

The new SuperMUC petascale system and applications

Dieter Kranzlmüller

Munich Network Management Team Ludwig-Maximilians-Universität München (LMU) & Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities

Thank you to HCMUT Team

Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

With approx. 250 employees for more than 100.000 students and for more than 30.000 employees including 8.500 scientists

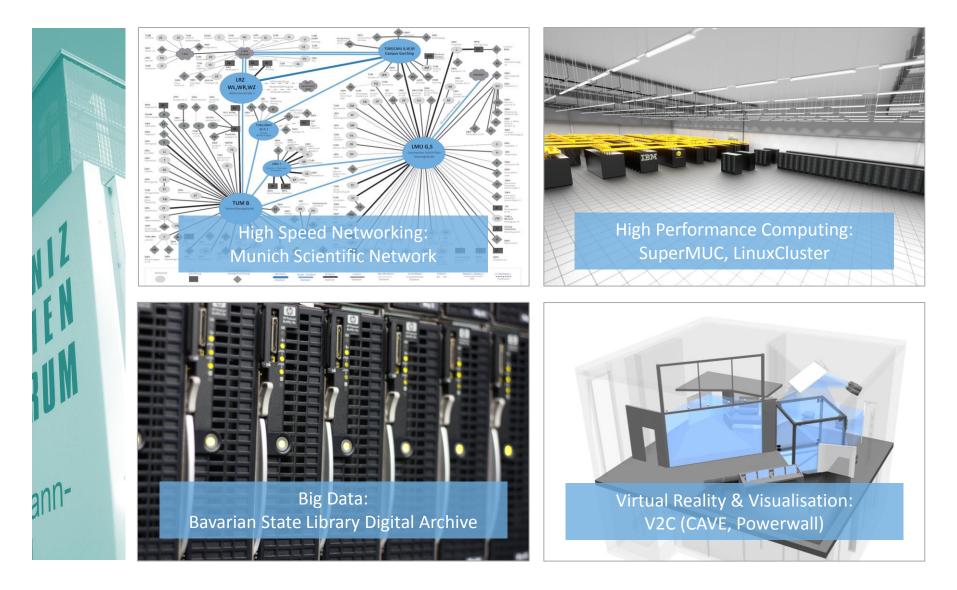
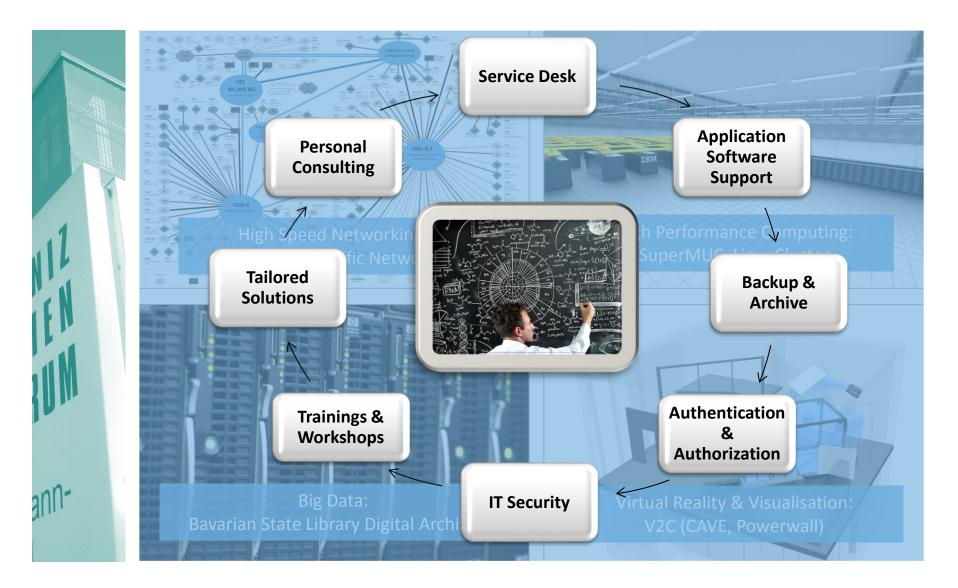

- European Supercomputing Centre
- National Supercomputing Centre
- Regional Computer Centre for all Bavarian Universities
 - Computer Centre for all Munich Universities

