

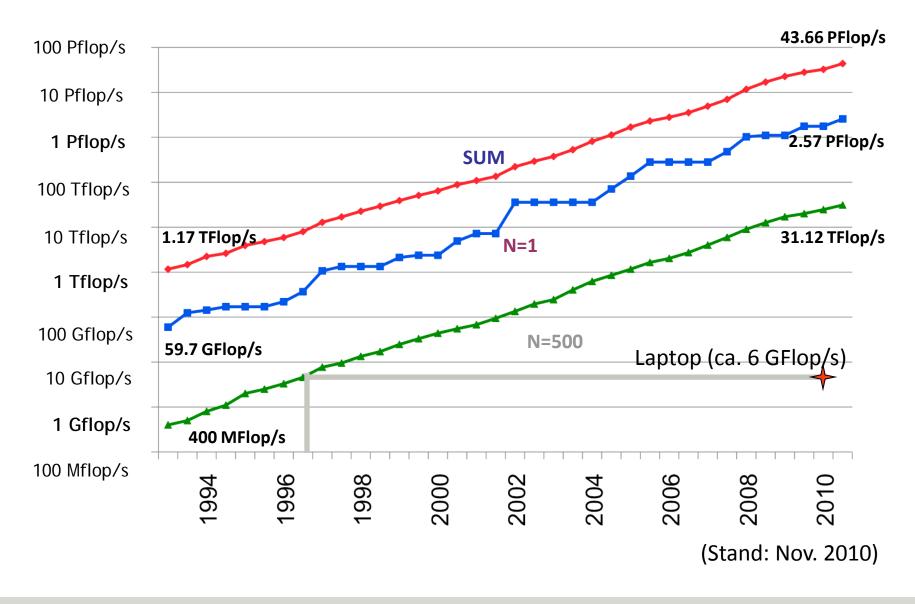
MNM

MUNICH NETWORK MANAGEMENT TEAM

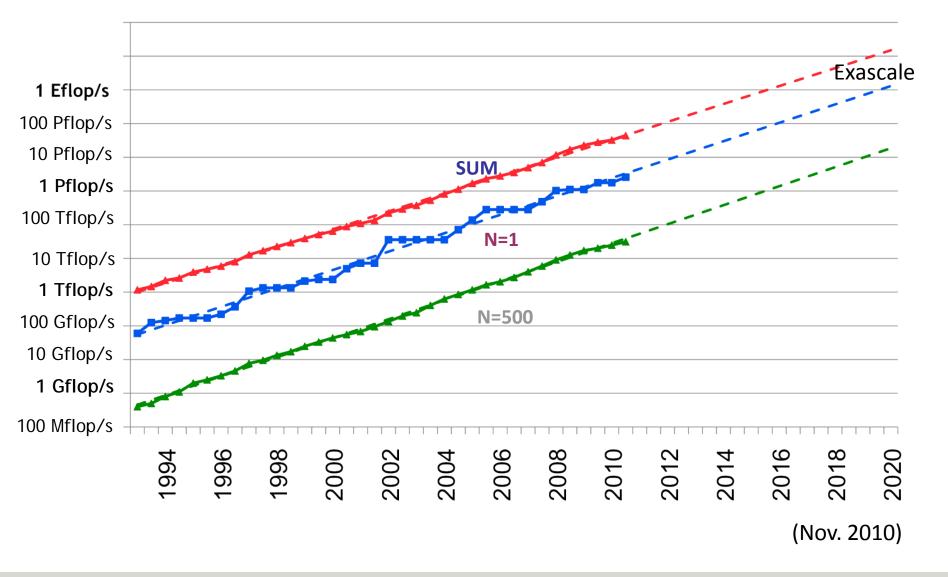
HPC and the AppleTV-Cluster

Dieter Kranzlmüller, Karl Fürlinger, Christof Klausecker

Munich Network Management Team Ludwig-Maximilians-Universität München (LMU) & Leibniz Supercomputing Centre (LRZ)


Motivation

- Energy efficiency as a primary constraint in HPC
- The lure of mobile and consumer electronic devices
- The MNM-Team AppleTV-Cluster
 - Hardware and software setup
- Benchmarking
 - Single node results
 - Full cluster performance and power results
- Conclusion


LUDWIG-MAXIMILIANS-UNIVERSITÄT

MÜNCHEN

MU

HPC and the AppleTV-Cluster | 4

Challenges on the Way to Exascale

MUNICH NETWORK MANAGEMENT TEAM

Parallelism

LUDWIG-MAXIMILIANS-UNIVERSITÄT

- Extreme scale (billion-way)
- Limitations of the bulk-synchronous model
- Programming for heterogeneity
- Noise and system variablility
- Resiliency, fault tolerance
 - Dropping MTTI
 - Limitations of checkpoint-restart
- Power consumption, energy efficiency
 - 1 MW ~ 1 Mio USD/year (ca 0.11 USD per kWh)
 - Energy efficiency has to improve dramatically
 - Max. 20 MW for an exascale class machine

Wikipedia: "Efficient energy use, sometimes simply called energy efficiency, is the goal of efforts to reduce the amount of energy required to provide products and services."

