

Tobias Guggemos, Nils gentschen Felde, Dieter Kranzlmüller
MNM-Team
Ludwig-Maximilians-Universität München

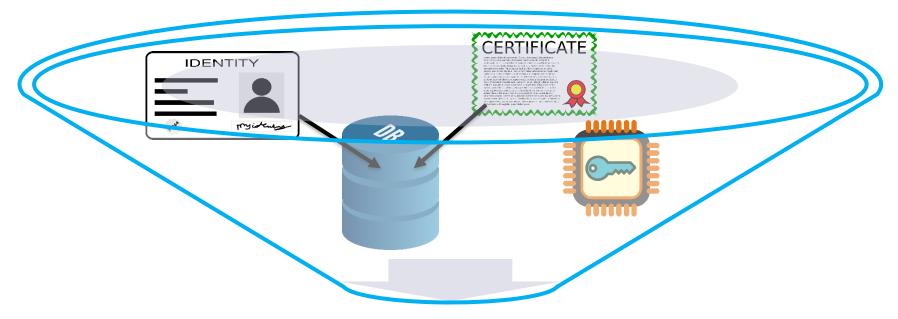
Secure Group Communication in Constrained Networks

A Gap Analysis

IEEE Global IoT Summit 2017 Geneva, Switzerland

Motivation

Since ~2013:

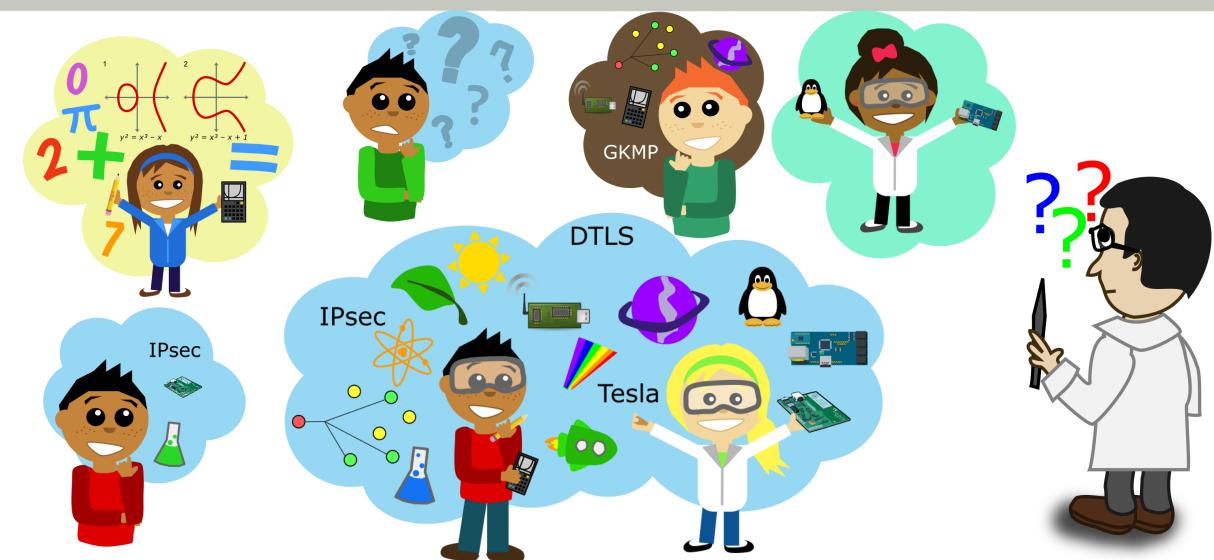

Several and long discussions about

Secure Group Communication
in IETF working groups (DICE, ACE, ...)