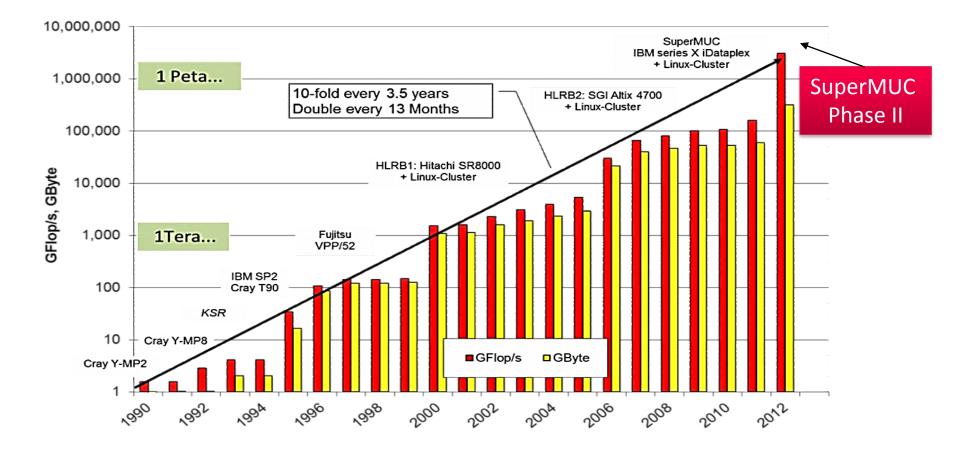
Photo: Ernst Graf

LRZ as IT Competence Centre: Operating Cutting-edge IT Infrastructure



LRZ as IT Competence Centre: Providing Comprehensive IT Services for Science

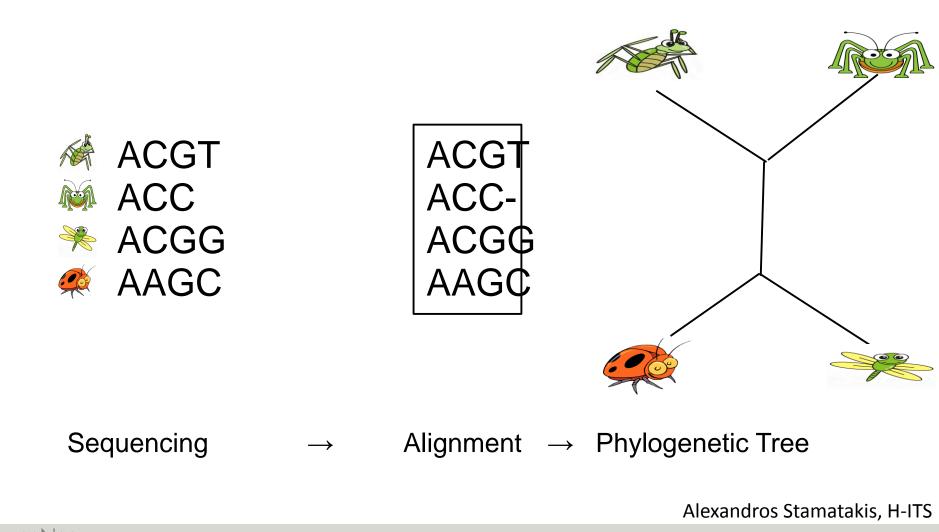
SuperMUC @ LRZ



Rank	Site	Computer/Year Vendor	Cores	R _{max}	R_{peak}	Power
1	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom / 2011 IBM	1572864	16324.75	20132.66	7890.0
2	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect / 2011 Fujitsu	705024	10510.00	11280.38	12659.9
3	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	786432	8162.38	10066.33	3945.0
4	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR / 2012 IBM	147456	2897.00	3185.05	3422.7
5	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 / 2010 NUDT	186368	2566.00	4701.00	4040.0
6	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XK6, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA 2090 / 2009 Cray Inc.	298592	1941.00	2627.61	5142.0
7	CINECA Italy	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	163840	1725.49	2097.15	821.9
8	Forschungszentrum Juelich (FZJ) Germany	JuQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	131072	1380.39	1677.72	657.5
9	CEA/TGCC-GENCI France	Curie thin nodes - Bullx B510, Xeon E5- 2680 8C 2.700GHz, Infiniband QDR / 2012 Bull	77184	1359.00	1667.17	2251.0
10	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade System, Xeon X5650 6C 2.66GHz, Infiniband QDR, NVIDIA 2050 / 2010 Dawning	120640	1271.00	2984.30	2580.0

