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Kurzzusammenfassung

Im Rahmen dieser Arbeit wird untersucht, welche Teile von 3D Objekten als visuell inter-
essanter empfunden werden als andere und wie sich die wahrgenommene Wichtigkeit auf
der Oberfläche solcher Modelle verteilt. Zwei grundsätzlich verschiedene Lösungsansätze
zu dieser Frage werden zu Hilfe gezogen. Es werden automatisch, anhand eines mathema-
tisch begründeten Prozesses errechnete Verteilungen von Wichtigkeit betrachtet. Mit diesen
Ergebnissen werden Verteilungen wahrgenommener Wichtigkeit verglichen, welche durch di-
rekte Nutzer-Interaktion mit einer Auswahl-Applikation entstanden sind, die im Rahmen
dieser Arbeit erstellt wurde. Das Ziel dieser Arbeit ist das Bereitstellen einer Grundlage von
Daten, welche den Anfang einer Evaluation von Unterschieden dieser beiden Vorgehensweisen
ermöglicht.

32 Nutzer nahmen bei der Studie teil, welche durchgeführt wurde um die Grundlage für
diese Diskussion zu schaffen. Die Teilnehmer nutzten die im Rahmen dieser Arbeit erstellte
Software um Punkt-weise Teile von 3D Objekten, die sie als interessant empfanden, zu
markieren. Gleichzeitig wurde ein grundlegendes Differenz-Maß entwickelt, welches etwaige
Unterschiede beschreiben soll. Dieses hat zum Ziel, eine Prozentzahl als Ergebnis zu liefern,
welche beschreibt wie stark die durchschnittliche Nutzer-Auswahl von den vorab errechneten
Ergebnissen abweicht.

Während eindeutige Ähnlichkeiten erkennbar sind und diese sich auch in den Kennzahlen
widerspiegeln, besteht diese Evaluation mehr auf qualitative Beschreibungen von Tendenzen
und Mustern, da eine fundierte, umfassende Analyse von Unterschieden solcher Datentypen
den Rahmen dieser Arbeit gesprengt hätte.

Abstract

The subject of this work is to inspect which parts of 3D objects are visually interesting,
which are not, and how perceived importance is distributed on the surface of such models.
Two fundamentally different approaches to this question are compared in this work. First,
importance maps computed by an automated, mathematically founded procedure are con-
sidered. Second, distributions of perceived importance, based on direct user input, gathered
from an application based on virtual reality technology, are considered. The goal of this
work is to collect enough data to start an evaluation of differences between the results of
these two approaches.

In order to establish a foundation of this discussion, a user study was conducted with 32
participants. They would each use the software developed in the scope of this work to select
parts of objects they deemed interesting. Beforehand, a basic measure of difference was
conceptualised in order to describe differences that were speculated to be found. The goal
was to compute one percentage-ratio which, based on vertex-wise comparison of importance
values provided by user input and computation, indicates how much the user selection differs
from the results of computation.

While there are clear similarities, this evaluation os more based on observation of ten-
dencies and patterns since a sound, exhaustive analysis of differences in such types of data
would have gone beyond the scope of this work.
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1 Introduction

Beginning in the 1950’s, virtual reality technology [Ste92] has been continuously researched
and improved and its professional relevance is becoming ever more present today. There
is a plenitude of recent works showing that it bears great potential and positive possible
contributions to architecture and construction [SM14], [LPP15], [SJRT13], health care and
psychotherapy [BB14], [MF14], [dRKH+14], engineering and industrial design [MEC14],
[WCAH+16], gaming and home entertainment [VCSF16], [Zyd05] and education [MGC+14],
[OF+15]. One must also consider that this technology can help gaining new insights and
open up new perspectives into greater, more abstract matters of social, environmental and
economic manner [OHH+15], [NNVL+16].

With resources such as memory and computing power becoming more and more available
at ever-increasing rates, 3D objects and their mesh representations are constantly growing
in complexity and size, in terms of shaders, texture maps as well as the sheer number of
vertices. Still, many professional applications revolving around interaction with such models
require means of displaying them in real-time without significant perceived loss of quality
to ensure a smooth and fast workflow. This is where mesh simplification and segmentation
plays an important role [WL10], [SG01], [ZLSZ12].

This issue becomes even more pressing in a professional, commercial context where access
to state of the art, high-performance graphic processing units or render farms is not a
given for everybody. With less computing power available, means of user-oriented, real-time
rendering are of vital importance to a fast and unimpeded way of working on 3D assets.
Mesh saliency is an automatic, mathematically founded procedure proposed in 2005 by Lee
et al. [LVJ05]. It describes vertex-wise perceived importance a given 3D model, based
on differences in local curvature and aims at providing a basis for so-called saliency-based
complexity reduction of such objects. Here, the number of vertices and triangles that make up
a 3D geometry are automatically reduced, often resulting in gross losses of quality. Concepts
such as mesh saliency are designed to uphold important details to a certain extent, even after
reduction has taking place. Put simply, the idea is to merge more vertices in regions that
are deemed to be of low visual interest while keeping the number of vertices high in the
important areas.

Lee et al. state that their procedure is based on characteristics of human perception
and cognition. However, a scientific evaluation as to whether distributions of perceived
importance that result from using it are congruent with real impressions of users or not, is
yet to be conducted. To tackle this problem, direct user input describing what they perceive
as important, is needed. This work includes a description of a virtual reality based selection
application which allows vertex-wise selection of important regions.

For this selection process, the Virtual Reality and Visualisation Centre’s five-sided projec-
tion installation at the Leibniz Supercomputing Centre in Munich was available [v2c]. This
installation creates interactive, immersive virtual reality environments via multiple projec-
tors and tracking sensors. Users only need to wear a lightweight pair of stereo shutter glasses
that are synchronised with the projectors and thus can seperate two images for the specta-
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1 Introduction

tor, one for each eye. The glasses are equipped with a tracking system so that their exact
position, orientation and tilt can be captured in real-time, allowing the computation of the
users perspective in 3D scene at any time. Based on this perspective, the projectors use
the walls as projection surfaces and throw live images resembling what the user would see if
he/she were physically in the virtual scene onto the walls. The projection installation grants
a virtual reality experience which is enhanced by the fact that the user only needs to wear a
pair of glasses instead of a fully sized headset. From a user perspective, another advantage
of such a setup is the fact that there are no cables connected to the glasses which can evoke
a feeling of inhibition or the constant worry of stumbling over and accidentally damaging
them.

This work is segmented into three major tasks. First, a piece of software that allows real-
time interaction in an immersive virtual reality environment is implemented. This so-called
selection application has to let users select and deselect vertices of 3D objects in an easy,
fast way and provide clear visual feedback on what is currently selected and what is not.
Then, a user study is conducted. Participants are asked to use the selection application in
the five-sided projection installation of the V2C [v2c] and select parts of three 3D objects
that they deem important. With this data, a comparison between automatically calculated
importance (mesh saliency) maps and user saliency maps can begin. The last step is the to
start such an evaluation. A measure of difference is conceptualised for this work, trying to
describe how much user selections differ from what parts of 3D objects are deem interesting
by automatic computation. Based on this measure as well as structured observations of the
resulting maps, this evaluation and discussion can begin.

The measure of difference shows that, for the three objects used during the user study,
user selections differ from computed importance maps by roughly 23%, 27% and 38%. How-
ever, the validity of these ratios can be doubted because the measure of difference, being
a first quick suggestion, lacks expressiveness as discussed in section 6.5.1. Furthermore,
observations shows that, while there are clear similarities in what is deemed important by
computation and users, individual, highly object-dependent differences are to be expected.

Figure 1.1 depicts interaction with the application implemented for this work. Details on
its implementation can be found in chapter 4, the general structure and conceptual part of
this work is described in chapter 3. For more related work on the topic, see chapter 2.

Details on the user study can be found in chapter 5, its results are presented and discussed
in chapter 6. Lastly, for a quick summery of this work as well as an outlook on possible
future work, see chapter 7.
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Figure 1.1: Schematic depiction of how the selection application works from a user
perspective
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2 Related work

Since this work focuses on the impact that being immersed in an interactive virtual reality
scene has on human attention when both focusing and performing tasks on 3D objects, this
section will be subdivided into two parts. First, publications discussing mesh saliency, a
technique used term to predict regional percieved importance of digital representations of
real-world (or synthetic) objects as well as 2D images, will be presented and briefly described.
The second section will provide a look into human behavior, based on cognition and outside
stimuli in virtual reality environments. These two sets of scientific works will provide a solid
knowledge of terms and methods commonly used in this field and describe the current state
of the art.

2.1 Mesh saliency and human perception

Research on what human perception guides us to focus our attention on when presented a
3D representation of an object was begun just past the year 2000 and has been a continuous
effort ever since. One commonly cited publication in this field is Lee et al. [LVJ05]. Based
on low-level human visual attention [KU87], it introduces the term mesh saliency, a measure
for regional based importance of 3D meshes and also presents a way to compute it. This
fully automatic process successfully predicts what would be classified by most observers as
prominent, visually interesting regions on a mesh, thus allowing mesh operations such as
simplification [CMS98] and segmentation [Sha08] to produce results that are more appealing
to the beholder.

The model for computing mesh saliency is based on a center-surround comparison of local
curvature. It is scale-dependent on a saliency factor ε, which is based on the diagonal of the
objects bounding box, and is able to identify salient features of a mesh, depending on their
surrounding area. Geometrically complex regions, for example a large patch containing lots
of bumps of similar size, will be rightfully dismissed as, in most cases, regions that are not
interesting from a human perceptional stance.

Taking a closer look at the basic formula through which saliency for any vertex of a mesh
can be computed according to Lee et al. helps understanding the underlying concept. As a
first step, the mean curvature map for a mesh, describing mean local curvature values on a
point-level for each of its vertices, needs to be calculated via commonly known approaches
such as [Tau95]. The resulting mean curvature map C defines a mapping from each vertex
of a mesh to its mean curvature C (v). Using a distance measure such as the Euclidean
or geodesic method, one can compute the neighbourhood N (v,σ) of a vertex v which then
defines a set of points within a distance σ. The Euclidean appraoch was used in Lee et
al. and subsequently in the formula below. Using these definitions, the authors denote the
Gaussian-weighted average of the mean curvature by G(C (v),σ) and present the following
way of computing it.
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2 Related work

Figure 2.1: A model and its computes mesh saliency map. Published by Lee et al. [LVJ05].
Bright colors (yellow and red) indicate high saliency values for their respective
vertices, dark colors (shades of blue) indicate low values.

G(C (v), σ) =

∑
x∈N(v,2σ) C (x)exp− ||x− v||2\(2σ2)∑

x∈N(v,2σ) exp− ||x− v||2\(2σ2)

For computation of the Gaussian-weighted average, a cut-off factor for the filter is assumed
at a distance of 2σ, in other words twice the distance that a vertex can have to another vertex
to still be considered in its neighbourhood. Based on these definitions, the saliency S (v) of
a vertex v is defined as the abslute difference between the Gaussian-weighted averages, as
seen in the formula below.

S (v) = |G(C (v), σ)−G(C (v), 2σ)|

In order to get more refined results, one can conduct multiple computations of mesh
saliency with different values for σ. Lee et al. use the previously mentioned saliency factor
ε with ε ∈ 2, 6 in their paper, to generate multiple values for σ.

The concept of mesh saliency has since been refined, augmented and adapted to serve as
a basis for a multitude of specific use-cases and applications. When processing single vertex
saliency, Wu et al. [WSZL13] took into consideration not only the curvature of the region
surrounding the vertex, but also the global context of it. In other words, for each vertex
to be attributed a value describing its saliency, its global rarity, derived from comparing its
features to those of every other vertex of the object, is computed. They performed a user

6



2.1 Mesh saliency and human perception

study in which they had participants choose one out of two saliency maps for a set of objects,
presented in a random order. One map was generated using their approach, the other one
with the model presented in Lee et al. Participants were asked to pick the one that was a
closer representation of what they would have considered interesting regions and features.
Since their method got picked in almost 58 per cent of cases, while the results produced by
the model presented in Lee et al. were favored in about 42 per cent, this can be considered
a true improvement of the way mesh saliency can be computed.

One approach to improve the method of finding salient elements in 2D images relied on
paying extra attention to depth-information in [CHR13]. In this work, Ciptadi et al. found
that better results in terms of automatic identification of objects and surfaces could indeed
be achieved this way. Transferring these insights into a 3D context is easy since visually
complex models often base on multiple image-maps describing, among other information,
depth values on the surfaces of the model. In [PZV11], the authors took a more task-driven
approach to contribute to the concept of saliency. Gathering colour- and depth information
about real-world scenes using a Kinect sensor, they extracted semantic cues about surface
heights, relative surface orientations and occluded edges. Based on that data, they computed
combined saliency maps which allowed them to assign real-world objects to four different
categories, enhancing ways a robotic system can interact with them, providing the best
possible points where the objects can be grasped and whether they are in reach at all or not
(due to occlusion by other objects).

Another recent work aimed at identifying single, distinct elements and objects of 3D
models was presented in [Kos03] by Koschan et al. The authors propose a segmentation
algorithm that utilises a human perception phenomenon known as the minima rule which
suggests that contours of negative curvature minima can serve as boundaries of disjunct
visual parts or elements. Another detailed comparison between automatically detected points
of interests and what participants in a study actually declared as visually interesting points
was drawn by Dutagaci et al. in [DCG12].

To verify the practical relevance of identifying salient regions and features on 3D meshes,
Howlett et al. [HHO05] conducted a user study on whether it is possible to determine
such features in advance. Based on observations gathered from eye-tracking device based
user studies, they concluded that, especially with natural objects (animals, humans etc.),
this was indeed the case. On top of that, they also reported a significant increase in visual
fidelity on objects which were simplified based on saliency weight-maps, according to reports
of study participants. Furthermore, in [KG03] the authors used user-guided simplification
to preserve higher levels of detail in areas of 3D objects that people deemed important to
the recognisability of the object. After performing mesh simplification according to [GH97],
enhanced by taking user-derived weight maps into account, the authors observed what they
described as perceptually improved approximations of input objects.

In another highly noteworthy work by Munaretti [Mun07], the concept of mesh saliency
was extended to deformable, in other words animated, objects. The author presented a way
to generate so-called multi-pose saliency, a combination of multiple saliency maps compoted
for static poses of a mesh. These static meshes can also be interpreted as keyframed poses
for dynamic deformation, which makes this work a potentially outstanding contribution to
any field where 3D objects are being animated.

The author found a remarkable improvement of the original way of computing mesh
saliency as presented by Lee et al. by using geodesic distance [SSK+05] instead of eu-
clidean distance when comparing local curvature values and implemented a way to compute
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multiple saliency maps for different levels of detail.