The Goal

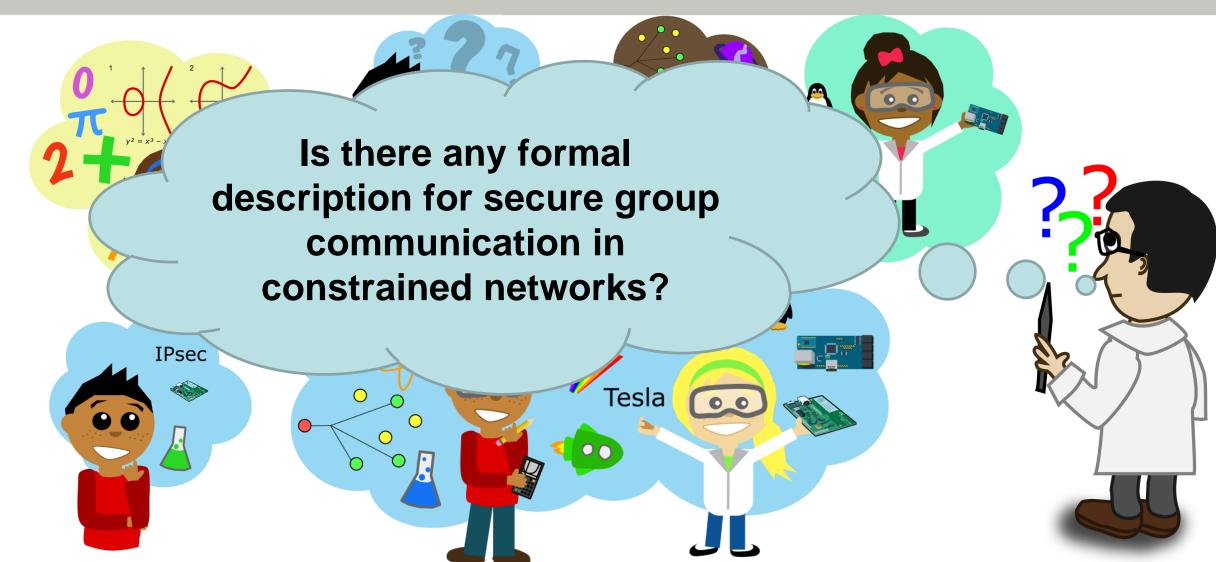
Toolbox for Secure Group Communication in constrained environments (e.g. IoT)