www.top500.org

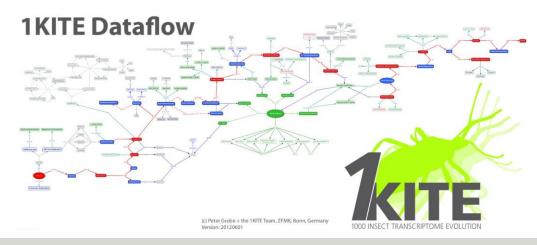
Phase 1 3.2 PFLOP/s SuperNUC Phase 2 3.2 PFLOP/s


LUDWIG-

MAXIMILIANS UNIVERSITÄT

- Computational Fluid Dynamics: Optimisation of turbines/wings, noise reduction
- Fusion: Plasma in a future fusion reactor (ITER)
- Astrophysics: Origin and evolution of stars and galaxies
- Solid State Physics: Superconductivity, surface properties
- Geophysics: Earth quake scenarios
- Material Science: Semiconductors
- Chemistry: Catalytic reactions
- Medicine and Medical Engineering: Blood flow, aneurysms, air conditioning
- Biophysics: Properties of viruses, genome analysis
- Climate research: Currents in oceans

LUDWIG-MAXIMILIANS-



- 4226517247809112252219618802377042809718932383449 8822942857479880831434032178759024536798491951168 3076494692867414802738570221298292428457687814873 4552121861861600804474608426626044448936698500560 2468116186441264227425440726676614927906540649360 2976397461917469326750931190889241406694054603576 66015625
 - ≈ 4.22 x 10³⁰¹

- Alexandros Stamatakis
 Scientific Computing Group,
 Heidelberg Institute for Theoretical Studies (HITS) / Exelixis Lab
- "Big Data" and High Performance Computing
- Novel software and applications needed
- Reading the data: only 1 minute (instead of 15 minutes)
- 1000 Processors: 17 hours (instead of 10 days)
- Load balancing

LUDWIG

Scientific Results - Publications

All aTwitter over an Internet study p. xxx The extragalactic background's uneven glow pp. XXX & XXX A cellular target for human norovirus pp. XXX & XXX

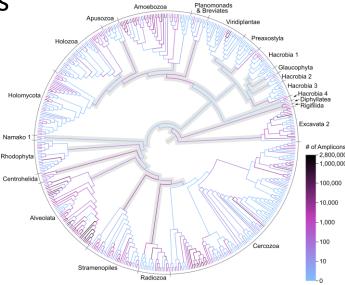
Alexandros Stamatakis, H-ITS

Biodiversity

LUDWIG-MAXIMILIANS UNIVERSITÄT

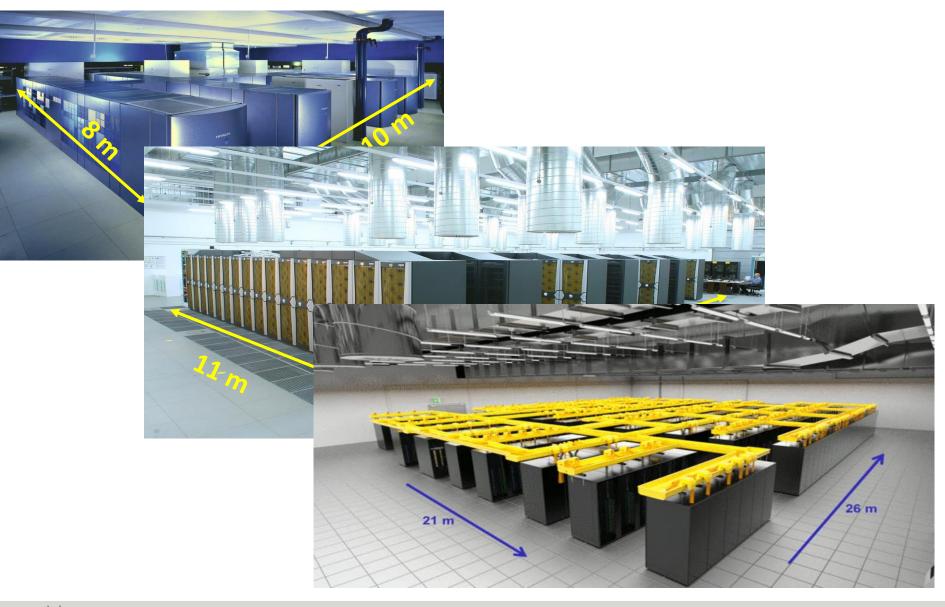
- Neotropical Rainforests are hyperdiverse ecosystems
- Since Humboldt and Bonpland, we know about the high animal and plant richness
- New study now finds that unicellular eukaryotes are even more diverse
- Particularly the parasitic
 Apicomplexa dominate these forests
- Their presence might drive thediversity of macro-organisms