2.2 Human attention in Virtual Reality

While navigation in virtual reality space via a traditional desktop setup with input devices
such as a mouse and a keyboard still seems to allow users to perform better in basic tasks
such as navigation, they generally perceived interaction via a head-mounted display more
natural and intuitive [SDP+09]. It is worth noting though, that this work evaluated a series
of user studies described in their respective papers which were published between 1997 and
2006. Thus, it is safe to assume that recent VR technology would get much better results in
comparison. This was hinted at in the paper multiple times, mentioning the idiosyncrasies of
the equipment used in the studies. The main tasks in the studies described in this paper in-
cluded navigation (both in small and large-scale virtual environments), searching for certain
objects, physically replicating simple virtual sculptures as well as generic volume visualisa-
tion tasks (identification, judgement of size, shape and connectivity). Regarding navigation,
the authors concluded that during the six considered studies, slightly faster or equal com-
pletion times between VR and desktop setup users could be observed. Results for search
tasks were found to be more varied. One study reportedly concluded that desktop users
were faster, another one stated the opposite. Visualisation tasks such as size estimations
were fulfilled with better results by users in a fully immersive virtual environment compared
to participants using a head mounted VR display [QTIHM06]. This is an interesting find
for this work since this user study was conducted with the help of so-called fish tank VR
[WAB93]. This setup, due to the lightweight stereoscopic glasses and almost unrestricted
freedom of movement, resembles a very basic variation of the kind of immersive experience
that can be achieved with the use of a multi-wall projection installation which I had access
to for this work.

Another, in the context of this work, very relevant study described in the paper above
is [MJSS02]. This work, aiming at finding measurable advantages of immersive virtual
reality (IVR) over conventional display methods within the context of complex 3D geometry,
had users cloesly observe sculptures consisting of more or less randomly bent rods of equal
thickness. The users - grouped into IVR and desktop users - were asked to physically replicate
the fairly complex object with real, easily deformable leaden rods while looking at the virtual
object. The paper describes two studies, in one of wich the IVR setup was a multi-sided
projection installation, allowing the users to view the geometric data from effectively every
possible position and angle while the desktop user group had to use a joystick or control pad
for navigation. It reports that IVR users performed consistently superior regarding both
time and error-rate. This suggests that immersive virtual technology might be able to offer
a more precise understanding of complex geometric data which is a compelling assumption
regarding this work.

With the ambition to develop a predictive model for the positive outcome using a VR setup
can have compared to its expenses, Pausch et al. [PPW97] found that, while not being being
able to help users perform search tasks in virtual space faster than with a desktop setup,
users with a head-mounted display were able to complete the tasks with more certainty.
They spent significantly less time re-examining areas, which they commonly did with the
desktop setup - up to 41% more time. The task users were given in this work was to find a
specific letter hidden on the walls of a virtual room which were textured with evenly spread
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2.2 Human attention in Virtual Reality

sets of letters, or confidently declare that the letter wasn’t present. The target letter was
not actually present in the room in 50% of the tests. Based on the observation that VR
users in this study barely spent any time rescanning parts of the virtual room, the authors
assumed that a VR setup can have a greatly beneficial impact on systematic search tasks.
They based this on the fact that spatial understanding and navigation skills are naturally
very well developed parts of human cognition and proposed that the immersive experience
did such a sufficiently well job at mimicking a real life environment that these skills could
be used to a greater extent than in a desktop setup. Again, this is further reason to be
optimistic about finding interesting patterns in what users in a VR setup find to be highly
significant regions of 3D objects.

Taking a step back towards the basics of human attention in 3D space, in 1998, Atchley
et al. [AK] conducted four experiments addressing attention in 3D scenes on a very basic
level. Participants were shown simple scenes, each containing sets of six short lines. The
scenes were arranged on four different depth planes, one behind the other, and displayed on
a stereographic display. The basic task given to participants in all of the experiments was to
focus a briefly visible colour singleton on a specific, previously cued depth plane. One of the
lines on the indicated plane would change its colour for 100 milliseconds and participants
had to correctly say whether it was tilted to the left or the right. To determine the time it
takes to shift attention from one plane to another, for some user groups, the colour singleton
would appear in a plane other than the previously hinted one. To further track speed and
accuracy of attention focus, a distraction element (one additional line changing its colour
simultaneously to the target line) was shown to some participants, sometimes in the target
plane, sometimes in a different one. From their observations, the authors gathered that
depth-plane attention can be successfully guided and that distraction elements appearing on
the target plane significantly interfered with the users’ ability to give correct answers, while
such elements appearing on other planes had virtually no impact on results.

Taking the effort of tracking attention a step further into virtual reality context, Lee et
al. [LKC07] accomplished just that on an object basis. They presented a framework capable
of such a task, both bottom-up (stimulus-driven) and top-down (goal-directed). Based on
pixel-level saliency maps, computed via known methods, similar maps for multiple objects in
the scene are generated, allowing predictions on which objects will more likely to be focused
first by users. Using the method presented in this paper, object-level saliency maps can be
computed in real-time, depending on the users dynamic position and orientation within the
scene. The authors exploited knowledge of human cognition which suggests that attention
is object-based [ODK99] and, using a monocular eye tracking device, compared the results
of estimated object-level saliency maps to the behavior of participants in their study. They
dynamically assigned saliency values to each object and, depending on how many of the
objects with the highest values (first 1, 2 or 3) were taken into consideration, observed
estimation accuracies ranging from about 50 per cent to up to nearly 95 per cent. As one
can imagine, accuracy values were the highest when users were given a task, for example
finding a certain object within the scene. This shows that attention in virtual space can be
tracked and accurately predicted on object level.

In 2012, Y. Kim et al. [CSPF12] conducted a study that relied on an eye-tracking system
to compare previously computed saliency maps to eye movements of participants, aiming
at comparing the computer generated saliency map with user input describing regional im-
portance of 3D objects. The authors based the computation of mesh saliency maps on the
work by Lee et al. [LVJ05]. They then introduced a normalized, chance-adjusted saliency in
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2 Related work

order to evaluate the correlation between point-wise mesh saliency values and the users’ eye
fixations on 2D rendered images of 3D objects, each visible for five seconds. They concluded
that the computational model of mesh saliency has better correlation with human eye fix-
ation points than both a randomly model as well as another curvature-based model during
this specific timespan. This suggests a basic correlation between mesh saliency maps and
input gathered from tracking human vision. However, since 2D images were used during this
study and there was no form of interaction whatsoever, lots of ways to validate the relevance
of mesh saliency are still untouched.
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3 Concept

One of the main goals of this work is to describe and implement a framework that allows
for quantitive statements about differences between user selected regions of importance and
computer generated mesh saliency maps to be made. It also includes such a comparison on
a basic, conceptual level. Based on these abstract tasks given, the workload and how it is
apporached, can be described by the following milestone-like, high level requirements.

1. implement a selection application for an immersive virtual reality environment

a) spatial indexing of 3D data

b) selection process

2. conduct a user study to acquire data for a comparison

3. conceptualise a measure of differences between the data sets

In this section, I will go through these requirements and describe in more detail what
specific challenges they entailed and how I went about implementing solutions to them. I
will also describe the underlaying concepts I chose to use and how I amended them to better
fit this work where needed.

3.1 Implementing a selection application for an immersive VR
environment

One of the main challenges of this work is developing a piece of software that allows users
in an immersive VR environment to select vertices of 3D objects. Designing, implementing
and adjusting this software to being executable as a multi-threaded client-server application
is another challenging aspect of this work. For the rest of this work, this piece of software
will be refferend to as selection application. For details on its implementation, see section 4.

3.1.1 Spatial indexing of 3D data

3D objects and data in general are read as lists of coordinates by computers. Common 3D
file formats such as .OBJ, .FBX and .STL contain the same data in similar structures, using
multiple lists of different kinds of geometric information. While they these formats vary in
the range of information they can hold, they all represent at least the following types of
essential data. Vertices, or a three tuple of float values describing x, y and zu coordinates
and faces, or basic triangles consisting of three vertices. Other optinal information that can
be represented include vertex normals, texture coordinates and more complex features such
as assigned materials, animations and armature objects. Figure 3.1 shows an excerpt of a
3D file in .OBJ format, viewed in a simple text editor (gedit).

11
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Figure 3.1: Notation in .OBJ format

All these types of information share the following properties which were of relevance for
this work. They are contiguous lists of lines, each line representing one instance of the data
type indicated in the beginning of the line. Figure 3.1 depicts an excerpt of an .OBJ file
ocntaining vertices (lines starting with v), vertex texture coordinates (lines starting wit vt)
and faces (lines starting with f).

These lists are not ordered. Depending on the modelling process, the vertices, faces and
all the other attributes can be presented in an completely arbitrary order which hold very
little information about the actual, geometric features of the object. The spatial position
of any given vertex in relation to the entire object can not be retrieved from this type of
notation. This created the demand for spatially indexing of 3D data in the scope this work.

I decided to implement the concept of Octrees [Octb] because of its convenient characteris-
tics as well as prior, personal working experience with quadtrees. In an octree, the geometric
size of the smallest possible leaf node can be determined in direct relation to the object to
be indexed and, at any level, all leafs and nodes will be of the same size. This is highly
useful in radius-based proximity-requests for multipl reasons as described in section 4.3.2.1.

One of the most common queries performed on 3D data are proximity queries. This
means that vertices located within a given radius around an input query-coordinate are to
be retrieved. The trivial and obviously highly inefficient solution to such a problem would
be to iterate through the entire list of vertices and their coordinates and check for those who
fulfill this query condition. This is where spatial indexing structures such ad octree come
into play. The concept of octrees is highly recursive and can realize all the most common
types of queries (including search queries) in logarithmic time.

An octree is a set of nodes that store references to one another. The highest-level node
is called the root node, bottom level nodes are usually referred to as leaf nodes or leafs.
Every node that is not a leaf node has eight children-nodes which, in a spatial sense, make
up the entire space of their parent node. Such non-leaf nodes can also be described as roots
of subtrees.

Figure 3.2 taken from [octa] shows a simple octree structure indexing five vertices, both
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3.1 Implementing a selection application for an immersive VR environment

Figure 3.2: An octree structure indexing five vertices. Left: 3D view, right: tree structure;
2017, https://developer.apple.com/documentation/

in 3D and tree view. Note how the root node on level 0, shaded purple on the right, is
represented as a large purple cube on the left, encompassing the entire set of vertices. The
figure visualizes how an non-balanced octree structure that allows one vertex per leaf node
at most would look like. On levels 1, 2 and 3, there are eight nodes each. On level 1 (shaded
red), there are two leaf nodes that hold one vertex each. The eighth subtree node contains
three vertices and is thus split into eight subtree nodes (shaded blue), each on level 2. Out
of these level 2 subtree nodes, one is split again into eight level 3 leaf nodes, two of which
store one vertex each.

The most important parameter for an octree is the maximum allowed number of vertices
per leaf node. Once the dimensions in x-,y - and z-direction of the 3D object to be indexed
have been determined, the root node of the octree will store every vertex until said maximum
allowed number of vertices is reached. Up until that point, the root node is a leaf. It is from
then on no longer a root and creates eight new nodes (its child nodes) and store references
to them. This process is repeated recursively for every new node until every leaf node holds
less than the maximum allowed number of vertices per leaf node. It is worth mentioning
that in many implementations of the octree concept, every leaf node needs to be at the same
level. For this work, the non-balanced version of an octree where that is not the case is used.
The reason for this is that in 3D objects, the data is not evenly and very sparsely distributed
inside the entire space defined by its bounding box that. The vertices make up the surface
of the model, inside and outside of it, there is no spatial information to be indexed at all.
Queries to an octree structure can be processed with logarithmic costs which, in combination
with sparsely distributed data, allows for fluent, real-time interaction with objects up until a
certain magnitude of vertices total. By carefully choosing suitable values for the maximum
allowed number of vertices per leaf node and maximum allowed split depth, acces times can
be further optimsed.
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3.1.2 Selection process

To gather data to compare with computer generated mesh saliency maps, tracking user
input is needed. In an appropriate immersive virtual reality setup, 3D objects get loaded
and spatially indexed using octrees as described in the section above. Now, the selection
function is comes into play. Using a hand-held input device, users can interact with the
scene in two essential ways - navigation and performing arbitrary operations mapped to
the device’s buttons. Each such operation can, among other information, use the current
position and rotation of the wand as parameters. Figure 5.1 in section 5.1 shows an example
of such an input device.

Figure ?? depicts the wand used in the V2C. The yellow joystick in the middle of its
top side, in combination with the current rotation of the device, can be used to navigate
the user’s view onto the scene. Furthermore, the two essential functions of the application,
selecting and deselecting vertices, are mapped to two buttons of the device. From a user
perspective, both these functions are executed in a radius around the tracked position of the
device. Put simply, vertices that are rendered near the device at the time the user presses
buttons, become either part of the current selection or get removed from it. In accordance
with the simplistic structure of the user study, the interaction is designed to be as little
complex as possible, hence only these two buttons having actual, distinct purposes.

With this setup in place, everything needed to implement the user selection part of the
application is at hand. In order to provide as much visual accuracy as possible, a bright green
diamond shaped object at the tracked position of the wand is projected into the scene in
addition to the loaded model. To additionally provide clear visual feedback, vertices selected
are painted in bright red, clearly seperating them from non-selected parts of the object,
displayed in plain grey. For more details on the visual presentation of the application, see
section 3.2.

Whenever a user presses the button the add function is mapped to, a proximity query is
performed on the octree structure indexing the object with its current position as the input.
The position is passed as a three-dimensional coordiante. For a detailed description of how
such a query is handled in this application, see section 4.3.2.1.

In addition to these input coordinates, the following two parameters are passed to calls to
this function in the context of a user adding or removing vertices to the current selection:
The pre-computed selection radius and a reference to a temporary set vertices, holding
unique vertex IDs. After a query is terminated, the set of vertices found will be added to
this temporary set. Due to the design of the synchronisation routine between server and
client threads of this application, this set will be emptied before the result of each such query
is returend and written to it. If the add button is pressed, the content of the intermdiate
selection will be added to another set holding the list of currently selected vertices total. If
the remove button is pressed, each of the temporarily selected vertices is looked up in this
second set and, in case it is found, removed from it. This approach prevents the total set
of selected vertices to be sent from the server to all client threads at every frame during
runtime. Only newly selected vertices (or those that are to be removed from the current
selection) are sent across the application. The time for each action (in seconds since the
application was started) is logged as well. For more details on the implementation of the
selection application, see chapter 4.
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3.2 Conduct user study with the selection application

3.2 Conduct user study with the selection application

Another essential part of this work is conducting a user study where all of the aspects
described in this chapter so far are be put to use. The goal is to collect data on what parts
of 3D objects users find visually interesting or important. Users put on the stereoscopic,
trackable glasses, step inside a suitable immersive VR environment, for example a multi-
sided projection installation, and are asked to mark regions of the object currently displayed
that they consider to be intersting or important.

