High Performance & Grid Computing in Europe

Dieter Kranzlmüller
Ludwig-Maximilians-Universität (LMU) & Leibniz Supercomputing Centre (LRZ)
Munich, Germany
The Leibniz Supercomputing Centre
of the Bavarian Academy of Sciences and Humanities

• Computing Centre for all Munich Universities
• Regional Computing Centre for all Bavarian Universities
• National Supercomputing Centre of Germany

By Ernst A. Graf

© 2009 Leibniz Supercomputing Centre
HLRB-II: SGI Altix 4700

9728 Cores
62.3 TFlop/s Peak
39 TByte Memory
103 metric tons
~1100 kVA

Foto Helmut Payer, produced by gsiCom
HPC & Grid Resources

4th IGSSE Forum,
Raitenhaslach
HPC & Grid Ecosystem

- Computational Fluid Dynamics: Optimisation of turbines and wings, noise reduction, air conditioning in trains
- Fusion: Plasma in a future fusion reactor (ITER)
- Astrophysics: Origin and evolution of stars and galaxies
- Solid State Physics: Superconductivity, surface properties
- Geophysics: Earthquake scenarios
- Material Science: Semiconductors
- Chemistry: Catalytic reactions
- Medicine and Medical Engineering: Blood flow, aneurysms, air conditioning of operating theatres
- Biophysics: Properties of viruses, genome analysis
- Climate research: Currents in oceans
Examples of Applications
The ESFRI Vision for a European HPC service

- European HPC-facilities at the top of an HPC provisioning pyramid
 - Tier-0: 3-5 European Centres
 - Tier-1: National Centres
 - Tier-2: Regional/University Centres

- Creation of a European HPC ecosystem involving all stakeholders
 - HPC service providers on all tiers
 - Grid Infrastructures
 - Scientific and industrial user communities
 - The European HPC hard- and software industry
Europe prepares the creation of a persistent pan-European HPC service, consisting of several tier-0 centres providing European researchers with access to capability computers and forming the top level of the European HPC ecosystem. PRACE is a project funded in part by the EU’s 7th Framework Programme.

PRACE Partners

Germany
EPSRC - Engineering and Physical Sciences Research Council,

UK
GENCI - Grand Equipement national pour le Calcul Intensif

France
BSC - Barcelona Supercomputing Center

Spain
NCF - Netherlands Computing Facilities Foundation

Netherlands
EPSRC - Engineering and Physical Sciences Research Council,

Finland
GRNET - Greek Research and Technology Network

Greece
CINECA - Consorzio Interuniversitario per ilCalcolo Automatic dell'Italia Nord Orientale

Italy
UNINETT Sigma AS, sigma.uninett.no

Norway
GUP - Institut für Informatik der Johannes Kepler Universität Linz

Austria
Poznan Supercomputing and Networking Center

Poland
Universidade de Coimbra

Portugal
KTH - Kungl Tekniska Högskolan

Sweden
CSCS - Swiss National Supercomputing Centre

Switzerland
Informatics Institute, ITU, www.be.itu.edu.tr

Turkey
Barcelona Supercomputing Center

United Kingdom
Nordic HPC Centre

Germany
Nordic HPC Centre

Spain
Nordic HPC Centre

Netherlands
Nordic HPC Centre

Finland
Nordic HPC Centre

Greece
Nordic HPC Centre

Italy
Nordic HPC Centre

Norway
Nordic HPC Centre

Austria
Nordic HPC Centre

Poland
Nordic HPC Centre

Portugal
Nordic HPC Centre

Sweden
Nordic HPC Centre

Switzerland
Nordic HPC Centre

Turkey
Nordic HPC Centre
PRACE Objectives in a Nutshell

• Provide world-class systems for world-class science
• Create a single European (legal) entity
• Deploy 3 – 5 systems of the highest performance level (tier-0)
• Ensure diversity of architectures
• Provide support and training
LRZ Extension Buildings

