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Abstract

Identity-based Signatures (IBS) are an important technique for light-weight authentication.
A downside of this signature scheme is that when a key is revoked, all signing keys in the
entire system have to be reissued by one central authority. There exists some approaches
to reducing the effort of reissuing these user keys, among those a method of delegating
this computationally expensive task from the central authority to each user. This scheme
is called Key Updatable Signature Scheme (KUSS) and was designed and implemented for
elliptic curve signatures and will not remain secure in the future quantum age. Lattice-based
cryptography is a promising candidate for future IBS schemes due to its worst-case hardness
assumption, efficient implementation and so-far quantum resistance.

This thesis provides an introduction to lattice-based cryptography, presenting the mecha-
nisms of various cryptographic primitives. Based on this, the requirements for constructing
a KUSS from an elliptic curve IBS scheme are analysed and compared with an existing
lattice-based IBS scheme. Although no solution for a fully functional lattice-based IBS is
found, a candidate KUSS is sketched and the requirements that remain to be met and proven
are concluded.
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1 Introduction

Cryptography is an essential part of modern life. It is used during trivial matters, such as
credit card payments or automatic software updates, where it for example protects confi-
dential data, or verifies the identity of digital communication partners. New research shows
that quantum computers could solve 2048 bit RSA in 4 days, 256 bit ECDLP only in 9 hours
[GRR+23]. As soon as these algorithms are executed on sufficiently error-corrected quantum
hardware, the common public-key cryptography will be insecure. Therefore it is important
to change the established cryptography as fast as possible to quantum secure schemes.

This way also common digital signature schemes are threatened by quantum algorithms.
Digital Signatures are used to ensure the authenticity of digital identities. The process of
verifying the identity of a communication participant is called authentication. If for example
a software update is digitally signed by the manufacturer, a mobile phone can verify that
the update is really from the manufacturer and it can be installed without concern, even
without the user noticing.

Identity-based Signatures The common solution for implementing digital signatures is
by managing public keys within a Public Key Infrastructure (PKI). The credibility of a
signature and thus the security of the authentication results from a chain of certificates,
each assigning a public key to a user identity and having its validity through the signature
of another user. This chain of trust must be checked, certificate by certificate up to its root,
to verify the validity of one single signature.

To avoid these steps, there exists the alternative procedure of Identity-based Signatures
(IBS)[Sha84]. Instead of a public key and a signing key, the unique identity of the user is
chosen as the public key and the corresponding signing key is calculated corresponding to
that. This means that the verification of the certificate chain can be omitted and computing
power and network bandwidth can be saved. A constraint of this method is that such a
system requires a central authority that would be capable of forging the signatures of all
users. Nevertheless, there are many scenarios in which this signature scheme offers great
advantages [Mar14], such as in a smart home, where low computing effort and little network
communication are desired due to low-power devices, and a central authority managing the
system does not raise a major security risk.

Signing Key Revocation An important property that digital signatures must enable is the
ability to propagate that a user is no longer trustworthy. From that time on, his signatures
must no longer be valid, this means his key has to be revoked in some way. In a company
network, this may be the case, when an employee leaves the company. Another reason may
be that a user’s signing key has been exposed. All signatures created with this signing key
can no longer be uniquely assigned to the user and must be detected as invalid. In the
case of identity-based signatures, this user cannot simply generate a new signing key since it
must match his identity and thus it is unique. To successfully revoke the leaked signing key,
verification of signatures created with this signing key must no longer be successful. Therefor
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1 Introduction

the entire IBS system has to be updated, which is computationally expensive for the central
authority and requires high network traffic when distributing the new settings privately to
each user. Depending on the size and volatility of the system, despite its advantages an IBS
can no longer be used efficiently.

Motivated by this, there are various approaches to make revocation in IBS more efficient.
One of these approaches is a mechanism that transforms IBS schemes based on cyclic subsets
of elliptic curves into efficiently revocable IBS in three steps, resulting in a so-called Key
Updatable Signature Scheme (KUSS) [Gug20]. Their efficiency is accomplished by having
the computations for key revocations no longer performed only on the central authority, but
distributed over all users. This way also the network can be reduced significantly.

Post-quantum Cryptography Currently used public key cryptography is mainly based on
factoring problems such as RSA or discrete logarithm problems such as Diffie-Hellman key
exchange and elliptic curve cryptography. With Shor’s algorithm [Sho97], these problems
could be solved on a sufficiently large and error-corrected quantum computer, which will
make the cryptography based on it insecure. For example there exists the already men-
tioned proposal for the implementation of Shor’s algorithm that could break 256 bit elliptic
curve logarithm in 9 hours [GRR+23]. Due to the heavy research in quantum computing,
funded with $23 billion in total until 2026 [Dar21], the National Institute of Standards and
Technology (NIST) expects that a quantum computer capable of breaking current public-
key cryptosystems may be available in 20 years or even sooner [Nat23c]. The cryptography
used in our everyday lives must therefore be changed to quantum-resistant alternatives as
fast as possible. Therefore, in 2016 NIST started a standardisation process for quantum-
resistant cryptography [CJL+16], so-called Post-Quantum Cryptography (PQC). Currently,
in March 2023, three of the four remaining candidates for the new standard for key encap-
sulation mechanisms and digital signatures are based on hard problems on lattices [Nat23b].

Lattice-based cryptography is currently considered quantum-resistant, meaning that there
is no algorithm that can solve the underlying problem in polynomial time on either classical
nor quantum computers. Further advantages are that the arithmetic operations are as
efficient as matrix calculations on small integers, keeping keys and signatures relatively
small [Vai15b]. Besides, the security of this cryptography is based on worst-case hardness
and thus is proven secure. Furthermore research in lattice-based cryptography is promising,
because it supports various cryptographic primitives, from hash functions over IBS up to
homomorphic encryption.

Contribution Considering the advantages of efficiently revocable identity-based signatures
and lattice-based cryptography, this work investigates whether a lattice-based IBS scheme
can be transformed into a KUSS by applying the transformation scheme that was constructed
for elliptic curves. In this way, a quantum-resistant and efficiently revocable IBS could be
achieved.

This work consists of two parts. First, a detailed overview of lattice-based cryptography is
given. Different cryptographic primitives are introduced, successively leading to an identity-
based signature scheme on lattices. The second part of this thesis analyses whether this IBS
can be converted into an efficiently revocable KUSS. In the course of this, a requirements
analysis for a transformation into a KUSS is developed, and then compared with the lattice-
based IBS. Finally the required properties for such a transformation of a lattice-based IBS
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are outlined, leaving the solution satisfying those requirements for future work.