Energy efficiency in scientific and technical computing

- Use the least amount of energy to solve a scientific problem
- Approximation: MFlops per Watt
- PUE: Power Usage Effectiveness

Green500 list (<u>www.green500.org</u>)

 Tracks the power requirement of systems in the Top500 list to solve the linpack benchmark

Green500 List (June 2011)

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	2097.19	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 2	40.95
2	1684.20	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 1	38.80
3	1375.88	Nagasaki University	DEGIMA Cluster, Intel i5, ATI Radeon GPU, Infiniband QDR	34.24
4	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80
5	891.88	CINECA / SCS - SuperComputing Solution	iDataPlex DX360M3, Xeon 2.4, nVidia GPU, Infiniband	160.00
6	824.56	RIKEN Advanced Institute for Computational Science (AICS)	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	9898.56
7	773.38	Forschungszentrum Juelich (FZJ)	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
8	773.38	Universitaet Regensburg	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
9	773.38	Universitaet Wuppertal	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
10	718.13	Universitaet Frankfurt	Supermicro Cluster, QC Opteron 2.1 GHz, ATI Radeon GPU, Infiniband	416.78

* Performance data obtained from publicly available sources including <u>TOP500</u>

Source: http://www.green500.org

Cray XT line of systems

System	MFLOPS/Watt
Cray XT3 (2004)	60
Cray XT4 (2006)	130
Cray XT5 (2007)	150
Cray XT6 (2009)	260
Cray XE6 (2010)	360

Blue Gene line of systems

System	MFLOPS/Watt
IBM Blue Gene/L (2005)	204
IBM Blue Gene/P (2007)	370
IBM Blue Gene/Q*(2011)	2097

*: Prototype; Source: Green500 list, June 2011

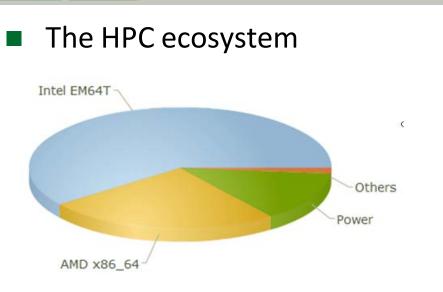
- However, Exascale requires at least 50 000 MFlops/Watt (a 20 MW envelope)!
- Dramatic improvements are required to achieve this level of energy efficiency
 - Questionable if evolution of conventional CPUs can achieve this
- Revolutionary approaches:
 - HW/SW codesign
 - Try something different...

Mobile and Consumer Electronic Devices

- Energy efficiency was always a primary concern in the mobile area
- Use cases are getting more computationally demanding
 - HD video encoding/decoding, augmented reality, rich web applications
- Devices are full-featured computers

Dual-/Quadcore CPUs are appearing

- Often with a UNIX-like OSs, 100s of MBs of RAM, GBs of storage



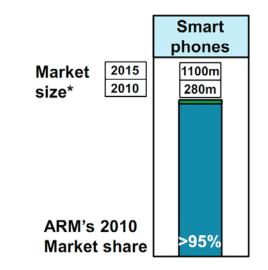
Whitepaper

The Benefits of Multiple CPU Cores in Mobile Devices

Energy Efficient Parallel Computing on Mobile Devices?