Fotomontage

Südansicht

Nordansicht
Future Petaflop/s Computer Technologies beyond 2010

• Evaluation of emerging multi-petascale-technology following the requirements of HPC users
• Implementation of a strategy that guarantees a continuous HPC technology evaluation and system evolution within the PRACE Research Infrastructure
• Fostering the development of components for future multi-petascale production systems in cooperation with European and international HPC industry
Performance and Memory

10-Fold every 4 years
Double every 14.5 Month

HLRB2: SGI Altix 4700
Linux-Cluster

HLRB1: Hitachi SR8000
Linux-Cluster

IBM SP2
Cray T90

Fujitsu VPP

KSR

Cray Y-MP

Gigaflops, GByte

10,000,000
1,000,000
100,000
10,000
1,000
100
10
1

GPlofs GByte
Number of Cores

HP-CAST 12, Madrid Spain

LRZ, High Performance Computing Group, Matthias Brehm, June 10
Energy Consumption

Energy Cost 2009: 0.13 € / kWh
Today: PUE ~1.4
Ergebnisse (LLNL)

SMG2000, Semicoarsening
Multigrid Solver
ASCI Purple Benchmark Suite
MD Simulation

- NAMD/VMD
- Interactive MD Simulation
- 1 Mio Atoms
- 2000 Cores on HLRB-II
- Displayed in 3D stereo in Dresden
- Ferdinand Jamitzky & Helmut Satzger
LRZ Extension Buildings

Fotomontage

Südansicht

Nordansicht
HPC & Grid Ecosystem

HP-CAST 12, Madrid Spain
4th IGSSE Forum, Raitenhaslach

Archeology
Astronomy
Astrophysics
Civil Protection
Comp. Chemistry
Earth Sciences
Finance
Fusion
Geophysics
High Energy Physics
Life Sciences
Multimedia
Material Sciences
...

> 260 Sites
> 55 Countries
> 150,000 CPUs
> 28 PetaBytes Disk
> 14,000 Users
> 200 VOs
> 330,000 Jobs/Day

Large Hadron Collider (LHC)
LHC Detektoren

40 MHz (40 TB/sec)

level 1 - special hardware

75 KHz (75 GB/sec)

level 2 - embedded processors

5 KHz (5 GB/sec)

level 3 - PCs

100 Hz (100 MB/sec)

data recording & offline analysis

4th IGSSE Forum, Raitenhaslach
Biomedicine: WISDOM

- World-wide In Silico Docking On Malaria
 - Neglected diseases
 - Biomedical data challenges
 - Docking experiments:
 - 46 million ligands
 - Runtime: 6 weeks
 - Data: 1 TByte
 - 1000 CPUs in 15 countries
 (~80 CPU years)
Example: Biomedical Simulation

Delete

angle measurement:
base: (1.08 1.86 -0.28) meters
direction 1: (1.22 1.81 -0.40) meters
direction 2: (1.22 1.93 -0.39) meters
angle: 38.32 degree
Blood Flow Simulation

- Parallel simulation on the grid
- Online visualization at desktop
- „Invisible Grid“
g-Eclipse
Flooding Crisis Management
Evolution

National

Global

Testbeds

Routine Usage

Utility Service
Grids in Europe

www.eu-egi.eu
European Grid Initiative

Objectives:
• Ensure the long-term sustainability of the European e-infrastructure
• Coordinate the integration and interaction between National Grid Infrastructures
• Operate the European level of the production Grid infrastructure for a wide range of scientific disciplines to link National Grid Infrastructures

EGI Grid Infrastructure should be
• a large-scale, production Grid infrastructure
• built on national grids that interoperate seamlessly at many levels,
• offering reliable and predictable services to a wide range of applications
Status EGI

EGI-InSPIRE: Integrated Sustainable Pan-European Infrastructure for Researchers in Europe

- Duration: 4 years (starting 1 May 2010)
- Costs: 70 MEUR, incl. 25 MEUR EU
- Total costs incl. NGI resources: ca. 330 MEUR
- Partner: EGI.eu, 37 NGIs, 2 EIROs