Motivation - Testbed

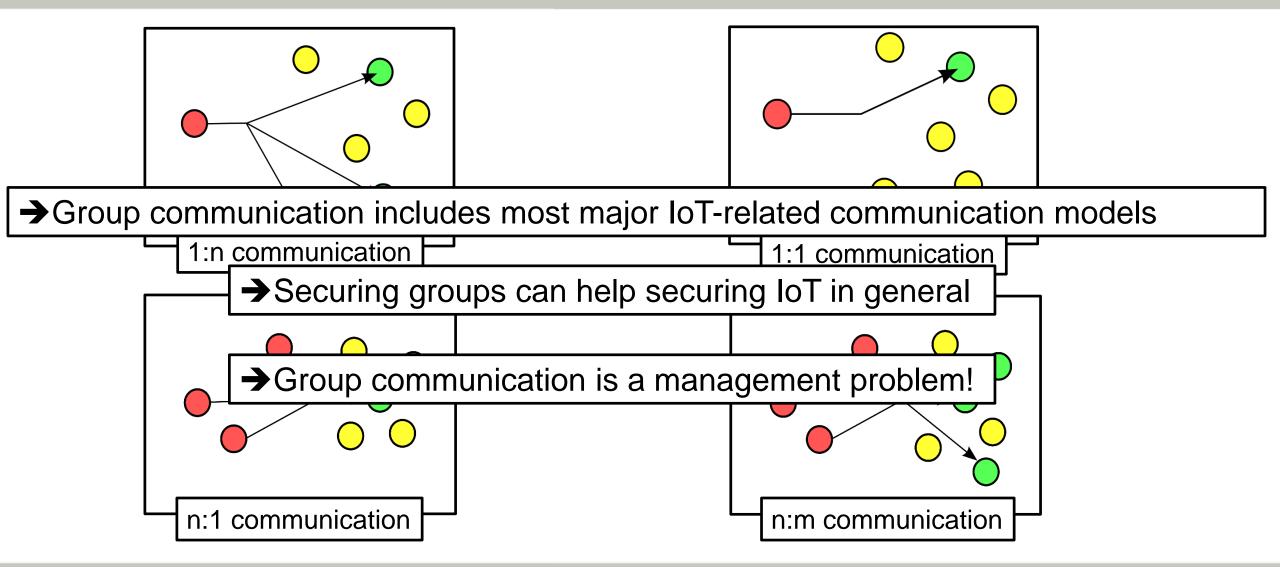


Devices					
	Arduino Uno	Arduino M0+	Arduino Due	ESP 8266	Raspberry Pi (v1-v3) Banana Pi Beaglebone
Architecture	ATmega328	ARM Cortex-M0+	ARM Cortex-M3	Tensilica L106	ARMv6 – ARMv8
CPU	16 MHz	48 MHz	84 MHz	80-160 MHz	700-1200 MHz
RAM	2 KB	32 KB	96 KB	64 KB	256-1024 MB
Flash	32 KB	256 KB	512 KB	1 MB	
Operating System	RIOT OS	RIOT OS	RIOT OS	Free RTOS	Linux

Motivation



Motivation



What is *Group* Communication?

Question

What is "Secure Group Communication"

What is "Secure Group Management"

What is secure?

Definition according to ISO/IEC 27000:

"information security

preservation of **confidentiality** (2.13), **integrity** (2.36) and **availability** (2.10) of information

NOTE In addition, other properties, such as **authenticity** (2.9), **accountability** (2.2), **non-repudiation** (2.49), and **reliability** (2.56) can also be involved."

[ISO/IEC27000, 2.30]

Definition according **7**000:

"informatio

preserva informa¹

NOTE IN (2.2), no confidentiality:

- → Data Encryption (usually symmetric)
- → to authorized members

integrity (2.36) and availability (2.10) of

→ (Group) Key Distribution Lch as authenticity (2.9), accountability iability (2.56) can also be involved."

[ISO/IEC27000, 2.30]

Definition according to ISO/IEC 27000:

"information security

preservation of **confidentiality** information

NOTE In addition, other prope (2.2), **non-repudiation** (2.49),

integrity:

Cryptographic Signatures

- → Group Integrity
 - → Key Distribution(!!!)
- → Sender Integrity
 - → PKI

vailability (2.10) of

ع), accountability

be involved."

"FC27000, 2.30]

Definition according to ISO/IEC 27000:

"information security

preservation of **confidentiality** (2.13), **integrity** information

NOTE In addition, other properties, such as **aut** (2.2), **non-repudiation** (2.49), and **reliability** (2.

availability:

- → Member can join group
- → Group Management (GM)
 - \rightarrow AAI
 - → Secure GM

Definition according to ISO/IEC 27000:

"information security

preservation of **confidentiality** (2.13)

information

NOTE In addition, other proper

(2.2), non-repudiation (2.49)

reliability:

→ Reliable GM

→ grant and revoke membership

36) and availability (2.10) of

(2.9), accountability

so be involved."

[ISO/IEC27000, 2.30]

Definition according to ISO/IEC 27000:

"information security

preservation of confidentiality (2.13), integrity (2.36) and

information

NOTE In addition, other properties, such as **authenticit** (2.2), **non-repudiation** (2.49), and **reliability** (2.56) ca

accountability:

- → Right Management
 - → join, leave,
 - → create,destroy
 - → send messages

Definition according to ISO/IEC 27000:

"information security

preservation of confidentiality (2.13), into

information

NOTE In addition, other properties, so (2.2), **non-repudiation** (2.49), and **r**

authenticity:

- → Signatures with sender identification
- → Identity Management
- → Public Key Infrastructure

availability (2.10) of

ccountability

EC27000, 2.30]

Definition according to ISO/IEC 27000:

"information security

mentiality (2.13), integrity (2.36) and availability (2.10) of preservation

inform

NO7 non-repudiation:

→ Sender Authentication

AND Identity

AND Public Key Management

- → Message ID (Seq. Nr)
- → Acknowledgement (?)

rties, such as authenticity (2.9), accountability and reliability (2.56) can also be involved."