MUNICH NETWORK MANAGEMENT TEAM

Processor Family / Performance November 2010 (Top 500)


LUDWIG-

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- 90% of systems in the Top500 use Intel/AMD CPUs
 - Supercomputer market is too small to sustain custom CPU designs
 - Supercomputer vendors (except IBM) rely on server/desktop CPUs and GPUs

The mobile computing ecosystem

Source: ARM Holdings Q1/2011 financial results report

Motivation

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Energy efficiency as a primary constraint in HPC
- The lure of mobile and consumer electronic devices
- The MNM-Team AppleTV-Cluster

Outline

- Hardware and software setup
- Benchmarking
 - Single node results
 - Full cluster performance and power results
- Conclusion

Platform: 2nd Generation AppleTV (ATV2)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Small
 - 10x10x2.3 cm, 270g
- Cheap
 - MSRP 100,- USD
- Powerful
 - Same HW as iPad (1st gen.)
 - Apple A4 processor @1GHz
 - → ARM Cortex-A8 CPU+PowerVR GPU
 - 256 MB RAM
 - 8 GB NAND Flash
- "Green"
 - 1-3 Watts

- We've built a small cluster of ATV2 nodes
 - 4+2 nodes, connected by a 100 MBit Ethernet switch

- BSD-based OS: iOS 4.2.1 (Darwin kernel version 10.4.0)
- Jailbreak necessary to install custom software
 - Many choices provided by the iOS jailbreak community
 - We've used greenp0ison
- System with running ssh server after jailbreak with root access
 - apt-get install,...
 - See a small how to guide on our webpage (www.appletvcluster.com)
- Editors, gcc toolchain, ...
 - Gcc 4.2.1
- MPI
 - MPICH 2 from Argonne National Lab
 - hydra process manager
 - TCP transport

Motivation

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Energy efficiency as a primary constraint in HPC
- The lure of mobile and consumer electronic devices
- The MNM-Team AppleTV-Cluster

Outline

- Hardware and software setup
- Benchmarking
 - Single node results
 - Full cluster performance and power results
- Conclusion

Benchmarking

- Single node benchmarks
 - Memory system performance
 - CPU performance
- Whole cluster benchmarks
 - MPI microbenchmarks
 - Linpack

LUDWIG-MAXIMILIANS-UNIVERSITÄT

NÜNCHEN

- ...this is ongoing work
 - We're reporting initial results here
 - Work left to be done and extended

MUNICH NETWORK MANAGEMENT TEAM

Two metrics:

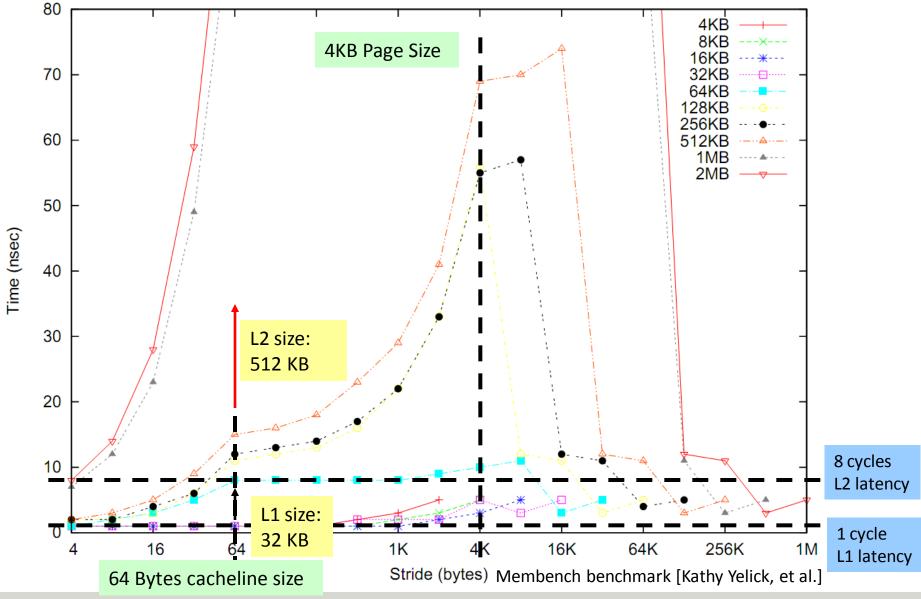
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Direct comparison with a BeagleBoard
- (Open source ARM-based development platform)
- Orders of magnitude comparison with conventional server CPUs

BeagleBoard-xM

- TI DM3730 Processor 1 GHz Cortex-A8 [our BeagleBoard-xM was running at 800 MHz]
- 512 MB LPDDR RAM memory

Parameter	Value	Source
Core frequency	1 GHz	Experiments
L1I cache size	32 KB	hw.l1icachesize
L1D cache size	32 KB	hw.l1dcachesize
L2 cache size	512 KB	hw.I2cachesize
L1 latency	1 cycle	Experiments
L2 latency	8 cycles	Experiments
Cache line size	64 B	hw.cachelinesize
Bus frequency	100 MHz	hw.busfrequency
Memory size	247 MB	hw.memsize
Page size	4 KB	hw.pagesize