EGI.eu: EGI organization

- Location: Amsterdam, The Netherlands
- Status approved, EGI.eu Executive Board elected
EGI Operations Tasks

Operation of tools and services
- Grid configuration repositories
- Grid accounting repositories
- Grid repositories for SLA compliance and performance monitoring
- Grid operations portal
- NGI Grid oversight

Security
- Security policy development and maintenance
- Coordination of security and incident response
- Expert team for security vulnerabilities

User support
- Central ticket handling system
- Gathering requirements for user support tools

Other international tasks
- MW deployment/roll-out and support
- Resource allocation & brokering support
- Interoperations between NGI’s and with other grids
- Network support

EGI Blueprint Proposal (V3.0)
- Functions of EGI
- Financing of EGI
- Transition to EGI

4th IGSSE Forum, Raitenhaslach
EGI Infrastructure

International Scientific and Research Collaboration

EGI.eu

European-level Grid Services

- gLite
- UNICORE
- ARC
- Middleware A
- Middleware B
- Middleware B
- Middleware X

National Grid Initiative 1
National Grid Initiative 2
...
National Grid Initiative N
EGI Operations = EGI.eu critical services + NGI international tasks
ComputingService (DB)

<table>
<thead>
<tr>
<th>service</th>
<th>type</th>
<th>domainID</th>
<th>informationProvider</th>
<th>sourceAddr</th>
<th>insertTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNICORE 6 Target System Factory Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alnitak.ari.uni-heidelberg.de</td>
<td>org.teragrid.ws-gram AstroGrid-D</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>anticyclone.dkrz.de</td>
<td>org.teragrid.ws-gram dkrz.de</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>aprilia.izb.uni-leipzig.de</td>
<td>org.teragrid.ws-gram</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>arminius-grid.uni-paderborn.de</td>
<td>org.teragrid.ws-gram PC2</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>astar.aip.de</td>
<td>org.teragrid.ws-gram AstroGrid-D</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>buran.aei.mpIng.de</td>
<td>org.teragrid.ws-gram AstroGrid-D</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>c3grid.rz.uni-koeln.de</td>
<td>org.teragrid.ws-gram de.uni-koeln</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>cashmere.aip.de</td>
<td>org.teragrid.ws-gram AstroGrid-D</td>
<td>MDS4</td>
<td>129.187.254.39</td>
<td>2008-08-07 11:25:16</td>
<td></td>
</tr>
<tr>
<td>ce-1-fzk.gridka.de</td>
<td>pbspro-gLite3</td>
<td>FZK-LCG2</td>
<td>BDII</td>
<td>wrdmon-bdiif.zdk.de</td>
<td>2008-09-19 17:13:20</td>
</tr>
<tr>
<td>ce-2-fzk.gridka.de</td>
<td>pbspro-gLite3</td>
<td>FZK-LCG2</td>
<td>BDII</td>
<td>wrdmon-bdiif.zdk.de</td>
<td>2008-09-19 17:13:20</td>
</tr>
<tr>
<td>ce-3-fzk.gridka.de</td>
<td>pbspro-gLite3</td>
<td>FZK-LCG2</td>
<td>BDII</td>
<td>wrdmon-bdiif.zdk.de</td>
<td>2008-09-19 17:13:20</td>
</tr>
</tbody>
</table>

VO-specific View (OGSA-DAI)

SQLQuery: SELECT name, type, totalJobs, runningJobs, waitingJobs, informationProvider FROM ComputingService_VO VO: vi uk.org.oagsa-dai.resource.request.status.COMPLETED