Micah Dunthorn/TU Kaiserslautern


https://natureecoevocommunity.nature.com/channels/521-behind-the-paper/posts/15402-a-larger-microbial-perspective-of-tropical-rainforests

- More than 130 million DNA sequences were analysed
- Most of them belong to yet unknown microbial species
- Thus, a thorough method was necessary for classifying those sequences
- The method takes the evolutionary history of known species into account
- But this comes at the cost of increased computational needs
- Approximately 1 million computation hours on SuperMUC were necessary

LUDWIG


Mahé et al. (2017). Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nature Ecology and Evolution 1:09. DOI: 10.1038/s41559-017-0091

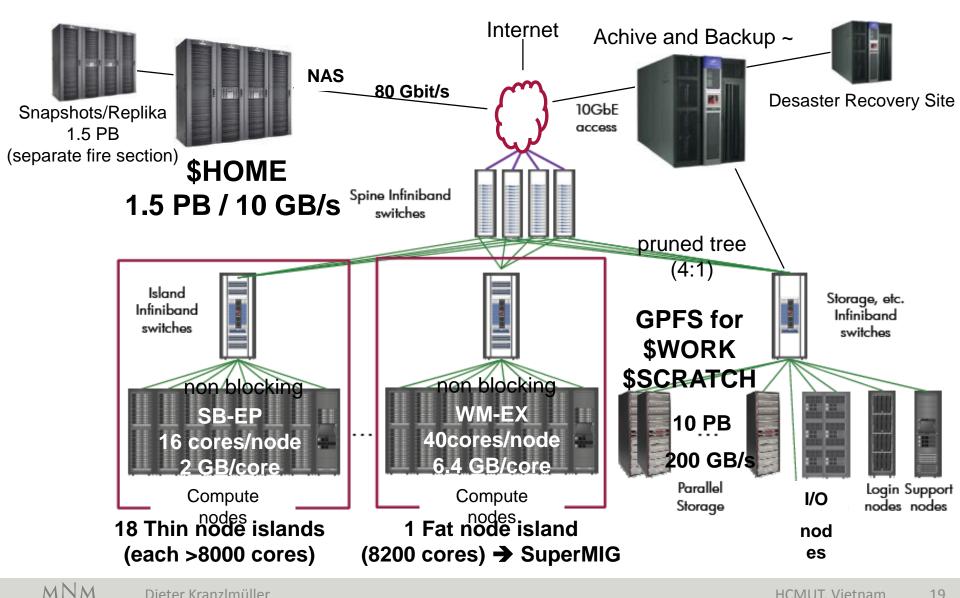
https://www.uni-kl.de/aktuelles/news/news/detail/News/neue-arten-entdeckt-mikroparasiten-tragen-zur-stabilitaet-des-oekosystems-im-regenwald-bei/