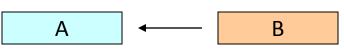

Cortex-A8

- In-order, super-scalar processor (dual issue)
- Compare to Intel Pentium III-S with approximately similar characteristics (ca. 2001)

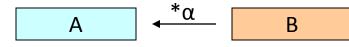
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Memory System Parameters and Performance

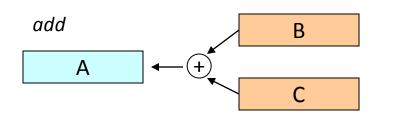
MUNICH NETWORK MANAGEMENT TEAM



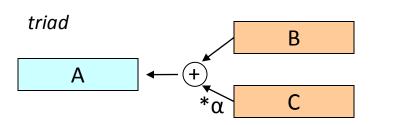
HPC and the AppleTV-Cluster | 20



Stream (Memory Bandwidth)


сору

scale



Operation	BeagleBoard xM (800 MHz) [MB/s]	ATV2 (1 GHz) [MB/s]
сору	481.1	749.8 (+55%)
scale	492.9	690.0 (+40%)
add	485.5	874.7 (+80%)
triad	430.0	696.1 (+60%)

ATV2

- 200 MHz, 64 bit memory bus?
- BeagleBoard
 - 166 MHz, 32 bit

- Server: Core i7, 800 MHz DDR2
 - ~ more than 10 times higher bandwidth

- EEMBC benchmark to test processor core performance
 - Similar in purpose to Dhrystone
 - Integer, control, memory operations
 - Small binary footprint

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Device	Absolte Coremark Score	Coremark / MHz
BeagleBoard xM (800 MHz)	1928	2.41
ATV2 (1 GHz)	2316	2.32

- Both platforms have a Cortex-A8 CPU
 - Essentially the same performance per MHz
- Comparing Coremark scores from Desktop/Server CPUs:
 - High absolute performance but small difference when normalized to Perf/MHz/Thread

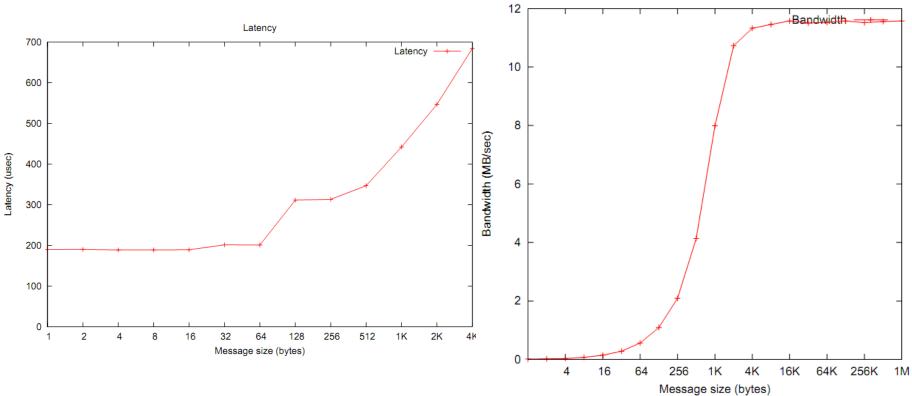
Motivation

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Energy efficiency as a primary constraint in HPC
- The lure of mobile and consumer electronic devices
- The MNM-Team AppleTV-Cluster

Outline

- Hardware and software setup
- Benchmarking
 - Single node results
 - Full cluster performance and power results
- Conclusion


Cluster Performance

Bandwidth

- MPI Ping-Pong Latency and Bandwidth measurements
 - 100 Mbit Ethernet and TCP as the transport mechanism
 - Compare to high perf. Interconnects (IB QDR / 10GigE Ethernet):
 2-6 usec Latency sec 1 GB/sec Bandwidth
 - \rightarrow Two orders of magnitude slower

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MUNICH NETWORK MANAGEMENT TEAM

Linpack benchmark

LUDWIG-MAXIMILIANS-UNIVERSITÄT

- Solves Ax=b (dense matrices), using LU factorization
- R_{max} value is the basis for the Top500 ranking
- High comp. intensitiy, systems achieve 60-90% of peak

ATV2 cluster result

- 4 nodes achieve R_{max} of 160.4 MFlops/Watt
- Power consumption: about 10 Watts (all 4 nodes)
- \rightarrow Energy efficiency of 16 MFlops/Watt
- Compare Green500 list:
 - #1: 2097 MFlops/Watt
 - #500: 21 MFlops/Watt