Structure The thesis begins with the necessary mathematical foundations, consisting of al-
gebra basics and arithmetic in multi-dimensional space. This is followed by an introduction
to the basics of cryptography. Chapter 4 presents the required background, by first intro-
ducing Elliptic Curve Cryptography (ECC) followed by Identity-based Cryptography (IBC).
The summary of related work is divided into two parts. The related work to this thesis is
divided into general signing key revocation IBS, and signing key revocation in lattice-based
IBS. The related work regarding general revocation in IBS is also found in this chapter under
4.3. The end of this chapter brings all former topics together by introducing a Key Updatable
Signature Scheme (KUSS) on elliptic curves. Chapter 5 is entirely dealing with lattice-based
cryptography, starting with the definition of lattices, computational problems on lattices.
Further different cryptographic primitives constructed with lattices are introduced, ending
with an IBS scheme. In 5.4 related work on the state of the art in revocation on lattice-based
IBS is summarized. Chapter 6 analyzes what requirements make a transformation of an IBS
scheme into a KUSS possible, and investigates which properties are fulfilled, summarizing
the open problems. Chapter 7 concludes this thesis by summarizing the findings and giving
perspectives on further research to be done.
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2 Mathematical Foundations

This chapter summarizes the mathematical foundations relevant for this thesis. These are
divided into two sections, first algebra basics followed by characteristics and operations in
multidimensional euclidean spaces.

2.1 Algebra Basics

The required algebra definitions include groups, subgroups, and cyclic groups, as well as
rings and fields, concluding with the set of integers modular prime as essential tool for state
of the art cryptography.

2.1.1 Groups

A group G is a tuple (G, ◦) composed by a set G and an operation ◦ : G×G→ G for which
the following 3 group axioms hold [MK18]:

1) The operation ◦ is associative, i.e., a ◦ (b ◦ c) = a ◦ b ◦ c = (a ◦ b) ◦ c ∀a, b, c ∈ G

2) The set G contains an identity element or neutral element e, i.e., ∃e ∈ G : a ◦ e =
e ◦ a = a ∀a ∈ G

3) Every element a in G has an inverse element a−1, i.e., ∀a ∈ G ∃a−1 ∈ G : a ◦ a−1 =
a−1 ◦ a = e

All groups are closed. This “closedness” or “closure” of a group G means that the op-
eration ◦ : G × G → G between any elements of G results again in an element of G [Wei].
Hence, the operation never leads out of the set G.
The group (G, ◦) is additionally called commutative or abelian if the operation ◦ is also

commutative, i.e., a ◦ b = b ◦ a ∀a, b ∈ G [Fis11].
The order of a group G, denoted with |G| is the number of elements contained in G.
As an example, the integers Z with the operation + form an abelian group.

2.1.2 Subgroups

If (G, ◦) is a group, then a nonempty subset U ⊂ G together with ◦ is called a subgroup of
G if the following 3 axioms hold [MK18]:

1) The set U contains an identity element e, i.e., ∃e ∈ U : a ◦ e = e ◦ a = a ∀a ∈ U

2) Every element a in U has an inverse element a−1 in U , i.e., ∀a ∈ U ∃a−1 ∈ U :
a ◦ a−1 = a−1 ◦ a = e

3) U is “closed” under the operation ◦, i.e., a ◦ b ∈ U ∀a, b ∈ U

In other words, (U, ◦) is a group and U is a nonempty real subset of G.
As an example, the set of all even integers forms a subgroup of (Z,+).
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2 Mathematical Foundations

2.1.3 Cyclic Groups

A group G = (G, ◦) is called cyclic if an element g ∈ G exists that generates the set G, by
using the operation ◦multiple times on itself [KM17]. The element g is called the “generator“
of G. There can be more than one generator in a cyclic group.

G = ⟨g⟩ = {gk : k ∈ Z} = {g, g ◦ g, ..., g ◦ g... ◦ g︸ ︷︷ ︸
k-times

}

As an example, the group Zn with the operation + is a cyclic group for any n ∈ N, with 1
as generator. Also the group of integers modulo prime Z∗

p (see section 2.1.6) for any prime

p forms a cyclic group. As example Z∗
5 = ⟨2⟩ = {2k : k ∈ N0} = {20 = 1, 21 = 2, 22 = 4, 23 =

8 = 3} = {1, 2, 3, 4}.

2.1.4 Rings

A ring is a tuple (R,+, ∗) composed by a set R and the two operations addition (+) and
multiplication (∗) satisfying the following ring axioms:

1) (R,+) forms an abelian group. Thus the addition + is commutative, i.e., a + b =
b+ a ∀a, b ∈ R

2) (R, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ R

3) There is an identity element for (R, ∗), denoted by 1, i.e., a ∗ 1 = 1 ∗ a = a ∀a ∈ R

4) The distributive law holds for (R,+, ∗), i.e., (a+ b) ∗ c = a ∗ c+ b ∗ c,
a ∗ (b+ c) = a ∗ b+ a ∗ c ∀a, b, c ∈ R

The ring is additionally called commutative ring or abelian ring if the multiplication ∗ is
also commutative, i.e., a ∗ b = b ∗ a ∀a, b ∈ R [MK18].
As an example, the integers Z with the operations + and ∗ form an abelian ring.

2.1.5 Fields

A field F is a tuple (F,+, ∗) composed by a set F and the two operations addition (+) and
multiplication (∗), satisfying the following axioms:

1) (F,+, ∗) forms a ring

2) (F \ {0}, ∗) forms an abelian group. Thus the multiplication ∗ is commutative, i.e.,
a ∗ b = b ∗ a ∀a, b ∈ F \ {0}

As an example, the rational numbers Q together with addition and multiplication form a
field.

Finite Fields Finite fields are fields that contain only a finite number of elements.
The set of integers modulo prime Zp (see section 2.1.6) together with modular addition

and modular multiplication always form a finite field [Fis11]. This special field is denoted by
Fp = (Zp,+, ∗). This kind of finite field is often used in cryptography, i.e., for elliptic curve
cryptography.