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>totalJobs</th>
<th>runningJobs</th>
<th>waitingJobs</th>
<th>informationProvider</th>
</tr>
</thead>
<tbody>
<tr>
<td>arminius-grid.uni-paderborn.de</td>
<td>org.teragrid.ws-gram</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MDS4</td>
</tr>
<tr>
<td>dgiref-globus.fzk.de</td>
<td>org.teragrid.ws-gram</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MDS4</td>
</tr>
<tr>
<td>dgrid-glite1.rz.rwth-aachen.de</td>
<td>org.teragrid.ws-gram</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MDS4</td>
</tr>
<tr>
<td>dmon-unic.rz-juelich.de9115FZJ-JUGGLE-DMON</td>
<td>org.teragrid.ws-gram</td>
<td>151</td>
<td>151</td>
<td>0</td>
<td>MDS4</td>
</tr>
<tr>
<td>udo-gt01.grid.uni-dortmund.de</td>
<td>org.teragrid.ws-gram</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MDS4</td>
</tr>
<tr>
<td>udo-gt03.grid.tu-dortmund.de</td>
<td>org.teragrid.ws-gram</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MDS4</td>
</tr>
</tbody>
</table>
Generic VO-Model

Formation
Identification > Initialization > Operation > Adaptation > Termination

Community-Layer

VOA

VOB

VO-Layer

RO-Layer

RO1

RO2

S

R

S

R

S

R

S

R

39

4th IGSSE Forum,
Raitenhaslach
VO Management?

- Lifecycle management
- Membership management
- Resource management
- Security management
- Constraints
 - Heterogeneity
 - No central control
 - Autonomous administrative domains
 - Management on attribute level
Cloud Computing

“Cloud Computing is on-demand access to virtualized IT resources that are sourced inside or outside of a data center, scalable, shared by others, simple to use, paid for via subscription or as you go, and accessible over the Web.”

[Dr. Behrend Freese (Zimory GmbH)]

“Cloud Services = Consumer and Business products, services and solutions that are delivered and consumed in realtime over the Internet”

[IDC – Analyze the Future]

“A Cloud is a pool of abstracted, highly scalable and managed IT infrastructure that provides customers’ applications and will be charged by actual use.“

[Forrester Research]
4th IGSSE Forum,
Raitenhaslach
Grids vs. Clouds

Grids
- Sciences, research, collaboration
- Collaborative use of heterogeneous resources
- Local autonomy
- No centralized management
- Publicly funded and operated
- No business model
- Complex interfaces
- Open standards (OGF, …)
- Interoperability

Clouds
- Business and web-based applications
- Homogeneous and virtualized resources
- One owner
- Centralized management
- Business intentions
- Pay-per-use business model
- Simple interfaces
- No standards as of today
- No interoperability (vendor lock-in)
Experimental results: main memory

• Virtualization of main memory with high performance
• Caches may contaminate!

Testing conditions

- Benchmark: RAMspeed
- Test: Reading
- Modus: sequentiel
- # VMs: 1
- RAM: 1 GB
- vCPUs: 1
Benchmarking Amazon Cloud

Benchmarking Amazon Cloud

Figure 3. MPI Bandwidth Performance in the MPTEST Benchmark on the NCSA and EC2 Clusters

Figure 4. MPI Latency Performance in the MPTEST Benchmark on the NCSA and EC2 Clusters

4th IGSSE Forum, Raitenhaslach
Pricing: Cloud vs. Hosting

1 CPU-Unit, 1,7 GB Memory, 100 GB Disk
Network Traffic: IN 50 GB, OUT 100 GB

Quelle: Zimory GmbH

4th IGSSE Forum, Raitenhaslach
Pricing: Cloud vs. Hosting

1 CPU-Unit, 1,7 GB Memory, 200 GB Disk
Network Traffic: IN 100 GB, OUT 300 GB

Quelle: Zimory GmbH

4th IGSSE Forum, Raitenhaslach
Summary

• European HPC & Grid Activities:
 – PRACE
 = Partnership for Advanced Computing in Europe
 – EGI
 = European Grid Initiative
• Integration into a common, persistent e-infrastructure for science and research
• To support international scientific collaboration
High Performance & Grid Computing in Europe

Dieter Kranzlmüller
kranzlmueller@ifi.lmu.de