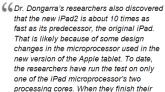
Floating Point Performance - Analysis

Cortex-A8 really not optimized for DP floating point performance

- SIMD unit (NEON) only for SP FP numbers
- DP numbers take VFP execution path
- VFP execution path isn't even pipelined
- DP FP operation latency is 9-17 cycles
- → Peak DP performance is probably 60-70 MFlops
- What's ahead:

LUDWIG-MAXIMILIANS-UNIVERSITÄT

- Cortex-A9 (dual-core): iPad2, iPhone 4S, Samsung Galaxy-Tab, ...
 - Much improved floating point performance
- Cortex-A15 (2012, 4+ cores, out-of-order, superscalar)
 - Expected to compete with desktop CPUs


05.10.2011

Dongarra Runs LINPACK on the iPad2

 Lke
 John Markoff of the NY Times writes that Jack Dongara has run LINPACK on an iPad2. In fact, he obtained performance results that would rival for the CRAY-2 supercomputer, which was the world's fastest machine in 1985.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

one of the IPad microprocessor's two processing cores. When they finish their project, though, Dr. Dongarra estimates that the IPad 2 will have a Linpack benchmark of between 1.5 and 1.65 gigaflops (billions of floating-point, or mathematical, operations per second). That would have insured that the IPad 2 could have stayed on the list of the world's fastest supercomputers through 1994.

(NY Times, via insidehpc.org)

SEVENTH FRAMEWORK PROGRAMME	THE	RAMEWORK PROGRAMME EME ICT-2009.9.13 Juting, software and simulation
	Proposal acronym: Proposal full title:	Mont-Blanc, European scalable and power efficient HPC platform based on low-power

ARM Cortex-A9 performance in HPC applications

M. Boyd ¹, C. Della Silva ², K. Keville ³ ¹Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA mboyd@mit.edu ²Department of Mechanical Engineering, MIT, Cambridge, MA clarkds@mit.edu ³Institute for Soldier Nanotechnologies, MIT, Cambridge, MA kkeville@mit.edu

SoC/Dev Board	Ti Pandaboard EA3	0
CPU/GPU	Cortex A-9/ SGX540	A
L1 Cache Size	32 KB	1
L2 Cache Size	512 KB	2
CPU Speed	1GHz	6
RAM Memory	1GB DDR2	2
L1I Cache Size	32 KB	1
L1D Cache Size	32 KB	1
L2 Cache Size	512 KB	2
LINPACK SP	3.0 GFLOPS	2
LINPACK DP	1.2 GFLOPS	1
Whetstone single core	1376 MIPS	1
Dhrystone single core	1824 DMIPS	9
	5637 (dual core)	
Coremark (iter / sec)	2816 (single core)	1

HPC and the AppleTV-Cluster | 27

Motivation

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Energy efficiency as a primary constraint in HPC
- The lure of mobile and consumer electronic devices
- The MNM-Team AppleTV-Cluster

Outline

- Hardware and software setup
- Benchmarking
 - Single node results
 - Full cluster performance and power results
- Conclusion

Conclusion

LUDWIG-MAXIMILIANS-UNIVERSITÄT

Mobile devices are full-featured general purpose computers today

- Running UNIX operating systems
- GHz CPUs, hundreds of MB or RAM, GBs of storage
- Dual and quad-core CPU designs are appearing
- Powerful integrated GPUs
- Energy efficiency always a primary design consideration
- iPad2 more powerful than #500 system in 1993
- On the ATV2 cluster (Cortex-A8 based)
 - Performance for FP intensive HPC applications is not competitive today
 - Integer performance is much better
 - No high performance support for DP floating point arithmetic
 - No SIMD for double precision in NEON
 - No ECC protection for memory or caches
 - No high performance interconnects

- Mobile industry is on a steep technology trajectory
 - Programmable integrated graphics cards (OpenCL)
 - Dual/Quadcore CPUs
 - Power-hungry use cases

...but

- Big momentum behind ARM: NVIDIA, Microsoft are ARM licensees
- ARM for servers: Calxeda, and others
- Our plans:

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- More benchmarks
- Integer-intensive and datacenter workloads
- PandaBoard (Cortex-A9)

http://www.appletvcluster.com

- HOWTO guide
- Whitepaper (with current results))
- <u>Dieter.Kranzlmueller@nm.ifi.lmu.de</u>
- <u>Karl.Fuerlinger@nm.ifi.lmu.de</u>
- <u>Christof.Klausecker@nm.ifi.lmu.de</u>