An example of the finite field F5 is the set Z5 = {0, 1, 2, 3, 4} together with modular
addition and multiplication.
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2.2 Arithmetic in n-dimensional euclidean space

2.1.6 The integers modulo n

The integers mod n contain Zn = {0, 1, 2, ..., n − 1} for a n ∈ N, that are all natural
numbers that form a group with the addition mod n.

The multiplicative integers mod n contain Z∗
n = {i ∈ Zn : i and n are coprime}, that

are all natural numbers that form a group with the multiplication mod n.

The set of multiplicative integers mod p where p is prime, has special properties that
are useful for cryptography [Len20].
The set contains the elements Z∗

p = {1, ..., p − 1} = Zp \ {0}, since it contains all smaller
natural numbers that are coprime to p. Thus |Z∗

p| = p− 1.
Z∗
p forms an abelian group with the modular multiplication. Often the group is denoted

the same way as the set, namely Z∗
p = (Z∗

p, ∗). Each element of Z∗
p has an inverse that can

be calculated using the extended euclidean algorithm. Additionally it is a cyclic group, that
means it contains at least one generator g ∈ Z∗

p holding Z∗
p = {gk : k ∈ N}.

As mentioned in the previous section, Zp together with modular multiplication and mod-
ular addition forms the finite field Fp, because (Zp,+, ∗) forms a ring and (Z∗

p, ∗) forms an
abelian group.

2.2 Arithmetic in n-dimensional euclidean space

This section summarizes important measures and calculations in n-dimensional space Rn.
All definitions are from [Fis11] and [MK18] if not explicitly mentioned.

2.2.1 Vectors

A vector or column vector v ∈ Rn consists of one column with n rows. It can be imagined
as a matrix V ∈ Rn×1. Its elements are denoted as vj , where j ∈ {0, ..., n}.

v =


v0
v1
v2
...
vn


Row Vectors A vector v ∈ Rn can be transposed into a row vector v⊺ that has one row
and n columns. This vector can be represented as matrix v⊺ = V ∈ R1×n.

v⊺ =
(
v0 v1 v2 . . . vn

)
A row vector v⊺ can be transposed to a column vector (v⊺)⊺ = v. Unless explicitly mentioned,
with “vector“ this thesis always refers to a column vector.

Vector Addition, Scalar Multiplication and Multiplication Vector arithmetic works similar
as matrix arithmetic on a matrix A ∈ Rn×1. Regarding vectors v, w ∈ Rn, operations are
made as defined in section 2.2.2 with v = V ∈ Rn×1 and w = W ∈ Rn×1 resulting in a
one-column matrix, thus again in a vector.
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2 Mathematical Foundations

Scalar Product The scalar product or dot product is another name for the multiplication
operation between vectors. For details see the former paragraph. It is written as ⟨v, w⟩ = v∗w
for v, w ∈ Rn.

Length of Vector The norm, magnitude or length of a vector v ∈ Rn is defined by: ∥v∥ =√
⟨v, v⟩ =

√
v02 + v12 + ...+ vn2

Distance of Vectors The distance between two vectors v, w ∈ Rn is the length of the
difference vector ∥v − w∥.

Linear Independence The vectors v 1, v 2, .., v k ∈ Rn are linearly independent if holds:

a1 ∗ v 1 + a2 ∗ v 2 + ...+ an ∗ v k = 0n , only for ai = 0 ∈ R

All coefficients have to be 0 in order to reach the origin. Otherwise v 1, v 2, .., v k is called
linearly dependent.

In other words, the vectors v 1, v 2, .., v k are linearly independent exactly when none of
them can be represented as a linear combination of the others. If two vectors are the same
(v 1 = v 2) or a multiple of each other (v 1 = a ∗ v 2, a ∈ R) they can not be linearly
independent. If there are more vectors in a set than dimensions in space, thus k > n, the
set of vectors can not be linearly independent.

2.2.2 Matrices

A matrix A ∈ Rn×m consists of n rows and m columns. It’s elements are denoted as aij ,
where i ∈ {0, ...,m} is the elements column and j ∈ {0, ..., n} is the elements row.

A =

m︷ ︸︸ ︷
n


a00 a10 a20 . . . am0

a01 a11 am1

a02
. . . am2

...
...

a0n a1n a2n . . . amn


Identity Matrix The identity element of matrix multiplications is the identity matrix, de-
noted as Idn ∈ Rn×n. It’s diagonal elements are 1, the rest is 0:

idij = δij ∀i, j , with δij =

{
1, if i = j,

0, if i ̸= j.

Idn =


1 0 0 . . . 0
0 1 0
0 1 0
...

. . .
...

0 0 0 . . . 1
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Transposed Matrix Given matrix A ∈ Rn×m, it’s transposed matrix is denoted as A⊺ ∈
Rm×n and defined by: a⊺ij = aij + bij ∀i, j.

Matrix Addition Two matrices A ∈ Rn×m, B ∈ Rx×y can be added if they have the same
dimensions n = x and m = y. For the addition A+B = C the elements of the same position
are added: cij = aij + bij ∀i, j. If R forms a group with addition A has an additive inverse
−A = −1 ∗A and subtraction is possible.

Modular Matrix Addition Two matrices A ∈ Rn×m, B ∈ Rx×y can be added modulo
q ∈ N if they have the same dimensions n = x and m = y. For the modular addition A+B
mod q = C ∈ Rn×m

q the elements of the same position are added: cij = aij+bij mod q ∀i, j.
If R forms a group with modular addition and subtraction is possible.

Matrix Scalar Multiplication A scalar s ∈ R can be multiplied to a matrix A ∈ Rn×m,
changing every element of A by the factor s. This is called scaling of a matrix. The scalar
multiplication s ∗A = B ∈ Rn×m is defined as: bij = s ∗ aij ∀i, j.

Modular Matrix Scalar Multiplication A scalar s ∈ R can be multiplied to a matrix
A ∈ Rn×m modulo q, changing every element of A by the factor s. The modular scalar
multiplication s ∗A mod q = B ∈ Rn×m

q is defined as: bij = s ∗ aij mod q ∀i, j.

Matrix Multiplication Two matrices A ∈ Rn×m, B ∈ Rx×y can be multiplied if they have
the same dimensions m = x, meaning A has the same number of columns as B has rows.
Therefore the operation, in contrast to matrix addition and scalar multiplication, are not
commutative. The multiplication A ∗B = C ∈ Rn×y is defined as: cij =

∑m
k=1 aik ∗ bkj ∀i, j.