After taking a few minutes to get familiar with navigating and interaction within the
projection installation, as well as selecting and deselecting vertices with the hand-held input
device, the main part of the user study begins. For a detailed documentation of how the
user study was designed and executed, see chapter 5.

Selections of the users are gathered to compute user-weighted importance maps for the
displayed 3D objects. These are compared to previously computed mesh saliency maps. For
the rest of this work, they will be referred to as user saliency values. For the results and
discussion of this comparison, see chapter

In this selection application, selection and deselection operations are executed with the
current tracked position of the hand-held device as input coordinates. To give users a clear,
live feedback on that tracked position, for every frame, a ten-sided, diamond-shaped object is
also rendered in the scene on that very position. The object is shaded in a bright green, to be
easily distinguishable within the 3D scene. However, it did not offer a visual representation
of the pre-computed selection radius. This radius rmax is defined as dmin / 2lmax * 0.95,
in other words 95% the size of the smallest possible leaf node, so it is slightly different for
every object loaded in the application. The size of the ten-sided object representing the
tracked position of the device within the scene is chosen to stay the same for each object and
not to adapt to their sizes. This is done with the intention of providing more consistency
within the scene, independent of the currently loaded object. This design decision goes in
accordance with the minimalistic general visual presentation of the application, as described
in the following brief summary.

• background-color of the application: (almost) black

• shader used for the loaded object: light grey, no textures, normals used

• shader used for selected vertices: bright red

• shader used for diamond-shaped object indicating the tracked position of the wand :
bright green

Two steps are taken to eliminate the possibility of user selections being influenced by
them first having to adapt to and getting familiar with the selection application. First,
Every user is given as much time as desired to get familiar with the navigation and selection
workflow, accompanied by hints and instructions. Selections made here are not considered
for the results of the userstudy. After that - when the user feels ready - the three objects are
presented in a randomly chosen order for five minutes each. The users are given the tasks
stated at the beginning of this section and are free to use as much of the five minutes as
they want to perform vertex selection and deselection operations.

The five minute time limit is an absolute upper limit for each selection process. Users are
free to end selection prematurely whenever they state they are satisfied with the selection
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as it is. See figure 5.2 in section 5.1 for a basic depiction of what the the interaction looks
like in the five-sided projection installation used for this work.

Besides the five minute tutorial phase - the time users can take to get familiar with
the application - and the actual tasks to be fulfilled (as described at the beginning of this
section), a few more instructions are given and requests asked for. Users are asked to consider
symmetry in their selection, meaning that, in cases where it is possible, parts of objects users
select on one side of the object are also selected on the opposite side. Users are told that
there is no correct way to fulfill the selection task. They are encouraged to select whatever
tehy deem relevant according to the tasks based on their personal judgement and subjective
interpretation of interesting. The users are left alone during the selection process. After
four of the maximum five minutes have passed, users are told that they have one minute
remaining. After five minutes, the current selection process is stopped, the result written to
a logfile and the next object gets loaded into the VR environment.

3.3 Measure of differences

Since large portions of the workload of this work is the implementation of the selection
application as well as conducting the user study, the comparison of user generated and pre-
computed mesh saliency maps is designed to be quick and easy. The main goal is to have a
ratio that expresses whether there are major differences to be further examined or not.

This chapter describes a basic way to compute a difference ratio, normalised to a decimal
value between 0 and 1, describing how much user saliency maps differ from mesh saliency
maps, is conceptualised. It is based on a simple vertex-wise comparison of saliency-values
and makes use of the proximity queries provided by the octree structure, which is also the
basis for the selection application itself as described in section 4.3.1.

In chapter I consider both raw and weighted difference values, for a detailed explanation
of these terms, see the following subsections. For a brief summery and step-wise explanation,
see subsection 3.3.4.

3.3.1 Terms and abbreviations

The following terms, symbols and abbreviations will be used in the subsequent sections to
explain the measure of difference used in this work.

unweighted difference ratio - a float number, normalised to a value between 0.0 and 1.0
indicating how much the generated user saliency map differs from the pre-computed
mesh saliency map, based on unweighted (raw) difference values

weighted difference ratio - a float number, normalised to a value between 0.0 and 1.0 indi-
cating how much the generated user saliency map differs from the pre-computed mesh
saliency map, based on weighted difference values

vi - the currently considered vertex i ∈ set of all vertices V belonging to an object

SM (vi) - the computed mesh saliency value for vi as described in [LVJ05]

SU (vi) - the user generated saliency value for vi, describing its perceived importance value
based on how many users selected it in relation to the most-selected vertices.
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vertId timestamp

27 64
59 62
63 62
64 62
65 62
67 62
68 62
69 62

Table 3.1: Sample content of a user selection log file

∆raw(vi) - the unweighted (raw) difference between the user and mesh saliency values SU (vi)
- SM (vii). The absolute value of the result is normalised to a value between 0.0 and
1.0

∆weighted(vi) - the weighted difference between the user and mesh saliency values SU (vi) -
SM (vii). The absolute value of the result is normalised to a value between 0.0 and 1.0

Vproximty(vi) - a proximity set of vertices v1, ... vj that are located within radius r around
the coordinates of given vertex vi

ω - a threshold value for mesh saliency values SM (v1), ... SM (vj) for all vertices v1, ... vj ∈
a proximity set Vproximty(vi) of vi. 0.8 is used in this work.

3.3.2 unweighted difference ratio

As stated above, ∆raw(vi), or the unweighted (raw) difference between user generated
and computed mesh saliency value can easily be obtained by taking the absolute value
of SM (vi) − SU (vi). For each of the objects used in the user study a mesh saliency map
using climberpi’s implementation of mesh saliency [clm] is computed, providing SM (vi)
for every vertex v in Vbunny, Vcow and VP−51 where Vl is the set of all vertices that make up
the object with label l.

Values SU (vi) are computed via a simple, average-based comparison of how many users
selected each vertex. As mentioned in 4.3.2, user selections are written to simple structured
text files containing one unique vertex ID and the time they are added to or removed from
the selection (in seconds since the application was started) in every line, seperated by a tab
symbol as depicted in table 3.1.

In the simple evaluation process used for this work, before each logfile is read, a container
object user selections is created with size equivalent to the number of vertices of the currently
considered object. After the last log file is processed, user selections contains a mapping
for each vertex vi, describing how many users selected it at offset i, which equals the vertex
ID. In other words, let userselections[i] = t for each vertex vi of an object where t is the
amount of users that selected vi.

Next, the maximum number of times one or multiple vertices were selected tmax is com-
puted. Based on this maximum value, user saliency values are SU (vi) generated as follows.
SU (vi) = userselections[i]/tmax
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User saliency values for each of most often selected vertices - those selected by tmax users
- will be 1.0, and 0.0 for those which were not selected by a single user. Every other user
saliency value will be somewhere in that range, describing what one could informally call
the popularity of the vertices.

With both mesh and mesh saliency values for each vertex vi, we can use the absolute
value of their difference as the unweighted (raw) difference. The final step to generate the
overall unweighted difference ratio is a simple addition of SU (vi) values for every vi ∈ V ,
where V is the total number of one object and dividing the result by V . This ratio gives a
quick, first impression of how much the average user selection differs from a mesh saliency
map computed according to [LVJ05].

3.3.3 weighted difference ratio

The unweighted difference ratio, being very basic and average based, lacks expressiveness.
During research and preparation for this work, it became clear that mesh saliency maps offer
a solid basis for prediction models of what parts of 3D objects human attention tends to
gravitate towards. By further developing and refining the concept, these predictions became
precice and reliable, see chapter [?]. I based my idea for the weighted difference ratio on the
assumption that differences in saliency values for some vertices are more interesting than
others.

Figure 3.3: A multi-scale mesh saliency map for an object including color scale. Published
by Nouri et al. [NCL15]

Consider figure ??. It depicts an object and its multi-scale mesh saliency map as well
as a scale for reference. The scale describes how yellow and red colored vertices indicate
high mesh saliency values for those vertices while green and blue colored ones suggest lower
values. Note that this map is not computed via the standard mesh saliency model but an
enhanced, multi-scale based one. The figure is suitable to explain the idea behind which
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point-wise difference value in user and mesh saliency values are weighted in this work.
Based on the assumption that a difference betwen mesh and user saliency values of a

vertex is more interesting if it is surrounded by vertices which have high mesh saliency
values than it would be if all the surrounding vertices are deemed not highly interesting by
mesh saliency, such differences get weighted. Consider a vertex vi in the following cases.

case 1: vi has a user saliency value of 0.2 or lower and vertices in Vproximty(vi) have an
average mesh saliency value of ω or higher.

case 2: vi has a user saliency value of 0.2 or lower and vertices in Vproximty(vi) have an
average mesh saliency lower than ω

case 3: vi has a user saliency value of 0.8 or higher and vertices in Vproximty(vi) have an
average mesh saliency value of ω or higher

case 4: vi has a user saliency value of 0.8 or lower and vertices in Vproximty(vi) have an
average mesh saliency lower than ω

This simple evaluation process is based on the assumption that realistic, reliable results
are achieved by the model of mesh saliency. So it focuses on finding deviations within parts
and regions of objects that have high average mesh saliency values. Thus, only in cases 1
and 3, vertex-wise differences get weighted. High vertex-wise differences in regions with a
low overall mesh saliency value still are considered for the final weighted difference ratio, but
not as much as those at hand in cases 1 and 3.

Regarding how the actual weighting is done, a simple function that increases the vertex-
wise raw difference values, normalising them between 0.0 and 1.0 without getting greater
than 1.0 is used. An altered, restricted function describing a circle that has its centre
at x = 1.0, y = 0.0 and radius r = 1.0 is suitable for this demand. Figure 3.4 depicts
this weighting function. It shows how vertex-wise differences between mesh saliency and
user saliency values are used for computation of the final, overall difference ratios - both
unweighted (black line) and weighted (blue curve).

Consider figure 3.4. The straight, black line, being a steady identity function of float
values, shows normalised unweighted vertex-wise difference values. For such values, both in
regards to unweighted and weighted overall difference ratios, their unaltered, absolute value
∆raw(vi) is used for computation. However, should vertices in Vproximty(vi) have an average
mesh saliency value of ω or greater, the difference between mesh saliency and user saliency
values at vi is weighted according to the blue curve function shown in the figure.

In conclusion, if vi is surrounded by vertices whose average of computed mesh saliency
values surpasses a certain threshold ω, it is assumed that vi is located in a greater, contiguous
patch of the object with high importance as determined by the processing according to mesh
saliency. Hence, ∆raw(vi) is used for generating the overall unweighted difference ratio and
∆weighted(vi) is used used for generating the overall weighted difference ratio.

3.3.4 step-wise summery

This subsection provides a brief summary of the steps to computing overall unweighted and
weighted difference ratios described in greater detail in the precedig subsections. It provides
more insight into how the data is organised and prepared for evaluation. It describes the
workflow for a single 3D object.
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Figure 3.4: Graphic representation of the weighting function in relation to the unweighted
difference values (straight, black line)

1. Compute the mesh saliency map for a given object using using climberpi’s imple-
mentation [clm] and store the result in an external textfile computed saliency for
later use.

2. Read n textfiles u 00, ... u n, each containing one user selection, compute the user
saliency map based on how many times each vertex was selected in relation to the
most-selected vertices and store the result in an external textfile user saliency for
later use.

3. Read computed saliency and user saliency, store the contents in two contain-
ers of type std::vector called computed saliency values and user saliency values.

4. calculate vertex-wise saliency differences and store them in an a std::vector differ-
ences unweighted.

5. Iterate through the list of vertices of the currently considered object. For every such
vertex vi, find vertices v1, ... vj ∈ Vproximty(vi) via a range-query to the ocTree
instance indexing the object (see section 4.3.2.1).

6. For each vertex vi, look up mesh saliency values for vertices v1, ... vj in the mesh
saliency map. Compute the average of those values.
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a) if average is ω or greater, compute ∆weighted(vi) and storte it in a std::vector
differences weighted.

b) if average is less than ω, keep ∆raw(vi) as it is in differences unweighted.

7. Iterate through differences unweighted, calculate the average and return it as
the overall unweighted difference ratio.

8. Iterate through differences weighted, calculate the average and return it as the
overall weighted difference ratio
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4 Selection Application

This chapter describes the of the selection application used for this work. After a rundown of
third party requirements and a summary of relevant C++ classes, the description is further
subdivided according to its abstract, key requirements. The goal of this chapter is to describe
how the application, especially the Octree[Octb], is designed and implemented. Accordingly,
key lines of source code as well as plenty of explanatory comments are provided.

4.1 Additional third party libraries

To ensure a scalable, platform independent implementation of the application, the following
third party libraries, frameworks and APIs are used.

4.1.1 OpenGL

The Open Graphics Library OpenGL [Ope] is a powerful industry standard API for render-
ing 2D and 3D graphics, independently of programming language and operating system. One
of its most outstanding features is its ability to directly perform operations on the graphics
processing unit of a computer, allowing fast, hardware-accelerated display of graphic ele-
ments. For this work, OpenGL is used for displaying the 3D objects both in the user study
and throughout development of the selection application. The task of displaying rendered
images across multiple projection surfaces on a 360◦panorama view is handled by software
developed at the Zentrum für Virtuelle Realität und Visualisierung (V2C) of the Leibniz-
Rechenzentrum [v2c].

OpenGL is based on the following basic structures and concepts:

Vertex Buffer Objects (VBOs) contain actual vertex data. Coordinates, normal and color
information, texture mapping and any other kind of data that is desired can be saved
in these kinds of objects. They are designed as buffer objects to be stored directly
within the memory of the video card, ensuring extremely fast access times.

Vertex Array Objects (VAOs) are objects which can contain one or more Vertex Buffer Ob-
jects and store information for complete, rendered objects. In other words, VAOs store
descriptions of vertex data stored in VBOs. For example, the number of coordinates
the vertices are made of, in which order etc. From a performance aware point of view,
they are a great improvement over older, deprectecated concepts in OpenGL since
multiple calls to bind and upload distinct sets of data belonging to the same object to
the graphics processing unit can be bundled in one call to a VAO.

Vertex Shaders are small pieces of C-like code, executed by the graphics card, which can
perform extremely fast, basic operations on every vertex of a vertex data input stream.
Vertex shaders are one of two mandatory types of shaders. As soon as an openGL draw
command is called, they process every incoming vertex and output two things for each
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one: Its position (untouched or altered in any way desired) within the output window
on screen, and a set of arbitrary defined custom data such as normal information, color
and texture mapping. These attributes are calculated on a per-vertex basis.