SuperMUC and its predecessors

٢Z

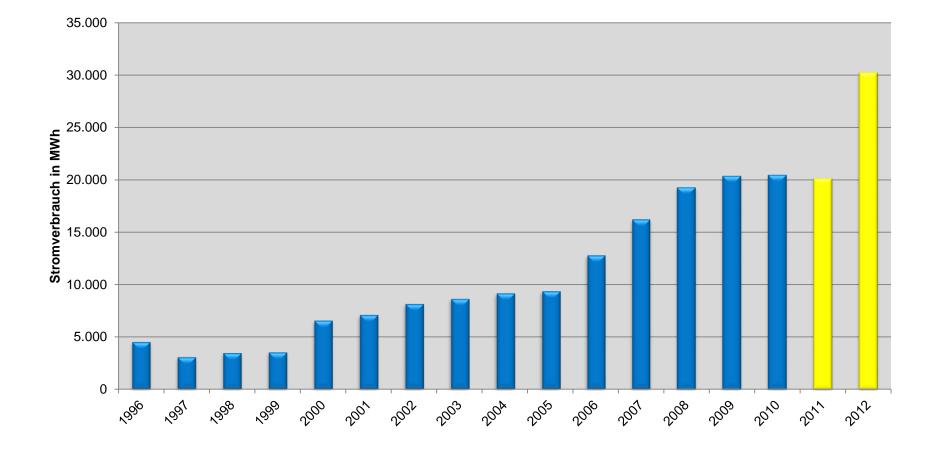
LRZ Building Extension

122



Picture: Horst-Dieter Steinhöfer

Figure: Herzog+Partner für StBAM2 (staatl. Hochbauamt München 2)


Picture: Ernst A. Graf

MNM Dieter Kranzlmüller

LUDWIG-MAXIMILIANS-UNIVERSITÄT **ÜNCHEN**

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Cooling SuperMUC

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

Energy Efficiency on SuperMUC @ LRZ

Photos: Torsten Bloth, Lenovo

- ✓ Usage of Intel Xeon E5 2697v3 processors
- ✓ Direct liquid cooling
 - 10% power advantage over air cooled system
 - 25% power advantage due to chiller-less cooling

- ✓ Energy-aware scheduling
 - 6% power advantage
 - ~40% power advantage
 - Annual savings: ~2 Mio. €
 for SuperMUC Phase 1 and 2

Date	System	Flop/s	Cores	
2000	HLRB-I	2 Tflop/s	1512	
2006	HLRB-II	62 Tflop/s	9728	
2012	SuperMUC	3200 Tflop/s	155656	
2015	SuperMUC Phase II	3.2 + 3.2 Pflop/s	229960	

Results:

Name	MPI	# cores	Description	TFlop/s/island	TFlop/s max	
Linpack	IBM	🕁 128000	ТОР500	161	2560	
Vertex	IBM	📩 128000	Plasma Physics	15	245	
GROMACS	IBM, Intel	👉 64000	Molecular Modelling	40	110	
Seissol	IBM	📩 64000	Geophysics	31	95	
waLBerla	IBM	📩 128000	Lattice Boltzmann	5.6	90	
LAMMPS	IBM	📩 128000	Molecular Modelling	5.6	90	
APES	IBM	👷 64000	CFD	6	47	
BQCD	Intel	128000	Quantum Physics	10	27	

Sustained TFlop/s on 64000/128000 cores

SeisSol - Numerical Simulation of Seismic Wave Phenomena

Dr. Christian Pelties, Department of Earth and Environmental Sciences (LMU) Prof. Michael Bader, Department of Informatics (TUM)

1,42 Petaflop/s on 147.456 Cores of SuperMUC (44,5 % of Peak Performance)

http://www.uni-muenchen.de/informationen_fuer/presse/presseinformationen/2014/pelties_seisol.html

Picture: Alex Breuer (TUM) / Christian Pelties (LMU)

MNM

Dieter Kranzlmüller

LRZ benefits

LUDWIG

- Understanding the (current and future) needs and requirements of the respective scientific domain
- Developing future services for all user groups
- Thematic focusing: Environmental Computing

EU Project Series DRIHM*

- Flash Project estimates for 1990-2006
- > 29 billion euros in damages produced by floods
- > 4,500 total number of casualties

SSMI and raingauge observations (1978-1994)

Professor Peter V. Coveney

LUDWIG

- holds a chair in Physical Chemistry
- is an Honorary Professor in Computer Science at University College London (UCL)
- is Professor Adjunct at Yale University School of Medicine (USA).
- is Director of the Centre for Computational Science (CCS) and of the Computational Life and Medical Sciences Network (CLMS) at UCL.
- https://www.ucl.ac.uk/chemistry/people/peter-coveney
- leads CompBioMed, A Centre of Excellence in Computational Biomedicine
- http://www.compbiomed.eu

- Goal: advance the role of computationally based modelling and simulation within biomedicine.
- Three related user communities:
 - academic,

LUDWIG-MAXIMILIANS

- industrial and
- clinical researchers
- All wish to build, develop and extend such capabilities in line with the increasing power of high performance computers.
- Three distinct exemplar research areas:
 - cardiovascular,
 - molecularly-based and
 - neuro-musculoskeletal medicine.