Modular Matrix Multiplication Two matrices A ∈ Zn×m, B ∈ Zx×y can be multiplied
modulo q ∈ N if they have the same dimensions m = x, meaning A has the same number of
columns as B has rows. It is not commutative. The multiplication A∗B mod q = C ∈ Zn×y

q

is defined as: cij =
∑m

k=1 aik ∗ bkj mod q ∀i, j.

Basis Matrix A matrix B ∈ Zn×m is called basis matrix, if firstly all its columns are linearly
independent and secondly they span the whole space Rm. This means every point in Rm

can be reached by combining and scaling the column vectors. Hence for basis matrices it
always holds m = n.

Length of a Matrix The length of a matrix A ∈ Rn×m is the norm of its longest column:
∥A∥ = maxi(∥ai∥).

Determinant of a Matrix The determinant of a matrix A ∈ Rn×n is the volume of the
parallelepiped spanned by the columns ai in the space Rm.

det(A) = a ∗ d− b ∗ c for A =

(
a b
c d

)
For calculating det(A) for higher dimensional matrices see the Laplace expansion of a deter-
minant [Fis11].
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2 Mathematical Foundations

The determinant indicates many properties of a matrix, i.e., its sign indicates the orien-
tation of the vectors, or it implies if a matrix is invertible.

For any matrix A ∈ Rn×n it holds: det(A) = det(A⊺).

Rank of a Matrix The (column) rank r of a matrix A ∈ Rm×n is the number of it’s linearly
independent columns. Therefore 0 < r ≤ n. If the rank r = n the matrix is called full-rank,
meaning its columns are all linearly independent.

Inverse of a Matrix If for a matrix A ∈ Rn×n it exists an A′ ∈ Rn×n, so that A∗A′ = Idn,
A is invertible. A′ is the inverse of A and is denoted as A−1.
Not all matrices are invertible, but the following rules hold for matrix A ∈ Rn×n:

• A has full-rank ↔ A is invertible

• det(A) ̸= 0 ↔ A is invertible

• since det(A) = det(A⊺): A is invertible ↔ A⊺ is invertible

To calculate the inverse of a matrix A, a linear equation system for A ∗ A−1 = Id can be
constructed, and solved for A−1 with Gaussian elimination [Fis11].

Matrices as linear equation systems Amatrix A ∈ Rn×m with rank r can represent a linear
equation system, where n is the number of equations and m is the number of variables.
Given the linear equation system below, it can be solved with gaussian elimination to

x = 2, y = 1, z = 3.

3x+ 4y − z = 10

x− 9y + 2z = −1
−x+ 5y = 3

This equation can be written as matrix multiplication A ∗ v = b. v contains the value of the
variables, that solve the equation. 3 4 −1

1 −9 2
−1 5 0


︸ ︷︷ ︸

A

∗v =

10
−1
3


︸ ︷︷ ︸

b

with v =

2
1
3



A linear equation system can only be uniquely solved if it is consistent and there are at
least as many linearly independent equations as variables, hence for matrices n ≥ r ≥ m is
required for A ∗ v = b to be solvable.

To solve the equation A ∗ v = b, if only A and y are given, the inverse A−1 has to be
computed and multiplied on the left of b. A−1 ∗ b = A−1 ∗A ∗ v = v, this way the variables
can be retrieved. The inverse A−1 can be calculated through constructing A ∗ A−1 = Id,
and solving the corresponding linear equation system with Gaussian elimination. And for
this reason A has to be full-rank, to be invertible. It can be seen that more equations, and
therefore more rows m of a matrix, leave the equation system solvable as long as it has full
rank r.
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If m ≥ r > n the equation system is underdetermined, and up to |R|n−m many solutions
can be found. The calculation of the inverse A−1 is not possible any more, and v can
not be calculated. Yet it is possible to calculate various left inverse A−1

left ∈ Rm×n solving

A−1
left ∗A = Idm, explaining why many solutions of the equation can be found [Tan17].
If the results of the equation, hence the elements of b, are manipulated with small errors

the equation system will be inconsistent and not solvable either.
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3 Cryptographic Foundations

Information Security defines three main goals, Confidentiality, Integrity and Authenticity
[Sch20]. Cryptography enables these goals. Confidentiality through encryption, integrity
through hash functions and authenticity through digital signatures.

This section gives a short introduction to the security of cryptography and the prelimi-
naries on its underlying mathematical problems. Further it provides an overview of crypto-
graphic primitives, including hash functions, encryption and digital signatures.

3.1 Information Theoretic Security vs. Computational Security

In cryptography, information theoretical security or perfect secrecy holds if, given a
cipher, it is not possible to make any assumptions about possible underlying plaintexts. This
means that the probability that the cipher C originates from the actual plaintext P must
be equal to the probability that the plaintext P was encrypted in general [Sha49]. They are
statistically independent.

Pr(P |C) = Pr(P )

The cipher must not reveal any information about the encrypted plaintext, it must not even
limit the range of possible plaintexts. The probability of a cipher must be independent of
the plaintext. For the set P of all possible plaintexts Pr(C|P1) = Pr(C|P2) ∀P1, P2 ∈ P
must hold [Buc16].

An important condition to achieve information theoretical security is a uniform distribu-
tion of possible encryption keys [Sha49]. The One-Time Pad (OTP) is a well known perfectly
secret encryption system [Buc16]. Thereby uniformly distributed random bit strings are used
as secret keys, and added modulo 2 to the binary message, i.e., a bitwise exclusive OR is
performed. Given a cipher C it is easy to see that for every possible plaintext P a key exists,
which would have generated the given cipher C. The probability Pr(C|P ) is therefore equal
for each possible plaintext, and the OTP is information theoretically secure.

Since the required keys must be as large as the plaintext, and each key is used only once,
the OTP has no real practical use. Yet modern computationally secure cryptography, such
as lattice-based cryptography, still uses the basic idea of OTPs and Shannon’s Theory.

Computational security or semantic security holds if it is theoretically possible to
reconstruct information about the plaintext P from the cipher C but the complexity of
obtaining this information is too high to be technically feasible [GM84]. It is computationally
hard (see chapter 3.2). In this case the difference between Pr(C|P0) and P (C|P1) is negligible
regarding security, because nevertheless no adversary can compute information from the
cipher.