Fragment Shaders complete the absolute minimum for an openGL-based rendering pipeline
to be able to display anything, together with vertex shaders. They are executed per
pixel and, therefore, considerably more often than vertex shaders. Their purpose is
to interpolate, for each pixel in between vertices, its RGB value, based on the per-
pixel values calculated by the vertex shader. The term fragment is often informally
described as a potential pixel, as the final RGB value of a pixel can still be changed
after it is processed by the fragment shader.

4.1.2 GLUT

As stated on its official webpage [GLU], GLUT is an official OpenGL Utility Toolkit which
provides, among other features, support for multiple windows, control of such windows and
handling input from devices such as keyboards and mouses. It is commonly used to achieve
interactive windows with cross-platform compatibility displaying rendered images produced
by OpenGL. Handling input via the hand-held controller in the user study is achieved with
the help of GLUT during this work.

4.1.3 GLEW

The OpenGL Extension Wrangler Library (GLEW)[GLE] is a cross-platform extension load-
ing library, specifically designed to be used by C/C++ applications. It provides run-time
mechanisms for OpenGL extensions supported on the target platform, allowing to faster
query and load those extensions.

4.1.4 ASSIMP

Available across multiple operating systems including Android and iOS, The Open Asset
Import Library [ASP], is a powerful open source library that offers import, export and post-
processing functions for most commonly used 3D data formats. In this work, its easy to use
import function for OBJ files is used for loading the 3D objects to be displayed in the user
study. ASSIMP implements a set of hierarchically organised data structures or so-called
nodes. Two of the most relevant ones for this work are briefly described below.

aiScene is the root of all the imported data returned from a successful call to one of AS-
SIMP’s import functions. Global information such as the direction of the coordinate
system, its origin location as well as references to all the other data in the scene are
stored here.

aiMeshes represent imported meshes within the scene. Each aiMesh has its own local coor-
dinate system with an origin point and all the vertices belonging to it. Multiple sets
of data describing one imported mesh can be stored in these mesh objects but sets of
vertices and faces are always guaranteed to be present, thus enabling a basic graphic
representation of the mesh.
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4.2 Relevant class files

This section covers all the relevant C++ classes used to implement the selection application.
Note that these descriptions only cover the general structure and purpose of these classes
within the context of the applicatoin. For a more detailed description of the most crucial
functions, see section 4.3.

4.2.1 Object

The object class is used to represent a 3D object within the project. It uses import functions
from ASSIMP to load a file via a given source path. An object can contain multiple mesh
objects, segmentation happens automatically based on a threshold number of vertices that
can be stored in one mesh. This class is used to work with potentially very large 3D files in
a uniform and quick way, mostly by implementing wrapper functions that have each mesh
object associated to an object call their upload and draw functions, their destructors etc.

4.2.2 Mesh

One object can consist of multiple meshes. These meshes are coherent with instances of
aiMesh (see subsection 4.1.4) and all the important attributes such as vertices, faces, normals,
texture coordinates and IDs are stored here. OpenGL functions such as uploading vertex
buffer data to the graphics proccessing unit and drawing are implemented here. Some of the
application’s most crucial functionalities such as adding to and removing vertices from the
global selection of vertices to be highlighted are implemented in this class, see 4.3.

4.2.3 Octree

Spatial indexing of loaded objects in the application is entirely handled in this class. This
has been one of the most labour-intensive parts of the application because formal guides to
implementing it, independent of coding language, are scarce and working with the data that
is stored in the object and mesh classes above required an extensive amount of customisation.

4.3 Key Features

This section describes the following features and functionalities which are most crucial to
the selection application.

• Spatial indexing via Octree

• User selection

• Tracking selection

• Testing setup
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Id[Ol, Ol+1, Ol+2] X min X max Y min Y max Z min Z max

000 p.X min p.X mean p.Y mean p.Y max p.Z mean p.Z max
001 p.X mean p.X max p.Y mean p.Y max p.Z mean p.Z max
010 p.X min p.X mean p.Y min p.Y mean p.Z mean p.Z max
011 p.X mean p.X max p.Y min p.Y mean p.Z mean p.Z max
100 p.X min p.X mean p.Y mean p.Y max p.Z min p.Z mean
101 p.X mean p.X max p.Y mean p.Y max p.Z min p.Z mean
110 p.X min p.X mean p.Y min p.Y mean p.Z min p.Z mean
111 p.X mean p.X max p.Y min p.Y mean p.Z min p.Z mean

Table 4.1: Child node bounding values

4.3.1 Spatial indexing via Octree

As mentioned above, the ocTree class handles spatial indexing and, therefor, provides quick
access to every vertex of an imported 3D object via a set of integer-like (size t) indices.
The general approach to this implementation of the concept of Octree is designed with a
heavy emphasis on its recursive features. Instances of it can be created from everywhere in
the application by the call of its public root constructor function. Nodes can be leafs or not,
which is indicated by a boolean flag for every instance of an ocTree object. Leaf nodes
do not have subtree-nodes that refer to them as parents, they solely store vertices within
their bounds. Non-leaf nodes have eight children nodes, in other words, eight more ocTree
objects which refer to them as their parent node.

For better understanding during development and clearer, human-readable log messages,
unique binary identifiers were implemented with care. Each node of the tree has a private
std::vector which serves as a unique combination of boolean values describing its iden-
tifier. It can be used for directly accessing any desired ocTree (subtree) object within a
tree through its root node.

Starting from the root node (level l = 0), such an identifier Id with a length of n boolean
values can be used for locating the respective node within 3D space by considering three of
its consecutive values at a time. At any level l, those values of Id can be found at positions
Ol, Ol+1 and Ol+2 within it, where Ol is the level offset l ∗ 3− 3. If Ol+2 equals its length
n, the search ends and the resulting node can be queried for the vertices within its bounds.
Every non-leaf node has eight subtree nodes on level l+1 where l is the level of that node.
Their bounds can be derived directly from the parent nodes’ maximum and minimum values
as table 4.1 depicts. The suffix p for new values refers to the parent node, [n] is the nth
element of identifer ID. Ol describes the level offset l ∗ 3 − 3. Note that Ol + 3 determines
the child node’s minimum and maximum values in x, Ol + 2 in y and Ol in z dimension.

The most important functions of the ocTree class, as implemented in this work, are
described below.

4.3.1.1 Root constructor ocTree()

This public constructor creates a new instance of the class ocTree. Parameters required
are 1. a sequence container, such as an array (std::vector is used in this work) holding
the mesh objects to be spatially indexed, 2. an integer determing the maximum amount
of vertices that one leaf node can store, and 3. an integer determing the maximum split
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depth, in other words the maximum depth of the tree. As an optional fourth parameter, a
boolean flag can be passed as well. Its default value is set to be false, if it is set to true,
additional information regarding the recursive construction of the tree, including identifiers,
level, dimensions and number of vertices held by each subtree, are printed to the console via
std::cout. During subsequent creation of subtrees, this parameter are used for each new
object.

From the main class, for example, creating a new instance of an ocTree object is handled
by the following short command:

1 myOcTree = new ocTree(meshes, 100, 4, true);

This creates a spatial indexing structure for the 3D data stored in meshes where each
node can hold up to 100 vertices and the maximum level of nodes is 4. Additional information
is printed to the console because the last parameter is set to true.

4.3.1.2 Subtree constructor ocTree()

This somewhat more complex, private constructor is used for every ocTree object that is
not a node. In addition to the parameters that were used for the root node, the following
parameters are required: 1. A set of vertices to be searched through for those located within
the bounds of this particular subtree (std::vector of glm::vec3 objects is used in this
work), 2. An integer determing the level of the parent node, the level of this new subtree is
set to that level plus one, 3. An array of nine float values describing its parents dimensions
(together wit the split directions, this is used to determine the bounds, or dimensions, of this
new subtree), 4. A reference to the root node of this subtree, 5. A vector of boolean values
describing its parents unique identifier, and 6. A vector of three boolean values describing
the split directions passed by the parent node. Again, an additional boolean flag determing
whether, during the recursive building proccess of the subtree, information is printed to the
console or not, is also passed with the value of the respective member variable of the parent
node.

The crucial task of setting the right unique identifier of a newly created subtree node is
also handled in this constructor. The following code-snippet shows how that is implemented
in this work.

1 ocTree::ocTree(...) {
2 int identifierSize = m_parentIdentifier.size();
3 int levelOffset = m_level*3-3;
4 std::vector<bool> id(identifierSize);
5
6 for (int i = 0; i < levelOffset; i++) {
7 id[i] = parId[i];
8 }
9

10 id[levelOffset] = splitDirections[0];
11 id[levelOffset+1] = splitDirections[1];
12 id[levelOffset+2] = splitDirections[2];
13
14 for (int j = levelOffset+3; j < identifierSize; j++) {
15 id[j] = false;
16 }
17 m_identifier = id;
18 }
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After setting up the essential variables, lines 6 - 8 copy the parts of the parent’s identifier
up until the current level offset. Every new subtree node is a child of a lower-level node and
this step implicitly entails that relationship. If an ocTree object at a level higher than 0
has child nodes - which makes it the root of a subtree within the Octree - has the unique
identifier 010000, the first three values of the identifiers of its eight children nodes is 010.

Lines 10 - 11 set the crucial values at the level offset Ol, Ol+1 and Ol+2 according to the
values passed via splitDirections. In the context of a parent node calling split(),
these passed values are eight sets of three boolean values each that can be represented as
000, 001, 010, 011, 100, 101, 110 and 111.

Since every identifier of every node within an Octree, in this implementation, has to have
the same length (that is 3 ∗maximumLevel where maximumLevel is the maximum allowed
level of subtree nodes), lines 14 - 16 take care of assigning false as placeholders to every
position that is not relevant due to the node’s level. In line 17, the final identifier of the
current node is set as its private member variable.

4.3.1.3 getRootDimensions()

This is called by a newly created root ocTree. In this first basic step, all vertices of
every passed mesh object are iterated through to find maximum values which are used as
its general bounds in x, y and z direction. For convenience, a margin value of 0.0001 is
added to maximum values and subtracted from minimum values to enable one common
rule of unambiguously assigning any given vertex (expecially the ones that are located on
boundaries of subtrees) to exactly one subtree - for the root node as well as all subtree nodes.

4.3.1.4 setDimensions()

This simple private function takes care of setting up correct minimum, mean and maximum
values in x, y and z dimension for a newly created subtree node. The following parameters
are required: 1. An array of nine float values containing the parent nodes’ bounding and
mean values, and 2. A reference to an std::vector of three boolean values containing the
split directions.

Based on the split directions given via the second parameter, setting up the bounding
values for the new subtree is a matter of assigning the correct value of the first parameter.
Said second parameter - a vector of float values - contains its values in the following
order: 0. minimum X, 1. maximum X, 2. mean X, 3. minimum Y, 4. maximum Y, 5. mean
Y, 6. minimum Z, 7. maximum Z, 8. mean Z.

To convey the idea of what this function does more clearly, consider figure 4.1. Keeping in
mind the order in which the three boolean values that make up split directions are handled in
the code-snippet below, it is clear that, say for newly created subtree nodes with identifiers
000 and 101 N0 and N5, its bounding and mean values are directly derived from the values
of their common parent node p as shown in Table 4.2.

28



4.3 Key Features

child node minX maxX minY maxY minZ maxZ

N0 p.minX p.meanX p.meanY p.maxY p.meanZ p.Z max
N5 p.meanX p.maxX p.meanY p.maxY p.minZ p.meanZ

Table 4.2: bounding values of subtree nodes according to setDimensions()

1 void ocTree::setDimensions(...) {
2 if (splitDirections.at(0) == false) {
3 m_minZ = parentDimensions[8]; // minZ = p.meanZ
4 m_maxZ = parentDimensions[7]; // maxZ = p.maxZ
5 } else {
6 m_minZ = parentDimensions[6]; // minZ = p.minZ
7 m_maxZ = parentDimensions[8]; // maxZ = p.meanZ
8 }
9

10 if (splitDirections.at(1) == false) {
11 m_minY = parentDimensions[5]; // minY = p.meanY
12 m_maxY = parentDimensions[4]; // maxY = p.maxY
13 } else {
14 m_minY = parentDimensions[3]; // minY = p.minY
15 m_maxY = parentDimensions[5]; // maxY = p.meanY
16 }
17
18 if (splitDirections.at(2) == false) {
19 m_minX = parentDimensions[0]; // minX = p.minX
20 m_maxX = parentDimensions[2]; // maxX = p.meanX
21 } else {
22 m_minX = parentDimensions[2]; // minX = p.meanX
23 m_maxX = parentDimensions[1]; // maxX = p.maxX
24 }
25
26 m_meanZ = (m_minZ+m_maxZ)/2;
27 m_meanY = (m_minY+m_maxY)/2;
28 m_meanX = (m_minX+m_maxX)/2;
29 }

4.3.1.5 split()

This private function, called by a leaf node in case there are more vertices within its bounds
than the maximum number of allowed vertices per leaf, takes care of turning a leaf node
into a intermediate node, the root of a subtree in other words. The vertices that are stored
by the calling node when this function is called, make up the set of vertices to check by
its eight children nodes. These eight subtree ocTree objects are created via a call to the
private constructor of the ocTree class. To illustrate the purpose this function serves, the
following simplified C++ code-snippet shows the necessary steps for the creation of two of
the eight new subtree nodes that are to be constructed.
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1 bool ocTree::split() {
2 float parDimensions[9] = {
3 m_minX, m_maxX, m_meanX,
4 m_minY, m_maxY, m_meanY,
5 m_minZ, m_maxZ, m_meanZ
6 };
7
8 std::vector<bool> split0 = {false, false, false}; // 000
9 std::vector<bool> split1 = {false, false, true}; // 001

10 // <repeat for six remaining bool vectors>
11
12 ocTree* chidlLeaf0 = new ocTree(m_verticesInBounds, m_level,
13 m_maxVerticesPerNode, m_maxSplitDepth, parDimensions,
14 m_root, m_identifier, split0, m_debugInfo);
15 ocTree* chidlLeaf1 = new ocTree(m_verticesInBounds, m_level,
16 m_maxVerticesPerNode, m_maxSplitDepth, parDimensions,
17 m_root, m_identifier, split1, m_debugInfo);
18 // <repeat for six remaining ocTree objects
19
20 m_myChildren[0] = chidlLeaf0;
21 m_myChildren[1] = chidlLeaf1;
22 // <assign six remaining children to private array of ocTree nodes>
23
24 m_isLeaf = false;
25 }

Lines 2 - 5 define an array of float values which contains minimum, mean and maximum
values in x, y and z dimension for this node. Depending on the so-called split directions
given via split0, split1 and so on, the children nodes of this node is able to retrieve
their spatial bounding values directly from parDimensions.

Lines 8 and 9 show the first two vectors of split directions. The remaining six (not shown
here) go on to describe values 010, 011, 100, 101, 110 and 111.

Lines 12 - 14 and 15 - 17 show the initialisations of two new ocTree objects using the
class’ private subtree constructor. Note that the two shown calls differ only in one parameter,
splitn. This is also true for the remaining six (not shown) objects to be constructed.

