2 Implementation of the modified wait-free stack B Code listings

60 size_t localPoolSize;
61 /// Allocator for object states
62 embb::base::Allocator<ObjectState> objectStateAllocator;
63 /// Allocator for announced operation arguments (ArgVal)
64 embb::base::Allocator<OperationArg> operationArgAllocator;
65 /// Pool for node elements
66 ElementPool elementPool;
67 /// Pool for indices in object state array. Stack state indices are
68 /// guarded by hazard pointers.
69 StateIndexPool stateIndexPool;
70 /// Bitset recording which thread already initialized their local state
71 uint32_t threadRegistry;
72 /// Allocator for the threads’ local state (will be replaced
73 /// by thread-specific variable)
74 embb::base::Allocator<StackThreadState> stackThreadStateAllocator;
75 /// Array of thread-specific states of the stack object
76 StackThreadState * threadStates;
77 /// Index of initial object state in stack states array
78 ElementPointer_t initialStateIndex;
79 /// Index of initial element in stack
80 ElementPointer_t initialElementIndex;
81 /// Thread-specific, incremental random seed
82 embb::base::ThreadSpecificStorage<long> randomNextTss;
83 CACHE_ALIGN VOLATILE
84 OperationArg * operationArgs;
85 CACHE_ALIGN VOLATILE
86 ObjectState * stackStates;
87

88 void initStackThreadState(
89 StackThreadState * threadState,
90 unsigned int accessorId) {
91 threadState->localObjectStateIndex = 0;
92 threadState->mask = 0;
93 threadState->mask |= (BitWordOne << static_cast<bitword_t>(accessorId)

);
94 threadState->bit = 0;
95 threadState->bit ^= (BitWordOne << static_cast<bitword_t>(accessorId)

);
96 threadState->toggle = 0;
97 threadState->toggle = ~threadState->mask + 1; // 2s complement negation
98 threadState->backoff = 1;
99 // Initialize thread-specific random seed:

100 randomNextTss.Get() = 1;
101 }
102 inline RetVal ApplyOperation(
103 StackThreadState * threadState,
104 OperationArg arg,
105 unsigned int accessorId) {
106 unsigned int numPushOperations;
107 unsigned int numPopOperations;
108 bitword_t diffs;
109 bitword_t toggles;
110 bitword_t pendingPopOperations;
111 ElementPointer_t stackStateIndexNew;
112 ElementPointer_t stackStateIndexCurr;
113 // Stores pool indices of pushed elements for rollback.
114 // At most MAX_THREADS push operations have to be rolled
115 // back.

70

B Code listings B.2 Implementation of the modified wait-free stack

116 ElementPointer_t pushElementIndices[MAX_THREADS];
117 // Stores pool indices of removed elements for deallocation.
118 // At most MAX_THREADS removed elements have to be stored.
119 ElementPointer_t popElementIndices[MAX_THREADS];
120 // This thread’s local stack object state
121 ObjectStateUnpadded * localStackState;
122 // The current global stack object state
123 ObjectStateUnpadded * globalStackState;
124 if (threadState->localObjectStateIndex < 0) {
125 EMBB_THROW(embb::base::ErrorException,
126 "Invalid state index");
127 }
128 // Prepare thread state:
129 threadState->bit ^= (BitWordOne << static_cast<size_t>(accessorId));
130 threadState->toggle = ~threadState->toggle + 1; // 2s complement

negation
131 localStackState = (ObjectStateUnpadded *)(
132 &stackStates[threadState->localObjectStateIndex]);
133 // announce the operation
134 operationArgs[accessorId] = arg;
135 // Toggle accessorId’s bit in atomicTogglesVector, Fetch&Add acts as a
136 // full write-barrier
137 atomicTogglesVector.FetchAndAdd(threadState->toggle);
138 for (int spin = 0; spin < 2; ++spin) {
139 // Random backoff if enabled:
140 if (backoffEnabled) {
141 VOLATILE int k;
142 VOLATILE long backoff_limit = RandomRange(
143 static_cast<long>(threadState->backoff >> 1u),
144 static_cast<long>(threadState->backoff));
145 for (k = 0; k < backoff_limit; k++) {
146 ;
147 }
148 }
149 // read reference to struct ObjectState
150 stackStateIndexCurr = stackStateIndex.Load();
151 // read reference of struct ObjectState in a local variable
152 // localStackState
153 globalStackState = (ObjectStateUnpadded *)(
154 &stackStates[stackStateIndexCurr]);
155 // Get all applied operations at this point:
156 diffs = globalStackState->applied;
157 // Determine the set of active processes
158 diffs ^= threadState->bit;
159 // If this operation has already been applied, return
160 if ((diffs >> accessorId) & 1) {
161 break;
162 }
163 // Copy global state to local state:
164 *localStackState = *globalStackState;
165 toggles = atomicTogglesVector.Load();
166 if (stackStateIndexCurr != stackStateIndex.Load()) {
167 continue;
168 }
169 // Intersection of applied and toggled operations:
170 diffs = localStackState->applied ^ toggles;
171 numPushOperations = 0;
172 numPopOperations = 0;