For this reason modern cryptography is based on hard mathematical problems, as for ex-
ample the Discrete Logarithm Problem (DLP). The cryptographic keys used can be derived,
but only with almost infinite computational power. Accordingly, the cryptographic schemes
stay secure with the current computational power and satisfy computational security.
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3.2 Computationally Hard Problems

All cryptography is based on mathematical problems that are computationally hard to a
certain degree, i.e., not solvable in polynomial time. One distinguishes between worst-case
and average-case hardness [ZG15].

Figure 3.1: Distribution of hard instances in worst-case and average-case problems

Worst-case Hardness Let a problem be given for which there is at least one instance
that is not solvable in polynomial time, then this problem is at least worst-case hard.
However, worst-case hardness of a problem allows all other instances of the problem to still
be efficiently solvable. Worst-case hardness is therefore easy to prove, but is not sufficient
for cryptography.

An example of such a problem would be the factorization of numbers in general. Even if
the factorization of the product of two prime numbers is hard, factorization is possible for
more than half of all numbers, just think of the multiples of 2. For this reason a random
module n instead of a prime for RSA encryption would not be secure.

Average-case Hardness Hence, cryptography is based on the class of problems that are at
least average-case hard. For these problems an instance is not solvable in the average, in
other words, a randomly chosen instance of the problem is hard.

An example of this would be the factorization of the product of large prime numbers, as
it is used for RSA encryption.

Proving that a problem is average-case hard is much trickier than proving worst-case
hardness with one instance. The best approach is to prove the average-case hardness of a
problem to be based on the worst-case hardness of another problem, and then prove the
worst-case hardness of the other problem by showing it with one instance. This way the
average-case hardness of LWE for lattices was proved [Sti19].

3.3 Cryptographic Primitives

As mentioned in the introduction of this chapter, cryptography is used to obtain information
security, also nicely explained in [Sch20]. In the following a short classification of the most
common cryptographic primitives and their associated security goal is given. Note that there
exists a lot more than mentioned here. Figure 3.2 provides an overview of the introduced
cryptographic functions.

14



3.3 Cryptographic Primitives

(a) Cryptographic Hash Functions (b) Secret-key Encryption

(c) Public-key Encryption (d) Digital Signatures

Figure 3.2: Cryptographic Primitives

Collision-resistant Hash Functions Collision-resistant hash functions, in cryptographic
context often just referenced as hash functions, are functions that map a sometimes even
infinitely large domain D to a smaller value set R, i.e., |D| > |R| [KM17]. Additionally,
two inputs mapping to the same output, so called collisions, are hard to find. Thus, given
a collision-resistant hash function f : D −→ R, then there is no polynomial algorithm that
finds x, y ∈ D for which holds f(x) = f(y).

Collision-resistant hash functions are used to provide integrity. That means, a piece of
digital information cannot be manipulated afterwards. For example, to ensure the integrity
of a message m, the hash h = f(m) is calculated and appended to the message. The message
m is certainly not manipulated, as long as the the result of f(m) is still equal to the appended
h, due to the collision resistance of f . An adversary cannot find another message m′ with
the same hash and pretend that m′ was the original message, because m and m′ would have
to be collisions and they are hard to find.

Symmetric and Asymmetric Encryption Encryption enables confidentiality of informa-
tion. Encrypted information, a so-called cipher, can be decrypted to the original plaintext
only by owners of a secret key and no one else. There are two types of encryption, symmetric
and asymmetric [KM17].

For symmetric encryption the sender and receiver have the same secret key. This is
used by the sender to encrypt the plaintext and by the receiver to decrypt the cipher to
the original plaintext. A disadvantage of the method is that the shared secret key must be
shared between all participant beforehand over some secret channel.

For asymmetric encryption two complementary keys are used for encryption and de-
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cryption, forming the so-called asymmetric key pair. To encrypt a message, the receiver’s
public key is used. The resulting cipher can then only be solved with the corresponding
secret key of the receiver and by no one else. This method has the advantage that no secret
is necessary to encrypt a message. The public key, as the name implies, may be revealed to
the public, yet the cipher remains confidential.

Digital Signatures To support authentication of the origin of digital information digital
signatures are used. With their help, the author of a digital message can be identified
[KM17].

One example for digital signatures is constructed with asymmetric key pairs. To sign
a message m, the author encrypts it with his secret key and appends the cipher to the
message. The cipher is the digital signature of m. All recipients of the signature can verify
it by decrypting the cipher with the sender’s public key. If the resulting plaintext matches
the received message, it was really authored by the owner of the public key. In practice not
the entire message m is encrypted and used as a signature but, the collision-resistant hash of
the message f(m) is generated and used for signing and verification. This limits the length
of the signature to a fixed value and reduces computation. Because of the integrity of the
hash, the authentication of the sender remains secure.
A disadvantage of using asymmetric key pairs is, that the ownership of the public key

must be ensured. This is also done via a digital signature of a trusted party, which can only
be ensured, if the trusted parties public key is valid too. Again the public key of the trusted
party has to be verified with a further signature from a higher trusted party and so on. This
creates a signature chain, a so-called chain of trust, which must be verified all the way to its
root [Per99].
Digital signatures based on asymmetric key pairs and a chain of trust are not the only

existing schemes to provide authentication. Another concept are identity-based signatures,
which are a main part of this thesis, introduced in chapter 4.2.
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4 Background

This chapter provides the background upon which chapters 5 and 6 are based. Because
the goal of this thesis is to adapt the efficient key revocation mechanism of Key Updatable
Signature Schemes (KUSS) from elliptic curves to lattice-based Identity-based Signatures
(IBS), this chapter starts with an introduction to Elliptic Curve Cryptography. Next, the
idea of Identity-based Cryptography is explained. This chapter also contains related work
on key revocation in IBS schemes. Finally, the concept of efficiently revocable KUSS based
on elliptic curves is presented. Lattice-based cryptography is presented in an own chapter 5.

4.1 Elliptic Curves

Elliptic curves are an old construct from mathematics, but only in the 1980s the first cryp-
tography on elliptic curves was invented independently by Neil Koblitz [Kob87] and Victor
S. Miller [Mil86]. The Elliptic Curve Discrete Logarithm Problem (ECDLP) within such
curves enables modern public-key cryptography, such as the key encapsulation mechanism
ECDH [Nat18] or the digital signature scheme ECDSA [Nat23a]. The advantages of Elliptic
Curve Cryptography (ECC) are smaller key lengths compared to RSA [RSA78] achieving
equal security, and simple computations together with low memory usage [ABC+18].