Lines 20 and 21 show the assignments of newly created subtree nodes to their place in
the current node’s private array of pointers to ocTree objects - its children nodes. This
provides fast and direct access to them for later queries.

4.3.1.6 getNodeByIdentifierArray()

This recursive, public function returns a pointer to a leaf node via a boolean input vec-
tor representing its identifier. Starting at the root node, it traverses through tree and
returns the node with given identifier at the lowest level. The only parameter required is a
std::vector Id of n = L*3 boolean values where L is the maximum level of the ocTree
object calling this function.

As described above, a node at level l that is recursively calling this function, first calculates
the current level offset Ol = l ∗ 3 − 3 and then considers elements Ol, Ol + 1 and Ol + 2 of
passed identifier vector Id. Depending on these values, the matching child node performs
the next recursive call of getNodeByIdentifierArray(). Every ocTree object has
a private array as a member variable that holds eight other ocTree objects, its children
nodes. Given the bounds of a parent node, which are defined as minimum and maximum
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values in x, y and z direction, calculating the three mean values in all three dimensions
is trivial. The resulting set of minimum, maximum and mean values can be combined in
multiple ways and used for minimum and maximum values of all eight subtree nodes, see
table 4.1. To geometrically locate the children nodes, one must check the three relevant
boolean values and search either before or beyond the median values in x, y and z direction.
A false value of x means the respective child node lies within the parent node’s minimum
and mean values in x direction, true means it lies within mean and maximum x values.
This pattern is inverted in directions y and z. In both cases, false means the child node
starts at the mean value of the parent node (its minimum value equals the mean value of
the parent) and ends at its maximum value, whereas true indicates the opposite. Figure
4.1 depicts two exemplary parent nodes at level l (checkered) and their bounds with one of
their eight subtree nodes, the ones indicated by Id [Ol, Ol + 1, Ol + 2], highlighted in red.
Again, note that Ol + 3 determines the bounds in x, Ol + 2 in y and Ol in z direction.

Figure 4.1: Parent node (checkered) highlighted child nodes. Left: 000, right: 101

getNodeByIdentifierArray() returns a reference to an ocTree object whose iden-
tifier matches the series of boolean values passed during the call. It mainly served testing
and debugging purposes during development of the application, making sure the spatial in-
dexing structure would be computed correctly for any given set of input 3D data. It is a
utility function that provides fast, direct acces to any one desired node within an ocTree
structure.

4.3.1.7 buildTreeRecursively()

A call to this function causes an entire set of given vertices to be indexed and assigned
leaf nodes in the tree. Its only parameter required is an indexed list of vertices. A
std::vector<std::pair<size t, glm::vec3>>, with the size t parts of the pairs
providing ordered indexes and the vec3 parts representing the vertices with three coordi-
nates each, is used in this work.

Most of what this function does, happens in a for-loop which iterates thorugh the entirety
of the set of passed vertices. Its basic procedure is depicted in the following simplified C++
code-snippet.
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1 void ocTree:: buildTreeRecursively(...) {
2 for(int t = 0; t != vertices.size(); ++t) {
3 it = &vertices[t];
4 if (it->second.x >= m_minX && it->second.x < m_maxX) {
5 if (it->second.y >= m_minY && it->second.y < m_maxY) {
6 if (it->second.z >= m_minZ && it->second.z < m_maxZ) {
7 m_verticesInBounds.push_back(*it);
8 }
9 }

10 }
11 }
12
13 if (m_verticesInBounds.size() > m_maxVerticesPerNode) {
14 if (m_level < m_maxSplitDepth) {
15 split();
16 } else {
17 std::cout << "EXCEPTION" << std::endl;
18 return false;
19 }
20 }
21 }

Lines 2 - 11 check whether the current vertex lies within the bounds of the calling node.
Note that each node calling this function considers every vertex its parent node hold in their
member variable m verticesInBounds. In turn, if the calling node is to call split()
later on, creating eight new subtree nodes, those nodes consider each of the vertices that,
via this loop have been determined to be located within their parent node. This stems from
the trivial observation that a subtree can only contain vertices that are also contained by
their parent node. So the root node of an ocTree always checks every single vertex of the
loaded 3D object. However, the higher the level of its subtree nodes, the fewer vertices have
to be checked by those nodes.

Line 13 shows the crucial check wheter the number of vertices within the bounds of the
calling node exceeds the maximum allowed number of vertices per node. If this is the case
and the maximum allowed level (m maxSplitDepth) of subtrees is not reached yet (line
13), a call of split() by this node follows.

Figure 4.2 depicts a simple ocTree structure that could result from indexing a small set
of 3D data. This particular tree has a root node at level zero, represented as a basic cube
in the upper left part of the figure. As the number of vertices within the bounds of the
root exceeds the maximum numbers of vertices a node may hold in this particular tree, the
root calls split() so that eight new subtrees are created and the root switches its boolean
flag isLeaf to false, indicating that it is no longer a leaf node but the root of an actual
subtree within the entire ocTree. Given that the maximum level of subtrees visible in the
figure is 2, we assume that this is also the maximum allowed level for subtrees. This would
mean that the identifier vectors of every node within this tree has a length of 3 ∗ 2. The
level 1 subtrees 000100 and 000111, as shown in the figure, also have more vertices within
their bounds than what is the maximum number of vertices per node so they, too, split and
creat a total of 16 new child nodes, each at level 2.
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Figure 4.2: depiction of a simple ocTree. Left: 3D view, step-wise representation of the
splitting process (downwards from the top). right: final 2D representation of the
tree’s structure

4.3.2 User selection

This section covers the elementary functions that handle the selection of vertices through
user input. The two crucial functions explained in the subsequent subsections implement
means to add vertices to an initially empty set of vertices and remove them later if desired.
Selected vertices are be visually highlighted in the application and, at any time, the current
set of selected vertices can be saved to an external text file.

4.3.2.1 addVerticesToSelectionByCoordinates()

This private, recursive function adds vertices to a set of selected vertices by reference, based
on three-dimensional coordinates and a search radius. The following parameters are required:
1. An input coordinate depicting the point in real space where a user is using the input device
(a glm::vec3 is used in this work), 2. A float value describing the radius around thee
input coordinate in which vertices are to be added to the selection, and 3. A reference to
the set of indexes of vertices (std::set<size t> is used in this work).

An additional boolean flag determing whether, during the recursive search for the correct
node, information is printed to the console or not, is passed with a default value of false.
If set to true, it causes information to be displayed. The general course of events within
this function proceeds as follows:
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1. Check if any of the given input point’s coordinates are located outside of the bounds
of the root of the ocTree indexing the 3D object. Throws exception if this is the case.

2. Check if the current node is a leaf (i.e. has no child nodes). This terminates the
recursive search and proceeds with finding vertices around the given input coordinates,
as it is safe to assume that the correct node is found.

3. Add all vertices within this node to the set of vertices to be checked.

4. Determine if the radius around the query point crosses the bounds of this node in any
direction. If so, add all vertices of the neighbouring node to the set of vertices to be
checked.

5. Iterate over the entire set of vertices to be checked to find which ones lie in radius
around the query point and add those to the set of selected vertices.

6. If this node is not a leaf node - steps 3, 4 and 5 are skipped in this case - determine the
correct child node in which the query point is located and have that node recursively
call addVerticesToSelectionByCoordinates().

Consider figure 4.3 for a clear depiction of the process. For the sake of a simplified, clear
presentation, an orthographic top view which only considers axes x and y is shown here. Four
of an implicitly shown parent node’s eight subtree nodes are shown. The figure illustrates,
from left to right, three vital steps towards finding vertices that lie within a search radius r
around an input query coordinate Pq. Throughout these steps, Pq is depicted as an orange
point, r is shaded blue. Vertices within this radius compose the result of the query Vresult
and get added to the set of currently selected vertices. Vertices which are considered to get
checked if they lay within r, Vcheck, are highlighted blue, the ones where this is not the case
are plain grey.

Figure 4.3: Determing vertices to check and final set of selected vertices

The leftmost part of figure 4.3 shows the state after two crucial steps have already been
taken: Leaf node Nq, i.e. the node that contains Pq and does not have child nodes (001 in
the figure) is found and all the vertices within it added to Vcheck (highlighted blue). Further-
more, since the search radius around Pq crosses the bounds of Nq in negative x direction,
an additional call to addVerticesToSelectionByCoordinates() with parameters P

′
q

and radius r
′

= 0 is executed, with P
′
q = [Pq.x − r, Pq.y, Pq.z] (highlighted purple). This
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additional query found that P
′
q is located in leaf node 000. Thus, as shown in the middle part

of the figure, vertices in 000 are added to Vcheck. Note that one vertex that is located within
r - but not the bounds of Nq is added to Vcheck this way. The righthand part of the figure
shows the result of the original query. After checking all vertices in Vcheck whether they lie
within r around Pq, a set of vertices which fulfill this very condition Vresult, containing three
vertices (highlighted white) is returned.

The following code-snippets show how the process described above is implemented in this
work.

1 ocTree* ocTree::addVerticesToSelectionByCoordinates(...) {
2 if (target.x < m_minX || target.x > m_maxX || target.y < m_minY
3 || target.y > m_maxY || target.z < m_minZ || target.z > m_maxZ) {
4 std::cout << "EXCEPTION" << std::endl;
5 return NULL;
6 }
7
8 if (this->getisLeaf() == true) {
9 result = this;

10 std::vector<std::pair<size_t, glm::vec3> > verticesToCheck;
11 for(size_t t = 0; t < result->m_verticesInBounds.size();++t){
12 verticesToCheck.push_back(result->m_verticesInBounds[t]);
13 }
14 if (radius != 0) {
15 glm::vec3 neighbourCo;
16 if (target.x - radius < m_minX) {
17 neighbourCo = {target.x-radius, target.y, target.z};
18 ocTree * neighbour = m_root->addVerticesToSelectionByCoordinates
19 (neighbourCo,0,intermediateSelection,debugInfo);
20 verticesToCheck.insert
21 (verticesToCheck.end(), neighbour->m_verticesInBounds.begin(),
22 neighbour->m_verticesInBounds.end());
23 }
24 if (target.x + radius > m_maxX) {
25 neighbourCo = {target.x+radius,target.y,target.z};
26 ocTree * neighbour = m_root->addVerticesToSelectionByCoordinates
27 (neighbourCo,0,intermediateSelection,debugInfo);
28 verticesToCheck.insert
29 (verticesToCheck.end(), neighbour->m_verticesInBounds.begin(),
30 neighbour->m_verticesInBounds.end() );
31 }
32 // <repeat for y and z direction>
33 }
34
35 std::vector<std::pair<size_t, glm::vec3>>::const_iterator it;
36 for (it = verticesToCheck.begin(); it!=verticesToCheck.end(); ++it) {
37 if (radiusContainsCoordinates(r, it->second) {
38 intermediateSelection.insert(it->first);
39 }
40 }
41 return result;
42 }
43 }

In lines 2 - 6, it is validated whether the input coordinates of Pq given via target is
located within the bounds of the calling node - that is usually going to be the root node of
an ocTree structure. If this is not the case, null is returned. If line 8 evaluates to true,
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this means that the current node is a leaf node and since given input coordinates do not lie
outside its bounds, this has to be target node of the query Nq.

In line 10 - 13, a new vector of pairs consisting of size t values and glm::vec3
vectors, representing the set of vertices to be checked is created. The size t parts of pairs
in this vector provide unique indexing, ensuring fast and direct access to each element.
However, at this stage, this set only contains vertices within initial target node Nq. Without
the rest of the code, vertices within one or multiple neighbour nodes that contain P

′
q vertices

which sould get selected, would be ignored.
Line 14 - 36 show two out of six possible types of neighbour node queries - both possible

ways in which r can cross the bounds of Nq in x direction and how they are handled are
illustrated. Note how parameter radius is used here (line 14). If it is set to 0, this
request (which is also handled by addVerticesToSelectionByCoordinates can be
classified as a neighbour query which means that it cannot possibly envoke further neighbour
queries. In lines 17 and 28, varying intermediate versions of P

′
q are derived by adding and

subtracting radius to initial x value of Pq after it is found that they are located within
a neighbouring node of Nq (lines 16 and 24). After this, assitional queries are processed
via addVerticesToSelectionByCoordinates with crucial input parameters P

′
q and

radius = 0 (lines 18, 19 and 26, 27). Finally, the vertices within the found neighbour node
are added to the set of vertices to be checked (lines 20 - 22 and 28 - 30). As hinted by the
comment in line 32, this process is repeated for y and z directions.

Before recursively returning the calling node in line 41, the most important part of this
function - that is actually determining which vertices are located in raidus r around input
coordinates Nq - takes place in lines 36 - 40. Here, we see a for loop through Vcheck,
the set of vertices that lie within the bounds of Nq as well as those within one or more
neighbour nodes N

′
q. The simple utility function radiusContainsCoordinates takes

care of this. Note that, in case it evaluates to true, the first element of a pair within
verticesToCheck (or Vcheck) is added to intermediateSelection (or Vresult). This
first element is a simple size t number which serves as a unique identifier for every vertex
of the entire loaded object. This approach ensures that almost negligibly small amounts of
data are actually transferred within the application - between server to client instances (see
3.1.2) ). Depending on what system architecture the application is ran on, these size t
values only take 32 or 64 bits of space in memory, whereas glm::vec3 take up to 12 times
as much space.

Note that the code-snippet above only considers cases in which radius r around Nq

crosses one set of bounds of ocTree nodes. However, it is a trivial observation of the
conceptual structure of octrees that, depending on combinations of a large radius, a low
maximum allowed number of vertices per node and a high maximum allowed level, critical
situations could emerge. Such a situation could take place in a fine-grained octree structure
with a large number of high level leaf nodes. For any node N on a level l, the following is
true.
Ns(d) = NR(d) / 2l where Ns(d) is the size of N in dimension d and NR(d) is the size of

root node NR in dimension d.
So in this application, after the object is loaded and spatially indexed, we consider the

maximum allowed level for leaf nodes lmax as well as the bounding values of its root node.
The minimum difference between the maximum and mininum values in a dimension indicate
the shortest dimension dmin of the root node. Based on these values, we can set a maximum
allowed value rmax for the search radius as follows.
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rmax = dmin / 2lmax * 0.95. In other words, the maximum allowed search radius is 95%
the size of the smallest possible leaf node. Thus, no search query can evoke more than three
additional queries for neighbour nodes, one in each dimension.

Finally, the following simplified code-snippet shows how, making use of recursion, child
nodes perform further calls to addVerticesToSelectionByCoordinates until Nq (or
N

′
q) is found, based on the directions in which P

′
q crosses the bounds of the calling node.