1 of 9 European Centres of Excellence in HPC Official start on 1 October 2016; 3 years

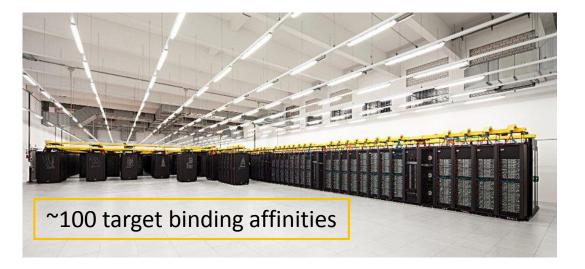
Target question:

LUDWIG

Can we use the genomic data from an individual candidate and predict whether a standard drug for the treatment of breast cancer will help or not?

Goal:

A demonstration of feasibility with the power of high performance computing


Key questions:

- Provide an answer to the question above
- Determine how to use IT-Infrastructures for this question
- Detect insufficiencies of using IT-Infrastructures for this question
- Derive a workflow for utilizing HPC in daily operation

Running on all cores of SuperMUC Phase1+2

- Docking simulation of potentials drugs for breast cancer
- 37 hours total run time
- 241,672 cores

ΜΝΜ

- 8.900.000 CPU hours
- 5 Terabytes of data produced

EU CoE CompBioMed <u>http://www.compbiomed.eu</u> EU Projects COMPAT and MAPPER <u>http://www.compat-project.eu</u> Until today:

LUDWIG-MAXIMILIANS-UNIVERSITÄT

- HLRB-II (pre-SuperMUC): Top 500 06/2007:
- SuperMUC Phase 1: Top 500 06/2012:
- 56,5 Tflop/s 2897 Tflop/s

Coming up:

SuperMUC NG (Next Generation) – Procurement on-going

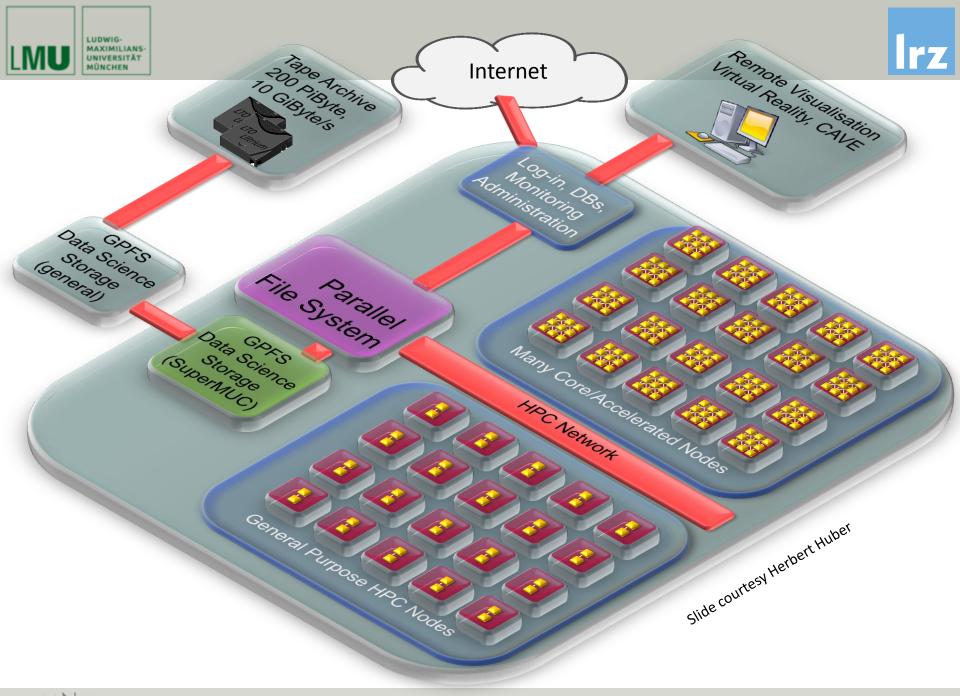
Consulting the Top 500 List - www.top500.org