To understand the transformation of an elliptic curve IBS into a KUSS, knowledge of
arithmetic on elliptic curves and elliptic curve Schnorr signatures is given.

As basic introduction to ECC [Cor15] is recommended. When not differently stated the
definitions are form [ZG15] and [Bro09].

4.1.1 Definition

An elliptic curve EF is defined over a field F of characteristics different than 2 and 3, and
consists of the set (x, y) ∈ F2 which satisfy the following equation, with a, b ∈ F2 and
4a3 + 27b2 ̸= 0 [ZG15].

{(x, y) ∈ F2 : y2 = x3 + ax+ b} ⊆ F2

In addition, each elliptic curve contains the point at infinity O. Thus an elliptic curve E is
defined as follows [ZG15]:

E = {(x, y) ∈ F2 : y2 = x3 + ax+ b} ∪ O with a, b ∈ F and 4a3 + 27b2 ̸= 0

An elliptic curve forms an abelian group (see section 2.1). It contains an identity element
O. For each element there exists exactly one inverse element. And the associative and
commutative addition is defined over it.

Figure 4.1 shows different examples of elliptic curves over R.
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4 Background

(a) a varying from 2 to −4, b = 1 (b) a = −3, b varying from −2 to 4

Figure 4.1: Examples of elliptic curves

Arithmetic of Elliptic Curves

This section gives a short introduction to the arithmetic on elliptic curves. Because only a
basic understanding of elliptic curves is necessary for this thesis, all operations are explained
geometrically only. This is sufficient for the following concepts.

Inverse Element Each element of an elliptic curve has exactly one inverse. The inverse
−P of a point P is its reflection on the x-axis. See figure 4.2a.

Identity Element The identity element of an elliptic curve is the point at infinity O, which
can be thought of as ∞ of the y-axis. A straight line passing through a point P and its
inverse −P always intersects also O. The inverse of O is again O.

−O = O

Addition The addition of two points of an elliptic curve can be imagined geometrically as
follows. If the sum of point P and point G is wanted, then one draws a line through both
points, and for all possible points P,G ∈ E there is at most one third intersection point of
this line with a point T of the elliptic curve. The sum P + G = −T , with −T being the
third point of intersection of the line with E, mirrored on the x-axis. Geometrically it can
be seen that this operation is commutative, i.e., P +G = G+ P . See figure 4.2b.

This definition is accompanied by a few special rules. First, when a point P is added to
O, the result is equal to P , like for any neutral element of a group.

P +O = O + P = P

Second, if a point P is added to its inverse −P , then the resulting straight line is perpen-
dicular, and runs in an abstract sense through the point at infinity O. For this −O = O
holds, so the result is O.

P − P = −P + P = O
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(a) P and it’s inverse −P (b) P +G

(c) P + P (d) 3 ∗ P

Figure 4.2: Elliptic curve arithmetic on the curve y2 = x3 − 3x+ 4 over R

And the last special case is the addition of a point P with itself. There are infinitely many
possibilities how a line could run through the point P , so a special one, the tangent is used.
When drawing the tangent of the elliptic curve in point P , there is again only at most one
further intersection point T with the elliptic curve, and −T is the result of the addition. See
figure 4.2c.

Scalar multiplication It is also possible to multiply a factor n onto a point P of an elliptic
curve. This means an n-fold addition with the point P itself. See figure 4.2d.

n ∗ P = P + P + ....+ P︸ ︷︷ ︸
n- times

=
n−1∑
i=0

P

4.1.2 Elliptic curves over finite fields

Elliptic curves can also be defined in discrete, finite contexts. Thereby the definition of an
elliptic curve over a finite field Fp is

E = {(x, y) ∈ F2
p : y

2 ≡ x3 + ax+ b (mod p)} ∪O ,with a, b ∈ F and 4a3 +27b2 ̸≡ 0 (mod p)

For finite fields Fp is (Zp,+, ∗) with prime p see chapter 2.1.5.
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Examples of modular elliptic curves are shown in figure 4.3. It can be seen that the set
contains only single points and does not form a geometric curve anymore. Furthermore, the
modular elliptic curve is no longer reflected at y = 0, but at y = p

2 . And the larger p gets,
the larger is the order of the elliptic curve, and more messy it seems.

Figure 4.3: Examples of Elliptic Curves over the finite field F7 (left) and F83 (right)

Arithmetic of Elliptic Curves in Fp

The point at infinity remains the identity element of the elliptic curve, and can still be
imagined as ∞ of the y-axis. The inverse, addition, and scalar multiplication on modular
elliptic curves must be geometrically imagined in a different way.

Inverse The inverse −P of a point P is its reflection at the constant y = p
2 . See figure 4.4a.

Addition To add the points P = (xP , xP ) and G = (xG, yG), again a line is imagined
through the two points, but here with a magnitude m = (yP − yG) ∗ (xP − xG)

−1 mod p.
This straight line is defined in the field Fp, so it remains also in the modular space Z2

p.
Again, this line only intersects one other point T ∈ E. The inverse of T is again the sum
−T = P +G. See figure 4.4b.
Besides it still holds P +O = O + P = P and P − P = −P + P = O.
But to add the point P = (xP , yP ) to itself, there exists no tangent of a point. Instead, a

straight line is drawn through point P with a magnitude m = (3xP
2 + a) ∗ (2yP )−1 mod p,

which is again defined in the field Fp. The intersection of this line with the only other point
T ∈ E must be inverted to result in −T = P + P . See figure 4.4c.

Scalar multiplication Here the multiplication of a factor n on a point P of the elliptic
curve is again the n-fold addition of the point with itself, but using the addition defined for
modular elliptic curves.

Cyclic Subgroups

Within an elliptic curve over finite fields, there are some points, which, added to themselves,
sooner or later end up at themselves again. These points, and the points reached by them,
form a cyclic subgroup G (see section 2.1). The base point is called generator G of this
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(a) P and it’s inverse −P (b) P +G

(c) P + P

Figure 4.4: Elliptic curve arithmetic shown on the curve y2 = x3 − 4x+ 1 over F7

cyclic subgroup, because from it all other points of the subgroup can be generated, denoted
as ⟨G⟩.

G = ⟨G⟩ = {k ∗G : k ∈ Z}

Figure 4.5 shows an elliptic curve over F37, with a = −1 and b = 3. Further it’s cyclic
subgroup generated by G = (2, 3) is scattered. It can be seen, that all elements of the
subgroup can be reached by G through scalar multiplications. Remember that the point at
infinity O is also part of any cyclic subgroup of an elliptic curve.