1 ocTree* ocTree::addVerticesToSelectionByCoordinates(...) {
2 // <cont.>
3 if (target.x < m_meanX) {
4 if (target.y < m_meanY) {
5 if (target.z < m_meanZ) {
6 // 110
7 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
8 } else {
9 // 010

10 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
11 }
12 } else {
13 if (target.z < m_meanZ) {
14 // 100
15 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
16 } else {
17 // 000
18 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
19 }
20 }
21 } else {
22 if (target.y < m_meanY) {
23 if (target.z < m_meanZ) {
24 // 111
25 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
26 } else {
27 // 011
28 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
29 }
30 } else {
31 if (target.z < m_meanZ) {
32 // 101
33 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
34 } else {
35 // 001
36 result = m_myChildren[6]->addVerticesToSelectionByCoordinates();
37 }
38 }
39 }
40 }

Finding which child node Nl+1 is to perform the next recursive call happens in three simple
if - else statements, the first one consisting of blocks of lines 3 - 20 and 21 - 39. In case
the first if in line 3 evaluates to true, Pq lies between the calling subtree node’s minimum
and mean values in x direction, thus the relevant child node’s identifier must be false (0)
at its level offset Ol+1+2. If the statement in line 4 is true, the second Ol+1+1 can only
be true (1). Whether the last value at Ol+1 is true or false is determined in line 5. We
see exemplary, shortened recursive calls to addVerticesToSelectionByCoordinates

37



4 Selection Application

in lines 7, 10, 13, 15, 18 and so on which are returned at the end of the function.

4.3.2.2 removeVerticesFromSelectionByCoordinates()

This is the counterpart to addVerticesToSelectionByCoordinates and the second
of two elementary methods that allow users to create and modifiy vertex selections in this
application. Using the exact same parameters in identical order, it is a private, recursive
function that allows for vertices added to the current selection to be removed again. In fact,
the two functions vary so little, we can use the same list of general tasks as shown in 4.3.2.2.
The crucial differences are highlighted in bold text.

1. check if any of the given input point’s coordinates are located outside of the bounds of
the root of the ocTree indexing the 3D object. Throws exception if this is the case.

2. check if the current node is a leaf (i.e. has no child nodes). This terminates the recursive
search and proceeds with finding vertices around the given input coordinates, as it is
save to assume that the correct node is found.

3. add all vertices within this node to the set of vertices to be checked.

4. determine if the radius around the query point crosses the bounds of this node in any
direction. If so, add all the vertices of the neighbouring node to the set of vertices to
be checked.

5. iterate over the entire set of vertices to be checked to find which ones lie in radius
around the query point and remove those from the set of selected vertices.

6. if this node is not a leaf node - steps 3, 4 and 5 were skipped in this case - determine the
correct child node in which the query point is located and have that node recursively
call removeVerticesFromSelectionByCoordinates().

At this point it is worth noting that these two fundamental functions were mapped to two
different buttons on the hand-held controller used at the V2C. Figure 4.4 shows a simple 3D
object at various stages during consecutively performing these fundamental operations on it.
The leftmost part of the figure shows a simple sphere with no vertices selected. The middle
part shows the same sphere after eight vertices have been added to the selection and how
they are highlighted. The righthand part of the figure shows the object after four vertices
have been removed from the selection via addVerticesToSelectionByCoordinates
with other coordinates.

4.3.3 Tracking selection

The set of user selected vertices is being kept track of as described in this section. Using
the two fundamental functions described in 4.3.2.2 and 4.3.2.1, every vertex of a spatially
indexed 3D object can be selected and deselected at will. At each frame, every currently
selected vertex is highlighted in an easily distinguishable bright red shade. Additionally, at
any point during runtime, the server program of the application can print the current set of
selected vertices to an external textfile.

Vertices in this application can either be selected or not selected. Only selected vertices
are tracked. This is implemented using the following two variables in the main class.
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Figure 4.4: A basic vertex selection process

offset (size t) coordinate (glm::vec3)

0 [0.481, 0.461, 0.458]
1 [0.351, 0.335, 0.024]
2 [0.385, 0.324, 0.021]
3 [0.452, 0.342, 0.125]

Table 4.3: content of verticesList at startup

std::set<size t> vertexSelection - a set of unsigned integers. A set is a C++
specific type of container with two handy properties for this use case. It guarantees the
uniqueness of each element, as the value of an element is also the key used to identify
it, and it is allocator-aware, which means it uses an allocator object to dynamically
handle its storage needs (see [set]).

std::vector <std::pair <size t, glm::vec3> > verticesList - A vector
containing pairs of unique size t values and glm::vec3 objects. vectors are
contiguous storage containers that can store any type of objects, provide access to
elements by using offsets (just like arrays) but also change their size dynamically (see
[vec]). Since the actual content of this variable is created and stored during spatially
indexing a loaded 3D object during the recursive building process of an octree structure
(see 4.3.1.7), its final required size is not know at startup of the application, hence an
ordinary array is not a suitable datatype here.

After the setup process of the application, verticesList essentially holds an ordered
list of pairs of integer numbers and three-dimensional coordinates. Table 4.3 illustrates an
excerpt of its possible content after startup. Note that the order of coordinates is arbitrary
and, in no way, represents the structure or order of the loaded 3D file.

4.3.4 Testing setup

This section describes the steps taken to ensure that the selection application meets all its
requirements and ensures its key features described above are implemented correclty. While
it is not formally verified that the application works correctly in every use case conceivable, it
was tested up until a point where fluent, real-time and comfortable interaction was possible
from a user perspective.
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4.3.4.1 Test files

While developing the selection application, I used 3D modeling software to create a set of
simple test files that would be exported to .obj format so they could be used for testing
purposes. These objects were designed to test whether common queries are handled quickly
and correctly as well as what happens in unfortunate edge cases. Such a fairly complex edge
case is depicted in figure 4.5.

Figure 4.5: A fairly complex query to the octree structure of the selection application

For the sake of readabilty, figure 4.5 depicts an orthographic view on the structure of a
test file used, showing only x and y axes. In such a case, all vertices shaded blue must
be considered but only the one vertex shaded white is a correct result to the query. An
additional query with input coordinates depicted by the point shaded in purple and radius
0 must be invoked and correctly handled as well, since the righthand border of the target
subtree is crossed by the search radius. All vertices shaded grey must not be considered.
The behavior of the application must be congruent to what is described in section 4.1.

Figure 4.6 shows a test file used during all stages of implementing the selection application.
It is designed for the Octree structure to be built in a clearly predictable way. For each
combination of the maximum allowed number of vertices per node and the maximum allowed
level, construction of the structure can be precicely predicted because all parts of the object
are positioned in eighths of the space encapsulated by its bounding box. This file was used
to a great extent for many testing queries as well as debugging.

The debugging process encompassed a multitude of test calls to the applications core
functions using arbitrary coordinates as well as extensive use of the helper and debugging
functions described in the subsequent subsection.

4.3.4.2 Helper and debugging functions

The following functions which are non-essential to the functionality of the application are
included. They were used during implementation for documentation, debugging and con-
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Figure 4.6: A test file used during implementation, perspective view. Its bounding box and
edges are depicted

trolling the correctness of the core features. Parameters for these functions are omitted.

ocTree* getNodeByIdentifierArray() - gets a leaf node via a boolean input array
representing its identifier. Traverses through an entire tree and returns the node with
given identifier at the lowest level. The input boolean array has to contain 3∗ the
maximum allowed split depth boolean values representing the identifier of a node. For
example, at a maximum allowed split depth of 3, false, false, false, true,
true, false, false, true, true is interpreted as 000110011 and a pointer to
the according leaf node is returned.

bool getIsLeaf() - determines whether this is a leaf or not. Returns private bool vari-
able m isLeaf.

void debugTreeInfo() - prints information about the finished ocTree object to the
console, including total number of vertices stored by it, maximum allowed number of
vertices per leaf, maximum allowed split depth and dimensions in x, y and z direction.

void debugFirstVertex() - prints the coordinates of vertex at index 0 m vertices
to the console. This is a quick way to verify that import via ASSIMP worked.

debugAllVertices() - prints the coordinates of all vertices to the console. This is a way
to verify that import via ASSIMP worked correctly.

void debugIdentifierasString() - prints the boolean identify array of the calling
subtree to the console in an easily readable form, i.e. 001101 for example. If the calling
node is the root, ”I am root” is printed instead. Additionally, m level as well as the
identifer array of the parent node of the calling subtree node are printed.
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In addition, all essential functions of the ocTree class have an optional parameter debugInfo,
which is set to false by default. If set to true, information is printed to the console during
execution of the functions. Depending on what function is called, this information varies
strongly obviously. In general, all subtree nodes that recursively call any relevant functions
as a result of the initially called function, call debugIdentifierasString().

4.3.4.3 Testing at the V2C

I spent multiple hours in the projection installation, trying the application myself. By
experiencing the application from a user perspective, I wanted to make sure the feedback is
quick, clearly noticable and easiyl understandable. I tried to find bugs and wrong behavior
by using the hardware in ways that were not planned on. Formally describing the procedure
does not make sense, so consider the following brief descriptions of things I tried and what
insights I gathered from them.

Finding limitations to the tracking setup - The projection installation of the V2C is 2.7
meters in width, height and depth. I tried to find out where the tracking system was
working reliably and precisely and where the tracked space ended. I did not take exact
measures but I found out that at a distance of about 30 centimeters away from the
walls and the floor, the tracking started to get inaccurate. The positions of the tracked
devices would freeze at the last position it was tracked correctly, thus making further
selection or deselection operations impossible as well as leading to wrong projection of
the scene.

Finding limitations to response time - At a slow pace of movements, the projection thrown
onto the walls surrounding the user, the visual feedback on where selection operations
take place as well as indication of their results are in perfect synchronisation with what
a user would expect. However, when moving the hand-held input device rapidly, its
tracked position would get corrupted and the bright green object indicating its position
within the 3D scene would only be rendered every dozen or so frames, being frozen in
place in the meantime.

Finding limitations to synchronisation - During the selection process and during the user
study, the application froze multiple times. One or more projection programs would
not react anymore, leaving no option but force-quitting and restarting the application.
I was not able to reproduce this behavior. I can only speculate, based on various times
trying this myself, that if a button is pressed for an ongoing timespan while rapidly
moving the hand-held input device, this behavior seemed to occur mor frequently.
Again, a formal description of what happened as well as the reasons why it happened
can not be provided. A more extended testing and bugfixing process would be needed
and this goes beyond the scope of this work.

Evaluating immersiveness and projection quality - As described in section 5.5.2, the fram-
erate of the projection onto the the top wall was noticeably higher than those of the
other projectors. During the user study, no remarks regarding this were made but
from a developer stance, this can potentially impair immersion. Upon taking a look
as close as possible to details of projected objects, the overlay of the two projections
became visible, causing an incorrect spatial effect and blurriness. However, this only
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was noticeable when the tracked stereoscopic glasses got really close to the surface of
a projected model.

In conclusion, it is fair to say that the selection application provides clear feedback on what
is happening based on user interaction and interaction is possible at a not too fast movement
speed. Users should keep in mind that the tracking system has limitations. Not getting close
to walls and not moving the hand-held input device rapidly while simultaneously keeping
buttons pressed ensures a convenient, fluent interaction.
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From August 21th to September 12th 2017, I conducted a user study that aimed at gathering
data to compare with the results of processing 3D objects according to mesh saliency [LVJ05].
However, due to the fact that the projection installation at the V2C was not available for
me at all times, I could not use every day in that timespan. The installation was assigned
to me for a total seven days. I was able to collect a reasonable amount of data from a
sufficiently sized group of participants. This chapter will go over details of how I organised
and conducted the user study.

As briefly described before in section 3.2, I asked participants to use my selection appli-
cation and the hardware available at the V2C to select regions of 3D objects they found
interesting. In general, participants got familiar with the devices and interaction mechanics
quickly and were able to make selections according to their perception of what was of impor-
tance. In general, the ratio of overall differences between mesh saliency and user saliency
is fairly low for the three objects used in this work, ranging from about 0.23 to 0.38. How-
ever, whether this can be used as basis for any type of statement regarding how differently
important parts of 3D data are recognised by humans in VR and computational, automatic
procedures, is doubtful as discussed at the end of this chapter.

5.1 Hardware used

The five-sided projection installation at the V2C is equipped with several devices which
can be tracked inside of it. Users taking part in the user study were asked to put on a
pair of lightweight stereoscopic glasses, shown in figure 5.1. Note the three white, spherical
parts on each side of the glasses. These are used for tracking their position, orientation, tilt
and yaw within the projection installation. According to these parameters, two images are
projected onto the walls of the installation from behind, each for one eye. The glasses are
in synchronisation with the projectors and actively switch between left and right 120 times
per second, only showing one of the projected images at a time. This way, an immersive 3D
effect for one user wearing the glasses within the installation is created.

For interaction, a hand-held device called wand see figure 5.1, is used within the projection
installation. It allows for navigation within the scene via a little joystick as well as interaction
with four buttons. The joystick moves the scene in the opposite way the user pushes it. This
has been described as counter-intuitive by some users.

As described in 3.1.2, two of the three buttons surrounding the joystick are enough for the
selection application’s needs. The two essential functions of the application are mapped to
them in the following way. The button on top of the wand, on the left side of the joystick is
used for making selections on the currently loaded 3D object, the button right to it can be
used to clear already marked selections. Figure 5.1 shows the device. Again, note the white,
spherical parts used for tracking position, orientation, tilt and yaw of the device attached to
it.
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Figure 5.1: The hardware components available at the V2C. Left: A pair of active, stereo-
scopic shutter glasses. Right: The main input device, referred to as wand

Figure 5.2 depicts what the selection process inside the projection installation at the V2C
is like form a user perspective. Users utilise the wand for navigation as well as selecting and
deselecting parts of the presented objects they deem interesting. The stereoscopic glasses
provide a spatially convincing, three-dimensional immersion of the object. In the figure, the
object is a simple cube with two iterative subdivisions. Its vertices are shaded gray, the edges
connecting them are shaded black. The diamond-shaped object indicating the position of
the wand within the 3D scene is shaded bright green. The blue circle around it represents
the spherical query radius for selection and deselection operations. Vertices within that lie
within that circle are shaded orange. Figure 5.3 shows a real selection process within the
projection installation at the V2C.

Consider figure 5.3. Starting with the top photograph of the figure, it shows a loaded
object where with nothing selected yet. The middle photograph shows the same object after
a selection has been made. The bottom photograph shows the object after vertices have
been deselected again. Note the green object that is also projected onto the walls. For the
user, through the tracked glasses, it is visible at the tracked location of the input device at
all times.
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Figure 5.2: The selection process using the available hardware at the V2C

47



5 User study

Figure 5.3: A real selection process
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5.2 Models used

Figure 5.4: The 3D objects used for the user study

Regarding objects used for the study, I aimed at offering as much variety of types of
objects among as few objects as possible. The motivation for this was to achieve results
that are generally applicable for any type of geometric data, at least to an basic extent.
Also, to avoid the users losing motivation due to repeating tasks during the study, keeping
the number of objects to a minimum was a constraint to be considered. I decided to use
three objects described table in 5.1 and depicted in figure 5.4. Note that the models are
from third-party vendors. I made sure they are all free to use for educational purposes and
weblinks to where they have been published originally are provided in the bibliography.