71

B.2 Implementation of the modified wait-free stack B Code listings

173 pendingPopOperations = 0;
174 // Apply all operations that have been announced before this point
175 while (diffs != BitWordZero) {
176 int threadId = bitSearchFirst(diffs);
177 diffs ^= BitWordOne << threadId;
178 T announced_arg = operationArgs[threadId];
179 if (announced_arg == UndefinedValue) {
180 // == POP =======
181 // Collect pending pop operatins in bit vector:
182 pendingPopOperations |= (BitWordOne << threadId);
183 }
184 else {
185 // == PUSH ======
186 // Perform push operation and store pool index of
187 // pushed element for rollback:
188 pushElementIndices[numPushOperations] =
189 PushOperation(localStackState, threadState, announced_arg,

threadId);
190 numPushOperations++;
191 }
192 }
193 // Apply pending pop operations:
194 while (pendingPopOperations != BitWordZero) {
195 int threadId = bitSearchFirst(pendingPopOperations);
196 pendingPopOperations ^= (BitWordOne << threadId);
197 // Perform pop operation on local stack state and
198 // store indices of removed elements. These will be
199 // freed if the operation succeeded:
200 popElementIndices[numPopOperations] =
201 PopOperation(localStackState, threadState, threadId);
202 numPopOperations++;
203 }
204 // Update applied operations of local stack state:
205 localStackState->applied = toggles;
206 // Store index in pool where localStackState will be stored in
207 // new stack pointer’s index field:
208 stackStateIndexNew = threadState->localObjectStateIndex;
209 if (stackStateIndexNew < 0) {
210 EMBB_THROW(embb::base::ErrorException,
211 "Invalid state index");
212 }
213 // Guard index of current object state:
214 hp.GuardPointer(0, stackStateIndexCurr);
215 if (stackStateIndexCurr == stackStateIndex.Load() &&
216 stackStateIndex.CompareAndSwap(
217 stackStateIndexCurr,
218 stackStateIndexNew)) {
219 ElementPointer_t lastLocalObjectStateIndex =
220 threadState->localObjectStateIndex;
221 // Reserve new index from index pool:
222 bool dummy;
223 int objectStateIndex = stateIndexPool.Allocate(dummy);
224 if (objectStateIndex < 0) {
225 EMBB_THROW(embb::base::NoMemoryException,
226 "Failed to allocate index for object state");
227 }
228 // Assign new index of local object state:
229 threadState->localObjectStateIndex = objectStateIndex;

72

B Code listings B.2 Implementation of the modified wait-free stack

230 // Operation succeeded, reduce backoff limit:
231 threadState->backoff = (threadState->backoff >> 1) | 1;
232 // Free elements removed in pop operations:
233 for (int rb = 0;
234 static_cast<unsigned int>(rb) < numPopOperations;
235 ++rb) {
236 // Paranoia check that initial element is not freed:
237 if (popElementIndices[rb] != initialElementIndex) {
238 elementPool.Free(popElementIndices[rb]);
239 }
240 }
241 // Retire index of this thread’s last local object state:
242 hp.EnqueuePointerForDeletion(lastLocalObjectStateIndex);
243 // Release guard on index of replaced object state:
244 hp.GuardPointer(0, UndefinedGuard);
245 // Return value from local thread state:
246 return localStackState->ret[accessorId];
247 }
248 else {
249 // Release guard on index of current object state:
250 hp.GuardPointer(0, UndefinedGuard);
251 if (backoffEnabled && threadState->backoff < maxBackoff) {
252 // Operation failed, reduce backoff limit:
253 threadState->backoff <<= 1;
254 }
255 // Free elements allocated during failed push operations:
256 for (int rb = 0;
257 static_cast<unsigned int>(rb) < numPushOperations;
258 ++rb) {
259 // Paranoia check that initial element is not freed:
260 if (popElementIndices[rb] != initialElementIndex) {
261 elementPool.Free(pushElementIndices[rb]);
262 }
263 }
264 }
265 }
266 // Return the value from the state stored at the current object
267 // state index:
268 return stackStates[stackStateIndex.Load()].ret[accessorId];
269 }
270 public:
271 // Constructor
272 WaitFreeSimStack(size_t size)
273 : size(size),
274 elementPool(
275 // Add capacity for elements allocated in
276 // unsuccessful push operations that will be
277 // freed after when the operation succeeded:
278 size + (MAX_THREADS * threadLocalPoolSize),
279 Element_t()),
280 stateIndexPool(
281 internal::ReturningTrueIterator(0),
282 internal::ReturningTrueIterator(
283 (localPoolSize * numThreads * hp.GetRetiredListMaxSize()) +
284 (localPoolSize * numThreads) + 1)),
285 threadRegistry(0u) {
286 bool flag;
287 initialStateIndex = stateIndexPool.Allocate(flag);