Figure 4.5: Cyclic subgroup of an elliptic curve over a finite field
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The order n of a subgroup, is the number of points in the subgroup. This is the smallest
positive integer, which when multiplied with the generator G, results in O.

n ∗G = O

To picture this, in figure 4.5, the order would be n = 7. The addition of the point 6P with
P would be the vertical line running through the point at infinity, i.e 7P = 6P + P = O.

Thus the elements of a cyclic subgroup can be defined without duplicates by:

G = ⟨G⟩ = {k ∗G : k = 0, ...n}

Elliptic Curve Cryptography takes place within such subgroups of elliptic curves over finite
fields.

4.1.3 Elliptic Curve Discrete Logarithm Problem

As could be seen, scalar multiplication is defined on modular elliptic curves. If a modular
elliptic curve E and a point P ∈ E and x ∈ Z is given, then x ∗ P = G is easy to calculate.
However, the reverse calculation from G and P to the factor x is not easy for some modular
elliptic curves. This problem is known as the Elliptic Curve Discrete Logarithm Problem
(ECDLP) problem, and is considered hard since so far no polynomial algorithm is known
that can solve it [ZG15]. It is called discrete, because the computations are not defined on
infinite domains, but on finite fields, more precisely on the cyclic subgroup with addition
and multiplication defined.

In this way, this ECDLP of scalar multiplication on modular elliptic curves is similar to
the Discrete Logarithm Problem (DLP) of modular exponentiation, on which also Diffie-
Hellman key exchange [DH76] is based on. And similar to the DLP, cryptography can be
constructed on top of the Elliptic Curve Discrete Logarithm Problem.

4.1.4 Elliptic Curve Schnorr Signatures

Elliptic Curve Cryptography uses cyclic subgroups of certain secure elliptic curves, such as
recommended by the NIST in [Nat23a]. These elliptic curves are classified as secure meaning
that the ECDLP problem is average-case hard, and cryptography can be based on them. A
benefit of ECC is that, although not as efficient computable as RSA [RSA78], it needs much
shorter signature key lengths to be secure. For achieving a 128 bit security ECC needs only
256 bits while RSA would have keys of 3072 bits length [ABC+18].

For elliptic curves a Schnorr signature scheme exists. The Schnorr signature scheme for
cyclic groups in general was published in 1991 and allows efficient calculation because a part
of the signature can be precomputed [Sch91]. It has been applied to cyclic groups in modular
elliptic curves. Figure 4.6 shows the overall procedure of the scheme. The relevant domain
parameters D = (p, a, b,G, n = q) include the curve parameters a, b and prime module p, as
well as a generator point G and the order n of the cyclic subgroup generated by G. This
order has to be prime and therefor is further denoted as q instead of n. The cyclic subgroup
will be referenced to as G. Additionally a hash function H : G× {0, 1}∗ → Zq is used, that
maps an elliptic curve point and a string to an element of Zq = {0, ..., q − 1}.
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4.1 Elliptic Curves

Figure 4.6: Schnorr signature with elliptic curves

As secret key s ∈ Z∗
q = {1, ..., q − 1} is chosen, and the corresponding public key is

calculated with S = s ∗G ∈ G. According to ECDLP s is hidden in S.

secret key : s ∈ Z∗
q

public key : S = s ∗G ∈ G

To sign a message m = {0, 1}∗, a random x ∈ Z∗
q is chosen, and multiplied to the generator

G. The result is a new point X ∈ G of the cyclic subgroup, from which x can no longer be
derived. As the first part of the signature, the hash H(X,m) ∈ Z∗

q is generated, in which
the message but not yet the author is included. Then this hash is multiplied with the secret
key s and added to x. This result z ∈ Zq is calculated from the message m, the integer x,
and the secret key s of the author. The signature is the tuple σ = (z, h).

Sign(m) :

x
$← Z∗

q

X = x ∗G
h = H(X,m)

z = x+ s ∗ h mod q

σ = (z, h)

To verify the signature σ = (z, h), the verifier reconstructs the X from the signing process,
using the public parameters. Therefor the z of the signature is multiplied to the generator
G and this result is added to the h of the signature multiplied to the signers public key S.
The resulting point is denoted X ′ ∈ G. If the hash of X ′ and m is equal to h the signature
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is valid.
Verify(σ) :

X ′ = z ∗G− h ∗ S

H(X ′,m)
?
= h

The verification works if the public key S = s ∗G, because then the following equation is
true.

X ′ = z ∗G− h ∗ S
= (x+ s ∗ h) ∗G− h ∗ s ∗G
= x ∗G+ s ∗ h ∗G− h ∗ s ∗G
= x ∗G
= X

This elliptic curve Schnorr signature scheme can be used to construct elliptic curve Identity-
based Signatures. Therefor the next section introduces Identity-based Cryptography.

4.2 Identity-based Cryptography

This section introduces Identity-based Cryptography (IBC), consisting Identity-based En-
cryption (IBE) and Identity-based Signatures (IBS). Exemplarily the elliptic curve Identity-
based Signature Scheme by Galindo and Garcia [GG09] is presented.

IBC is an asymmetric cryptosystem that uses the unique identity of the user instead of
a user-chosen public key. That way the computationally intensive process of looking up a
users public key by verifying a chain of certificates as it is required in PKIs, is omitted.

Identity-based Cryptography was first published by Adi Shamir in 1984 [Sha84]. This
work presents the abstract idea of IBE and IBS, and proves the concept of IBS using a vari-
ant of the RSA cryptosystem [RSA78]. The first implementation of IBE was only discovered
in 2001 independently by Boneh and Franklin [BF01] based on the Weil Pairing on elliptic
curves, and by Cocks [Coc01] based on quadratic residues.

The usage of the identity as public key, and yet preventing adversaries to forge others
identities, is achieved through a different underlying trust model than when using certificates
to link an identity to a public key. For IBC the authenticity of a user is based on the trust
in a central authority that issues the keys of all users. Only secret keys, that match the
identity of a user and were issued by the PKG are valid.

Thus an identity-based cryptosystem differs to a PKI based one in this ways:

1. In IBC there is a central authority called Private Key Generator (PKG). Its function
is to verify the identity of a user, and then generate and distribute the individual secret
key for all users. It guarantees the trustworthiness of all users.