Figure 5.4 shows the objects used in the user study. From left to right, the 3D scanned
bunny, the modelled cow and the low-poly, modelled aircraft are shown. Consider the grid
to get a sense of their proportions. I did not scale them according to their real world sizes
and instead made them take up approximately equal space in the virtual scene. This was
done with the intention to provide a similar level of visual detail, independent of the actual
geometric level of detail, for each object. Furthermore, I wanted to prevent the size of the
objects from having any sort of influence on how users perceived them.

object created through source vertex count class of objects

cow 3D modelling [cow] 69,648 purely natural
P51 Mustang 3D modelling [P51] 51,708 purely mechanical
bunny sculpture 3D scan [bun] 68,754 natural, man-made

Table 5.1: 3D objects used in the study
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5.3 Tasks given

Users were asked to use the hard- and software available to select regions and parts of the
objects they deemed interesting since mesh saliency claims to be able to reliably predict
such parts [LVJ05]. I told the users that this would be the task at hand only after they
stated they felt ready to interact with the scene presented in the projection installation.
They were given as much time as they wanted to get somewhat accustomed to navigating
and the selection process it but in general, nobody took longer than a few minutes.

I then explained the course of the user study, going over the following instructions:

• The task is to select parts and regions of the objects users consider important.

• Some suggestions as to what could be considered important :

– what do you consider visually interesting or important?

– what do you assume are natural focus points of attention?

– what parts do you consider vital for identifying the object?

• However these are just ideas, in general users were encouraged to select whatever they,
personally, deemed important according to their own understanding. I made sure to
emphasise this because I aimed for natural results.

• There is no correct way to make the selection. Users were, again, encouraged to make
selection according to their perception.

• How precise the selections would be was up to users. If they were satisfied, that was
the desired level of precision

• I asked to consider symmetry to some extent in the selection where possible.

• The time limit per object was five minutes. I made clear that the selection process
would be stopped after that period of time.

• However, if users would be satisfied with the selection earlier, I encouraged them to
say so. In this case, if there were still objects left to work with, the next one would be
presented. Otherwise, the practical part of the user study was finished.

5.4 Questionnaire

After users completed the practical part of the study, they were asked to fill out a short
questionnaire, determined to acquire demographic data about the participants as well as
feedback as to how they perceived interacting with the selection application. The data
gathered through this are presented in section 6.1.

The questionnaire was two pages total. After stating that user data would be used anony-
mously and not be provided to any third parties, I also made sure to leave my contact
information on the questionnaire. After this, the first page contained single-choice questions
about gender, age, profession, prior experience with VR technology and whether the user
was strongly visually impaired. Page two contained statements to which participants were
asked to respond to in terms of how strongly they agree or disagree to with them. The
(translated) statements read as follows:
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• I am interested in technology in general.

• I am interested in VR/AR technology.

• I easily got familiar with the selection application.

• The spatial impression within the projection installation was convincing.

• Navigating within the selection application felt comfortable and / or intuitive.

• The selection process felt comfortable and / or intuitive

• The selection process felt precise

Users were asked to rate each of these statements on a Likert-scale. I offered five options
to chose from: 1. I strongly disagree, 2. I disagree, 3. No comment, 4. I agree and 5. I strongly
agree. An example of the questionnaire (in German) can be found the appendix of this work.

5.5 Shortcomings of the study design

While conducting the user study, I noticed some factors which possibly had negative impacts
on user behavior during the study and, consequently, its results. On top of that, a few
technical issues emerged which could have made the experience for the users less immersive
and convincing. I will go over all these issues in the following subsections. I cannot describe
the extent they influenced the study, this is solely meant to document them.

5.5.1 Task, instructions and questions

While I did my best to design the tasks and questions (see section 5.4) to be as clear as
possible, during conducting the user study, some flaws became prominent. For more on
what users remarked, see section 6.3. The following notes document my own, personal
observations.

• The task of selecting interesting parts of the objects is both hard to describe and pos-
sibly not close enough to what mesh saliency is meant to identify. What is interesting
and what is not, is a very personal, subjective decision, so results are bound to vary
strongly. Participants in the user study were encouraged to select parts of the objects
based on their personal perception and understanding of the term interesting because
a wide range of results was desired. However, a more uniform definition of terms might
have been a reasonable basis for the comparison at the centre of this work too.

• As a result of the former note, adding an opportunity to rate the instructions given
on the questionnaire might have given more insights as to how well designed the user
study really was. After taking some time to get familiar with navigation within the
projection installation and using the selection application, I made sure users had no
questions left before the actual study was started. Questions here were very scarce so
this note is not directly based on user feedback. However, as the study went along, I
noticed that this could have been a valuable addition to the questionnaire.
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• Another possibly relevant question I missed to put on the survey was whether users
felt pressured by the time set time limit of five minutes per object. While the majority
users proclaimed they were satisfied with their selection before time ran out, there were
a few participants I had to stop after five minutes for every object. I chose the time
limit to make sure users would not lose motivation over time and for the sole purpose
of having a constant time factor. Again, I received no feedback from users indicating
that this was an issue but explicitly asking them about it might have been relevant for
completeness of this work.

• Regarding the rating of how much users agree or disagree to the statements on the
second page of the survey, using I am indifferent instead of No comment as the third,
neutral choice could have possible influenced the outcome of the study as well. I did
not include this option on purpose because I explicitly wanted to avoid neutral answers
while also not forcing the users to make a decision.

5.5.2 Technical issues

The projection installation at the V2C, while still fully functioning and performing well for
the majority of time, is not state of the art anymore. The hardware has been in use for
xx years, some parts of it display signs of deterioration and some have even been replaced
already. Maintenance work is frequently required. This section will cover some aspects that
were a result of this and may have had influence on user behavior during the study.

• Weeks prior to the user study for this work started, parts of the projector that covered
the top wall of the installation were replaced. This led to projections onto that wall
running at a significantly higher frame rate. As a result, quick head movements,
especially horizontal, with the image being spread over the upper wall and any of the
others at the same time, caused the part visible on the upper wall to move much faster
than the rest of the projection.

• On Monday, September 4th, the sixth day of the study, with five more days still ahead,
one of the projectors died. The lower part of the southern wall could not be used for
displaying anything from then on. I had to advice users to try and only use the other
sides of the installation but this certainly impaired the immersion.

• Tracking of the stereoscopic glasses and the wand did not work properly when they
got near to the bottom or the walls of the projection installation. If they entered that
outer area of the room, projection would freeze in place until the user stepped closer
to the centre of it again.

• This might have been a problem with my application - I could not reliably reproduce
this error. Sometimes the application simply froze during the user selection process. I
tried to reproduce this behavior but I can only speculate from what I have observed.
This kind of freeze occurred more often when the wand was moved very quickly over
an extend period of time, while constantly pressing the select button.
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6.1 Participant demographics

In total, 32 participants took part in the user study. 16 were female, 16 were male. No
participant had a major visual impairment that would have caused their selection invalid.
14 participants stated they had previous experience with VR technology while the other 18
stated they had never used such technology before. Consider figures 6.1 and 6.2 for more
information on demographics of participants.

Figure 6.1: Age distribution of participants in the user study

The majority of participants was employed and between 25 and 30 years of age.
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Figure 6.2: Working situation of participants in the user study

6.2 Feedback from the questionnaire

As described in section 5.4, at the end of the user study, participants were asked to rate a set
of statements on a Likert-scale. Figure 6.3 shows the data gathered from this questionnaire.
If a user ticked No comment for a statement, it was not considered for these average values.
The statements are shortened in this figure, the full wording can be found in 5.4 as well as
appendix

Figure 6.3 shows the average rating of statements on the questionnaire. Answers count as
follows.

1. I strongly disagree: 2

2. I disagree: 1

3. No comment : 0

4. I agree: -1

5. I strongly agree: -2

.
Especially the precision of the selection process seemed to be not quit satisfactory to a lot

of users. While the average result is still positive,
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Figure 6.3: Feedback on the application gathered from the questionnaire. No comment an-
swers are not considered.

6.3 Individual feedback and comments

Based on individual, informal feedback given by some participants, this section documents
findings from these conversations.

• The navigation shown in figure 6.3, the navigation within the projection installation
of the V2C was perceived as intuitive, easy or natural. A complete, formal description
of how the navigation is designed, is not included in this work but one its general
principles is that movement within the scene is always the opposite of the direction
in which the user pushes the joystick of the hand-held input device, the so-called
wand. A few users have independently stated that they found this contra-intuitive and
confusing.

• Furthermore, regarding navigation within the virtual scene, users stated that rotating
the scene is confusing. The scene rotates around the user. So when a loaded object
is far away from the user, rotation will cause the object to seemingly travel quickly
along a horizontal circle around the user. There are ways to prevent this and rotate
the object around its local z-axis but this needs practise.

• Regarding how the selection application itself works, one user stated that a visible
selection target with arbitrarily scalable radius would help immensely with improving
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the perceived precision of the selection process. As seen in figure 5.3, the selection
radius around the tracked position of the hand-held input device is not visible to the
user. This was a design decision with the goal of keeping the interaction individual by
not rendering semi-transparent, unnatural objects, however it is understandable that
users who desire maximum precision would want have the selection radius visible and
adjustable at all times.

6.4 Saliency and difference maps

This section contains figures depicting mesh saliency and user saliency maps for each object
as well as unweighted (raw) and weighted difference maps. For each object, these maps are
shown in three angles, front, side and top. All figures are orthographic renderings. The
scale shown in figure 6.4 is used for all figures. Note that it is uniform in the sense that the
color mapping represents values between 0.0 and 1.0. For saliency maps, this expresses the
saliency (the perceived importance per vertex), for difference maps it expresses the differenc
between saliency maps vertex wise.

Figure 6.4: The uniform scale used for figures in this section.

6.4.1 Bunny

Figure 6.5: Normalised saliency maps for the first model, orthographic front view. Left:
mesh saliency, right: user saliency
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Figure 6.6: Normalised difference maps for the first model, orthographic front view. Left:
unweighted differences, right: weighted differences

Figure 6.7: Normalised saliency maps for the first model, orthographic side view. Left: mesh
saliency, right: user saliency
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Figure 6.8: Normalised difference maps for the first model, orthographic side view. Left:
unweighted differences, right: weighted differences

Figure 6.9: Normalised saliency maps for the first model, orthographic top view. Left: mesh
saliency, right: user saliency

Figure 6.10: Normalised difference maps for the first model, orthographic top view. Left:
unweighted differences, right: weighted differences

58



6.4 Saliency and difference maps

6.4.2 Cow

Figure 6.11: Normalised saliency maps for the second model, orthographic front view. Left:
mesh saliency, right: user saliency

Figure 6.12: Normalised difference maps for the second model, orthographic front view. Left:
unweighted differences, right: weighted differences
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Figure 6.13: Normalised saliency maps for the second model, orthographic side view. Left:
mesh saliency, right: user saliency

Figure 6.14: Normalised difference maps for the second model, orthographic side view. Left:
unweighted differences, right: weighted differences

Figure 6.15: Normalised saliency maps for the second model, orthographic top view. Top:
mesh saliency, bottom: user saliency
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Figure 6.16: Normalised difference maps for the second model, orthographic top view. Top:
unweighted differences, bottom: weighted differences
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6.4.3 P51

Figure 6.17: Normalised saliency maps for the third model, orthographic front view. Top:
mesh saliency, bottom: user saliency

Figure 6.18: Normalised difference maps for the third model, orthographic front view. Top:
unweighted differences, bottom: weighted differences
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Figure 6.19: Normalised saliency maps for the third model, orthographic side view. Top:
mesh saliency, bottom: user saliency

Figure 6.20: Normalised difference maps for the third model, orthographic side view. Top:
unweighted differences, bottom: weighted differences
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Figure 6.21: Normalised saliency maps for the third model, orthographic top view. Left:
mesh saliency, right: user saliency

Figure 6.22: Normalised difference maps for the third model, orthographic top view. Left:
unweighted differences, right: weighted differences
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6.5 Evaluation of differences

This section contains quantitative observations of the resulting saliency and difference maps
as well as a discussion of the measure of difference as suggested in section 6.5.1. Based on
observations described here, it is fair to say that the measure of difference is not expressive
enough and is not suitable to describe differences between user selections and results achieved
through mesh saliency in a sound way.

6.5.1 Measure of difference

Table 6.1 shows the results of using the measure of difference as well as additional information
about the three 3D models used for this work. The following abbreviations are used:

Difraw =

∑
i∈Vo) ∆raw(vi)

Vo

Difweighted =

∑
i∈Vo) ∆weighted(vi)

Vo

Where, for a given object o, Vo is the total number of vertices contained in o and ∆raw(vi)
is the absolute value of the difference between the computed mesh saliency SM (vi) value
and the average user saliency value SU (vi) for vertex vi.

In other words, Difraw and Difweighted can be interpreted as a percent number which
expresses how much the average user selection differs from the computed mesh saliency map
for a given object. In the case of the first model, Bunny, both the raw, unweighted and
weighted overall difference amounts to roughly 23%. The difference only affects decimal
places after the third one after the comma. For the second model, the raw overall difference
amounts to about 27%, as does the weighted overall difference when rounded. For the third
model, both ratios are the exact same at about 38%. n is the factor of ε used for computation
of mesh saliency values for the objects where ε is 0.3% of the main diagonal of the object’s
bounding box.

The mesh saliency maps were computed using climberpi’s implementation [clm] of
of the original procedure suggested in [LVJ05]. It is implemented strictly following the
concept yet, obviously, I was not able to achieve saliency maps that look similar to those
included in the original paper. In the original paper, the authors suggest using scales σn ∈
1ε, 2ε, 3ε, 4ε, 5ε, 6ε,. As shown in table 6.1, different values for the objects were used in
order to get somewhat plausible mesh saliency maps. Trying multiple variations of n, where
n ∗ ε = σn did not lead to results much more convincing.