73

B.2 Implementation of the modified wait-free stack B Code listings

288 DEPENDANT_TYPENAME Node_t::Element initialElement;
289 initialElementIndex = elementPool.Allocate(initialElement);
290 // Guard sentinel stack node throughout the
291 // lifetime of the stack instance:
292 hp.GuardPointer(0, initialStateIndex);
293 operationArgs = operationArgAllocator.allocate(
294 numThreads);
295 stackStates = objectStateAllocator.allocate(
296 (localPoolSize * numThreads) + 1);
297 threadStates = stackThreadStateAllocator.allocate(
298 numThreads);
299 // Initialize global stack pointer state:
300 stackStateIndex.Store(initialStateIndex);
301 stackStates[initialStateIndex].head = initialElementIndex;
302 stackStates[initialStateIndex].applied = 0;
303 atomicTogglesVector = 0;
304 }
305 /// Pop method
306 bool TryPop(T & retValue) {
307 unsigned int tId;
308 StackThreadState * threadState = &threadStates[tId];
309 int threadBitMask = (1 << tId);
310 if ((threadRegistry & threadBitMask) == 0) {
311 // Initialize local state for this thread
312 initStackThreadState(threadState, tId);
313 threadRegistry |= threadBitMask;
314 }
315 retValue = ApplyOperation(threadState, UndefinedValue, tId);
316 if (retValue == UndefinedValue) {
317 return false;
318 }
319 return true;
320 }
321

322 bool TryPush(const T & element) {
323 unsigned int tId;
324 StackThreadState * threadState = &threadStates[tId];
325 int threadBitMask = (1 << tId);
326 if ((threadRegistry & threadBitMask) == 0) {
327 // Initialize local state for this thread
328 initStackThreadState(threadState, tId);
329 threadRegistry |= threadBitMask;
330 }
331 ApplyOperation(threadState, element, tId);
332 return true;
333 }
334 private:
335 /// Returns the pool index of the removed element
336 inline ElementPointer_t PopOperation(
337 ObjectStateUnpadded * stack,
338 StackThreadState * threadState,
339 int accessorId) {
340 // Do not free elements here as this operation
341 // might have to be rolled back
342 ElementPointer_t headCurr = stack->head;
343 if (headCurr != initialElementIndex) {
344 DEPENDANT_TYPENAME Node_t::Element headNode =
345 elementPool[static_cast<size_t>(headCurr)];

74

B Code listings B.2 Implementation of the modified wait-free stack

346 stack->ret[accessorId] = headNode.value;
347 stack->head = headNode.next;
348 return headCurr;
349 }
350 else {
351 // Head is initialElementIndex, so stack is
352 // empty:
353 stack->ret[accessorId] = UndefinedValue;
354 }
355 return UndefinedGuard;
356 }
357 /// Returns the pool index of the added element
358 /// to allow rollback of push operations.
359 inline ElementPointer_t PushOperation(
360 ObjectStateUnpadded * stack,
361 StackThreadState * threadState,
362 T arg,
363 int /* accessorId */) {
364 typename embb::containers::internal::WaitFreeSimStackNode<T>::Element n;
365 int poolIndex = elementPool.Allocate(n);
366 ElementPointer_t elementIndex = static_cast<ElementPointer_t>(poolIndex);
367 n.value = arg;
368 n.next = stack->head;
369 elementPool[static_cast<size_t>(elementIndex)] = n;
370 stack->head = elementIndex;
371 return elementIndex;
372 }
373 };

Listing B.2: Implementation of the wait-free stack with safe memory reclamation

75

	Dedication
	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Objectives and contributions
	Structure of this thesis

	Wait-free data structures
	Introduction
	Definition of wait-freedom
	Motivation
	Theoretical foundations
	Technical foundations

	Related work
	Universal construction of wait-free data structures
	Simulation of wait-free data structures and the helping mechanism
	Memory management
	Queues
	Lists
	Stacks

	Verification and benchmark methodology
	Explicit-state model checking
	Benchmark methodology

	Pools
	Definitions
	Array-based wait-free pools
	Thread-dependent search patterns
	A compartment-based index pool
	Verification
	Benchmarks
	Evaluation

	Queues
	Definitions
	Adapting the Kogan-Petrank wait-free queue for embedded systems
	Benchmarks
	Evaluation

	Stacks
	An efficient wait-free stack for multiple producers and consumers
	Verification
	Evaluation

	Task Scheduling
	Introduction
	Technical foundations
	Related Work

	Work-stealing with prioritization

	Summary
	Revisiting the objective
	Recommendations

	Bibliography
	Appendices
	List of Figures
	Code listings
	Implementation of the modified Kogan-Petrank queue
	Implementation of the modified wait-free stack