[ISO/IEC27000, 2.30]

LUDWIG-MAXIMILIANS-MÜNCHEN

Gap Analysis

Related Work	Confidentiality	Integrity	Availability	Authenticity	Accountability	Non-Repudiation	Reliability
III-A: Group CoAP (RFC 7390)	X	X	(✓) ^a	X	×	X	/
III-A: DICE (RFC 7925)	X	×	(✓) ^a	X	×	X	✓
III-A: Group DTLS [3]	✓	(✓) ^b	✓	(∕) ^b	V	X ^b	V
III-B: IPsec	✓	(✓) ^b	(✓) ^a	(∕) ^b	×	X ♭	✓
III-B: Group-DH [4]	X	X	V	X	V	X	✓
III-C: EMSS [5]	×	(✓) ^d	X ^c	(✓) ^d	×	✓	X ^c
III-C: TESLA [5]	X	V	V	V	✓	X	/
III-C: μ TESLA [6]	×	(✓) ^b	✓	(∕) ^b	V	×	✓
III-C: IBS [7]	X	V	X ^c	V	×	X e	×
III-C: ABE [8]	V	X	×	×	×	×	×

legend:

^b no message source authentication/integrity.

✓ addressed by design (✓) partially addressed

x not addressed by design

^d delayed signature verification ^c no group management

^a unauthenticated group management ^e no anti-replay mechanism

Current & Further Investigations

Confidentiality / Integrity

- DTLS
- IPsec

Group (Key) Management

- G-IKEv2 (GDOI, GKMP)
 - Group-DTLS
 - Identity Management
- Public Key Management

Lightweight Cryptography

- Elliptic Curves
- Walnut DSA
- · Based on Lattices

Authentication / Non-Repudiation

- TESLA
- EMSS
- Identity Based Signatures (IBS)

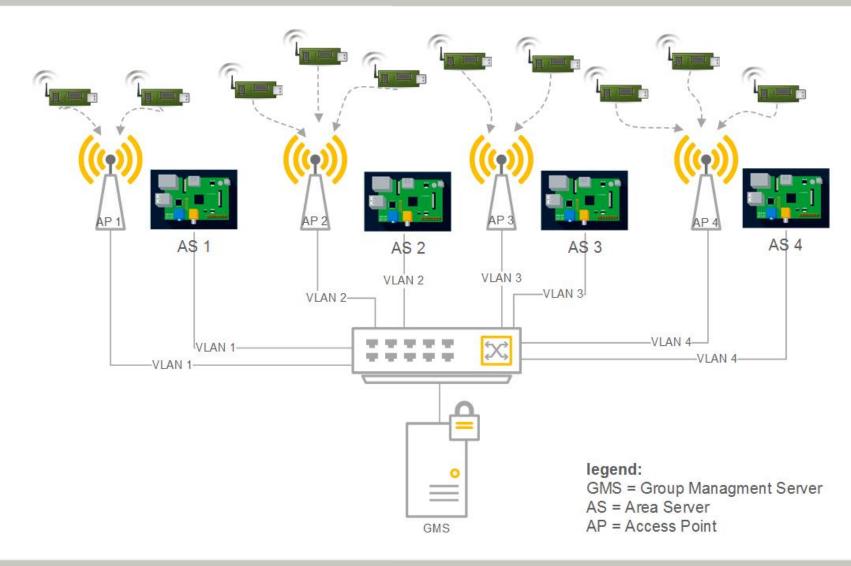
Conclusion / Take Aways

- Secure Group Communication is a management problem
- We defined properties for Secure Group Management
- Analysis shows no existing "IoT-aware" solution
- Research requires a solid testbed:
 - → MNM-Team setup: www.mnm-team.org/projects/embedded

The End

Tobias Guggemos

MNM-Team


Ludwig-Maximilians-Universität München

http://www.mnm-team.org/~guggemos

Testbed