Model Vertices total Vertices weighted Difraw Difweighted n ∗ ε
Bunny 68,754 2,667 0.23435 0.234545 4
Cow 69,648 3,200 0.27431 0.269036 4
P51 51,708 0 0.38002 0.38002 1

Table 6.1: Resulting differences and information on the 3D models
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A is a major shortcoming of the measure of difference is the fact that every saliency value
is normalised to range [0, 1]. As stated before, this was done with the goal of describing how
much the user selection differs from the results of mesh saliency in percentage. However,
the problem with dividing each individual saliency value by the highest value found is that a
large number of near-zero saliency values is a result. This is obvious when considering figures
6.5, 6.7 and all the other images containing computed mesh saliency maps. The majority
of values seems to be close to zero, resulting in most of what is visible shaded in black or a
very dark blue. The most extreme extent to which this behavior can occur is shown in the
figures depicting the third model in section 6.4.3. For more details on why mesh saliency -
in its originally proposed, unaltered state - does not produce quality results for mechanical
objects, see section 6.5.3.

6.5.2 Observation of saliency maps

When considering the average user saliency maps, four major observations are to be de-
scribed. First, while mesh saliency maps still look very different, a general common theme
as to which parts are more important and which are not, is there - especially when it comes
to contours, geometrical details and characteristic parts of the objects. For models Bunny
and Cow, a strong emphasis on the entire head part is noticeable, with a much stronger
variation in values in the user saliency map. Again, a resemblance in general can be noted,
but it is obvious that users had much more complex criteria for their selection than solely
local curvature differences computed for on a per-vertex basis. This results in prominent
differences in saliency maps, hardly possible to describe solely by numbers and ratios. Dis-
tinct patches of higher perceived importance by users contradict, in part, the results of mesh
saliency. For example, the belly region of the second model (Cow) was marked as important
by about 40% of users, whereas it is entirely uninteresting according to mesh saliency.

Second, within user saliency maps, seemingly zero-saliency patches can be found in the
middle of cohesive parts of objects that seem to have been selected by almost 100% of
participants. This behavior is especially prominent, for example, in the ear region of model
one (Bunny) as well as the eye and snout part of model two (Cow). Model one lacks
the perfect axial symmetry of models two and three, which might, in part, explain stronger
variations in user selections but still, this behavior being caused by vague, lazy user selections
is not highly believable. However, observing the user saliency map of model two, reveals
that the small, seemingly zero-saliency spot only appears on one side of the head. This is
further reason to assume this behavior is not caused by users. As described in section 4.3.4,
I took steps trying to ensure that the selection application’s implementation works correctly
as much as possible, however it has not been verified on a conceptual, mathematical level.
Minor bugs and weaknesses of the implementation can not be ruled out as a cause for this
behavior. Lastly, the visual feedback to what is currently selected and what is not, might be
another factor contributing to this behavior. If shading all currently selected vertices was
not clear or precise enough, caused by interpolation between extremely close vertices, this
might be another factor causing these zero-saliency spots.

Third, user saliency maps seem to very much more strongly regarding the range of values.
Put simply, mesh saliency maps seem to only contain patches that are not interesting at all,
patches that are a little interesting and patches that are somewhat interesting. User saliency
maps on the other hand, seem to make full use of the scale, ranging from not important at
all (selected by zero participants) to of essential importance (selected by virtually every
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participant). At this point, it is worth repeating that both mesh and user saliency values
are normalised to a decimal between 0 and 1, in relation to their respective maximum
values. Based on the figures in section 6.4, it is fair to assume that vertices with maximum
values for mesh saliency are very rare and distributed sparsely over the entire geometry.
There are no large, cohesive regions of very high average importance as it seems. There are
scattered almost-white dots, seemingly randomly distributed over the object. This is highly
dependent on the object in question and how the model was built, might provide insights on
this behavior. Whether an object was created with and exported from construction software
meant for a certain type of object, modeled by hand with ordinary 3D modeling software or
3D scanned, can vastly affect the result of processing via mesh saliency.

Fourth, user saliency maps, for the most part, show clearly distinct patches describing
parts of essential importance (selected by virtually every participant). This is most obvious
for model two (Cow). Consider the horns, the eyes and the snout and how they are shaded
according to their user saliency. Extremely high user saliency values lead the respective
parts of the object being shaded almost 100% white in the figures in section 6.4. It is
obvious that some of these patches can be described by clear fairly clear borders.

6.5.3 Mesh saliency with mechanical objects

During evaluation of the data gathered in the course of this work, the observation the nature
of the 3D object at hand is of crucial influence on whether results of processing it using mesh
saliency are convincing or seem intuitive. As described in section 5.2, the three models at
hand were chosen with the declared intention of getting data that can be extended to a large
range of types of objects. Model three (P51) represents the type of mechanical, man-made
objects and is thus vastly different in its structure than objects one and two. Consider
figure 6.23 which shows a part of model three in detail. It is a screenshot, taken directly
from the visual output of climberpi’s implementation [clm], displayed in an openGL
window. Note that here, the mapping of resulting mesh saliency values using σn = 1ε, is
not normalised to the maximum saliency value.

The mapping of colors to mesh saliency values in figure 6.23 is similar to that used for
all figures shown in section 6.4. The closer the color is to white, the higher mesh saliency
value is at any given vertex. Again, note that values are not normalised here. The fact
that, despite that, most of the object is still shaded nearly black and only small details have
seem to be of any importance according to the process, shows that the originally proposed,
unaltered version of mesh saliency might not be suitable for mechanical objects. Again, this
is highly dependent of the object in question and mechanical objects, by nature, can hardly
be attributed any common structural pattens.

As mentioned before, the measure of difference suggested in section 6.5.1 lacks expres-
siveness. However, the fact that both raw and weighted overall difference ratios amount
to about 0.38 - which is the highest number among the three objects - might indicate that
mesh saliency has to be greatly altered to produce intuitive results on mechanical objects.
Furthermore, even the user saliency map for model three was not as distinct as for models
one and two. Participants in the user study seemed to have many more, much different
interpretations of what parts of an aircraft are important than they had regarding animals.
So the fact that not much of a statement, other than saliency maps for mechanical objects
will differ stronger than for natural objects can be made, is not caused by mesh saliency
possibly not being perfectly suitable for mechanical objects alone.
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Figure 6.23: Perspective detail view on object three (P51)
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This section is a contains a brief summery of chapter 6 as well as an outlook on what can
be done now to further research this problem. During this work, lots of data was collected
but evaluation merely began on a surface level, due to other major tasks taking up so much
of the workload.

7.1 Insights and conclusions

Difference ratios expressed via the measure of difference as suggested in section 6.5.1 are fairly
low, ranging from about 0.23 for model one, to 0.27 for model two, up to 0.38 for model
three. However, the expressiveness of this ratio is dubious. From a basic, visual comparison
of computed mesh saliency and user saliency maps for model three, one might conclude
that the two results are almost nothing alike. Based on processing via mesh saliency, almost
every vertex of the mode seems to have a near-zero importance ranking. The exception,
the only parts that stand out in the mesh saliency map for this very mechanical object, are
fairly small geometrical details, exhaust pipes in this specific case. This is evident even when
mapping non-normalised mesh saliency values to the object, as shown in figure 6.23. Again,
it is not plausible that this single number, this measure of distance, cannot serve as the basis
for a quantitative statement on how much average user selection differs from what can be
regarded important through computational processing of the 3D data. It is to be seen as a
suggestion, a possible starting point for more sophisticated ways of quantifying differences
in saliency maps.

However, based on trivial observations of the resulting importance and difference maps,
the measure of difference suggested in this work might still be useful for a rough estimation
of which objects are more likely to have greater differences between mesh and user saliency
value mappings. Depending on how strongly ratios computed via this method differ from
one another, perhaps even a ranking of objects is possible in terms of which of them are
most likely to show the most / the least overall differences in saliency values, in relation to
one another.

User saliency and mesh saliency maps show visual similarities for models one and two, as
one might have expected. Especially when it comes to finding contours, the results were close,
even though the visual representation of computed mesh saliency maps was vastly different
than to that of user saliency and difference maps. For all three objects, users seemed to
put a heavier emphasis on parts that might possibly be described as characteristic to them.
These parts may at times contradict the result of processing the object via mesh saliency.
This seems like a likely outcome of the user study, as users were encouraged to select parts of
the objects according to their own, personal interpretation of the term interesting. Human
cognition and the process of identifying objects is based on recognising larger shapes rather
than point-wise curvature. This might, in part, explain the emphasis on characteristic parts
but diving into human neurology any more would go beyond the scope of this work. This
observation is to be interpreted merely as one of many possible aspects to understanding
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what users - especially in an immersive VR environment - find interesting when presented
3D models.

One of the main problems with the measure of difference is that all vertex-wise saliency
values are normalised, i.e. divided by their respective maximum value, before getting sub-
tracted from one another. This was done with the goal in mind of getting one percentage
ratio which can describe the overall difference of importance distributions. As a result,
expressiveness, especially with mesh saliency values gets lost this way. This is caused by
maximum mesh saliency values being very sparse and, seemingly, not surrounded by other
values that also have high computed saliency values.

The result of normalising saliency values, in combination with the fact that processing
via mesh saliency seems to produce low values for the vast majority of overall vertices, is
that the amount of almost zero-saliency values is high for each object. On the other hand,
there are many parts of objects which are also of no interest to users in VR, which leads to
a great amount of user saliency being zero as well. As a consequence, a great number of raw
differences also amount to almost zero. So, put bluntly, for each high difference value, there
might be so many near-zero values that the one high difference gets completely watered and
ultimately loses its meaning through division by the number of vertices total.

Evaluation of model three (P51), being a mechanical object, is insightful in another regard.
It further impairs the plausibility of the measure of difference, as its user and saliency
map look almost nothing alike, see section 6.4.3. It also might imply that the original,
unaltered version of mesh saliency as described in [LVJ05] is not suitable for mechanic
objects. However, even contemplating general rules as to what shapes and which levels of
detail are likely in mechanic objects in general, is a challenge unfathomable in its scope and
complexity.

Models one and two showed a much stronger variation in saliency values as well as some-
times very clearly distinct patches of essential importance. Based on the data gathered
during the user study, it is safe to assume that virtually every participant selected, for ex-
ample, the region around the eyes of model two (Cow) as well as large portions of the ears
of model one (Bunny). These highly interesting regions seemingly having such distinct bor-
ders might be a resourceful contribution to efforts of making the model mesh saliency more
coherent with what the average human beholder of 3D data finds interesting. The effects of
selection happening in an immersive virtual reality environment is to be further examined
as well, since the feeling of standing in front an actual, live animal might greatly influence
how people perceive it. This begs the question whether immersion in VR can be measured,
at which level such effects become noticeable and how strong they scale with the quality of
VR soft- and hardware.

7.2 Future work

This work is a first step to examining differences between what human users and mathemat-
ical procedures identify as interesting parts of 3D data. Collecting data, suggesting a set of
basic requirements to software that allows such data to be gathered, and a quick estimation
as to whether there are significant differences or not is the main ambition of it. As a result,
there is plenty of promising follow-up work. This section describes three possible branches of
expanding further into the higher level questions at hand, motivating this work. In addition,
unused data gathered during this work and how it can potentially be used is described.
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7.2.1 Improving measure of difference

As discussed before, the measure of difference suggested in section 6.5.1 has lots of potential
ways to improve upon it. As it is described in this work, it might still be useful as a ranking
of which objects are likely to have greater overall differences of saliency values than others
but the following aspects can and should be developed further.

• Normalising both mesh and user saliency values (dividing them by the respective
maximum value) causes results to get watered by an abundance of near-zero values.
Finding a way around this, keeping the expressiveness of importance values, is an
important first step towards an improved measure of difference.

• The idea of boiling down overall differences of 3D data to one single percentage ratio
is meant to provide an estimation of differences as quickly and easily understandable
as possible. However, a way of defining multiple difference ratios is certainly needed.
This task can be tackled in multiple ways. Subdividing the whole range of computed
values to discrete steps and computing difference values for each range is one of many
trivial suggestions as to how this can be achieved.

• Pattern recognition techniques can provide a massive boost to expressiveness of any
measure of difference in this context. If contiguous patches of vertices with similar
saliency values can be identified, difference ratios for each such patch can be computed.
Whether the same, and how many, such patches even get identified through user input
would be the next, trivial step.

7.2.2 Altering variables

A lot of variables during the user study conducted for this work were set and not altered
with the intention of getting similar information about similar data that is easy to compare.
However, many of them can and should be altered to achieve further insights.

• The selection radius of the selection application is computed based on the structure of
the object. To be precise, a combination of that structure and the essential parameters
passed to the octree structure which indexes the loaded 3D information, is the basis for
said radius. Again, it is 95% the size of the smallest possible subtree node, determined
by maxSplitDepth. For this reason, this radius is of essential importance to how the
selection process feels. Trying other combinations of determining this radius, maybe
even allowing users to dynamically alter it during selecting parts of an object, is not
only a desirable functionality of the application but is also certain to provide more
insightful and rich data.

• The size, shape and color of the selection target has virtually unlimited possibilities.
Whether it is shown at all, how it is shown and its behavior when passing through the
projected surface of a model are promising aspects to try and use other rules for.

• The selection application’s visual design is described in section 3.2. Objects can be
shaded differently, textures can be used, dynamic light effects can be used and much
more can be done to alter the users immersion and experience within the scene.
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• The upper time limit for users to finish their selection process on a single object was
five minutes. This was chosen to prevent the user study from being too long and
frustrating the user. However, it might be set to a different value, perhaps based on
complexity of the object of hand.

7.2.3 More extensive user study

A total number of 32 users took part in the user study conducted for this work. A lot of its
conditions were set from the beginning and remained unchanged for its entire duration. It
can be greatly expanded in one or more of the following ways.

• Get more users to acquire a richer pool of data. Best case, multiple hundreds of user
inputs are certain to generate more refined, more generally applicable results.

• Other types of immersive VR might get tested and results can be compared with
regards to the type of input hardware they were created with. In this work, the user
study took place in a multi-wall projection installation. The first thing might come to
mind as an alternative might be a head-mounted display VR setup.

• Collecting more types of data is certain to allow for more thorough conclusions to be
drawn from gathered data. Users could be encouraged to give more qualitative, de-
scriptive feedback. Different kinds of important regions might be determined and more
questions, directly regarding the objects used might be included in a questionnaire.

7.2.4 Unused data

In addition to vertex IDs in user selections - the central information needed for the compar-
ison of overall differences as designed in this work - a lot of other data was collected during
the user study. Some of it is only mentioned in this work, other is not yet discussed due
to necessary limitations to the scope of this work. The following types fo information are
available.

• As briefly stated in section 3.3.2, user selection logfiles contain timestamps (in seconds
since the application was started) next to each logged vertex ID. This timestamp
expresses when the respective vertex was last added to or removed from the selection.
While information on which vertices were removed is an interesting piece of information
in itself, this timestamp might be used to determine which parts of the object were
selected first and what type of implications on their perceived importance this might
have.

• Demographic data about population of the user study as well as interest in technology
are anonymously saved for each participant. It is reasonable to assume things like
personal interest in technology, profession and maybe age contribute massively to how
satisfactory using the selection application is for the user. Further examining this is
another possible piece of follow-up work to this thesis.
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