Projected Performance Development

Rank	Rank Site System				r tojeoteu i erformanoe bevelopment					
1	National So Wuxi China	upercomputing Center in	Sunway TaihuLig MPP, Sunway SW 1.45GHz, Sunway NRCPC	26010	10 EFlop/s					
G	National Su Guangzh	uper Computer Center in	Tianhe-2 (MilkyW	√ay-2)						
	China	Accelerator/C	P Family	Count	System Share	(%)	Rmax (GFlops)	Rpeak (GFlops)	Cores	
3	DOE/SC/ Laborato	Nvidia Kepler		50		10	59,004,619	92,655,119	1,668,690	
	United St	Intel Xeon Phi		21		4,2	55,066,905	86,361,180	4,756,732	
4	United St	Nvidia Fermi		8		1,6	7,309,880	14,735,848	572,740	
5	DOE/SC/ United St	Hybrid		3		0,6	4,621,240	7,933,520	415,960	
6	Joint Cer	Nvidia Pascal		2		0,4	13,086,000	20,884,480	267,232	
	Perform: Japan	ATI Radeon		1		0,2	532,600	1,098,000	38,400	
7	RIKEN A Computa Japan	PEZY-SC		1		0,2	1,001,010	1,533,460	1,313,280	
8	Centre (CS	Swiss National Supercomputing Piz Daint - Cray Centre (CSCS) 2690v3 12C 2.60 Switzerland interconnect , N Cray Inc.		Hz, Arie	100 MFlop/s		2000	2005 0040	2045	2020
9	United States 16C 1.60GH		Mira - BlueGene/ 16C 1.60GHz, Cus IBM				2000	2005 2010		
10	DOE/NNSA United Stat	INSA/LANL/SNL Trinity - Cray XC40, Xec								
	MN	M Dieter Kr	ranzlmüller					н	ICMUT, Vietnar	m 32

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Until today:


- HLRB-II (pre-SuperMUC): Top 500 06/2007:
- SuperMUC Phase 1: Top 500 06/2012:
- 56,5 Tflop/s 2897 Tflop/s

Coming up:

SuperMUC NG (Next Generation) – Procurement on-going

Selection criteria:

- LRZ application mix (compute, memory, bandwidth characteristics)
 - Number of cores
 - Memory per core
 - Interconnect
- Accelerators (Manycore, GPGPU, ...)
- Virtualization (Docker, Cloud, ...)
- Workflow engines, HTC applications, ...
- Power consumption (in total, over time, ...)

Conclusions

- Excellent research needs excellent tools
- Supercomputers provide the highest possible computational performance, interconnectivity and memory capacity
- The complexity of (super-)computers (such as SuperMUC NG) is steadily increasing (not only on the extreme scale)
- Demand of domain science drives computer science research to new frontiers
- Users need the possibility to execute (and optimize) their codes on the full size machines
- The LRZ Partnership Initiative Computational Science (piCS) tries to improve user support

http://www.sciencedirect.com/science/article/pii/S1877050914003433

- 1. Choose focus topics to serve as lighthouse
 - National agreement within GCS: LRZ focuses on Environment (& Energy)
- 2. Choose user communities
 - Already active at LRZ?
 - Not active at LRZ?
- 3. Invite them for introductory piCS Workshops
 - Show faces & tour
 - Discussion on joint topics, requirements, interests, ...
- 4. Establish links between communities and specific points-of-contact
 - Whom to talk to, if there are questions?
 - When to talk to them? In general, as early as possible
 - Maybe, place people into the research groups (weekly, for a certain period)
- 5. Run joint lectures (e.g. hydrometeorology and computer science)
- 6. Apply for joint projects
- 7. Use HPC Machines efficiently to do science

The new SuperMUC petascale system and applications

Dieter Kranzlmüller kranzlmueller@lrz.de

Contributions from: A. Bode, A. Stamatakis, L. Czech, A. Frank, M. Brehm, H.Huber, M. Bader, F. Jamitzky, A. Parodi, ...