2. Instead of a self generated key pair consisting of public key and private key, each user
has a unique identity that he uses as public key, and receives a secret key matching
this identity from the PKG. This identity can be any string and could range from an
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IP or email address to an office number in a company. The only condition is that in
the given context it is uniquely associated with a user.

There exist Identity-based Encryption (IBE) and Identity-based Signatures (IBS). In both
cases the PKG uses given domain parameters to create its own asymmetric key pair during
the so-called setup of the system. This is called the Master Key Pair (MKP), consisting
of a Master Secret Key (msk) and a Master Public Key (mpk) with the latter one being
public. The secret keys of all users will be based on this master key pair.

Setup() = (msk,mpk)

Furthermore, each user must have a unique attribute assigned to him, his so-called identity
id. This id can also be a tuple of attributes.

4.2.1 Identity-based Encryption

Identity-based Encryption (IBE) is defined by four steps, the setup, and the key extraction
performed by the PKG, and the encryption and decryption used by the users. Figure 4.7
gives an overview of IBE.

Figure 4.7: Identity-based Encryption

1. Setup: The PKG chooses the domain parameters and generates the MKP as described
before.

2. Key Extraction: Each member of a group has a unique identity id. For encrypted
communication a secret key skid is required that matches this id.

The calculation of skid by the PKG is called key extraction. In this process, a user
must authenticate himself, then the PKG uses the msk to create the secret key skid
that matches the users id and sends it back to the user over a secure channel. The id
and the received secret key skid complement each other to a asymmetric key pair.

ExtractKey(id,msk) = skid
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For example the id of a user Alice could be her name, idAlice = “Alice”. First she
authenticates herself towards the PKG. This can happen digitally, but also for example
in person with an ID card. The PKG then computes a secret key skAlice from idAlice

with the help of the msk and returns it only to Alice.

3. Encryption: To encrypt a message m for another user his identity id and the public
mpk is used. Instead of the public key in an asymmetric encryption scheme the id is
converted from string to bytes.

Enc(m, id,mpk) = c

Regarding the example, Bob can encrypt his message m with Alice’s idAlice and send
the resulting cipher c to her.

4. Decryption: To decrypt a cipher c, the recipient must use his secret key skid.

Dec(c, skid) = m

Alice can decrypt the cipher c using her skAlice resulting in the original message m.
The decryption will only work if her idAlice was used for encryption and if her skAlice

was generated with the msk matching the during encryption used mpk. In other words
skAlice has to been issued by the PKG.

4.2.2 Identity-based Signatures

Also Identity-based Signatures (IBS) can be constructed and are defined by four steps, the
setup and the key extraction performed by the PKG the same way as for IBE, and the
signing and verification used by the users. The process is illustrated in Figure 4.8.

Figure 4.8: Identity-based Signatures

1. Setup: This is the same as for IBE.

2. Key Extraction: This is the same as for IBE.
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3. Signing: A user uses his secret key skid for signing. With his skid he encrypts a hash
of his message m. The result is the signature σ.

Sign(m, skid) = σ

Assuming Alice wants to sign a message m, she encrypts the hash h(m) with her secret
key skAlice, receiving the signature σ.

4. Verification: To verify a signature σ was made for message m by user with id,
additionally the mpk is needed to prove, that the user is trusted by the PKG. The
verifier decrypts σ using the identity id and the mpk. If resulting plaintext of σ and
h(m) are the same he accepts the signature as valid. Of course verification can be
successful only if the skid used to generate the signature is matching id and if it was
generated by the msk corresponding to the used mpk.

verify(σ, id,mpk,m) ∈ {True, False}

In case Bob wants to verify Alice’s signature σ of the message m, he first computes
the hash h(m). Then he decrypts σ using the mpk and idAlice. If this result has the
same value as h(m), then he accepts the signature as valid. It really was generated by
Alice and signs the message m.

4.2.3 IBS with Elliptic Curves

Different to many other paring-based IBS on elliptic curves like [BF01] and [BLMQ05], D.
Galindo and F. Garcia [GG09] designed an Identity-based Signatures scheme in 2009, adapt-
ing Schnorrs signatur scheme [Sch91]. It uses a Schnorr signature of a user’s id, generated by
the PKG, as user secret key. The user then signs by creating a Schnorr scheme of his mes-
sage together with the signature of the PKG. This procedure is therefore called concatenated
Schnorr signature. Figure 4.9 shows the overall procedure.

For the IBS, the PKG creates a key pair for elliptic curve Schnorr signatures, as presented
in section 4.1.4. In addition to the domain parameters D = (p, a, b,G, n = q) of ECC, two
hash functions are agreed on.

Setup() :

msk : msk ∈ Z∗
q

mpk : MPK = msk ∗G ∈ G
H1 : G× {0, 1}∗ → Zq

H2 : {0, 1}∗ ×G× {0, 1}∗ → Zq

To create a user’s private key skid, the PKG generates a random integer r ∈ Z∗
q = {1, ..., q−

1}, and multiplies this to the generatorG. The result point R = r∗G ∈ G becomes part of the
secret key skid. To hide the id in the key, first the hash of R together with the id is generated
usingH1, then multiplied withmsk and added to r. The result s = (r+H1(R, id)∗msk) ∈ Z∗

n

is also part of the secret key skid. As can be seen, the secret key is similar to a Schnorr
signature of the id generated with the master secret key. The secret key consists of the tuple
skid = (s,R).

27



4 Background

Figure 4.9: Galindo-Garcia Identity-based Signature on elliptic curves

ExtractKey(id,msk) :

r
$← Z∗

q

R = r ∗G
h1 = H1(R, id)

s = r +msk ∗ h1 mod q

skid = (s,R)

The signature of a message m ∈ {0, 1}∗ is similar to the key extraction. An x ∈ Z∗
q is

sampled and multiplied on the generator G, resulting in a new point X, from which x can
no longer be derived according to ECDLP. Then, using H2, a hash of the id, the point X
and the message m onto Zn is generated. Following the Schnorr scheme, this hash h2 is
multiplied to the integer s of the secret key and added to x. Thus the resulting z contains
information about the x, the id, the message m and the s of the secret key skid = (s,R).
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The signature consists of the tuple σ = (z,X,R).

Sign(m, skid) :

x
$← Z∗

q

X = x ∗G
h2 = H2(id,X,m)

z = x+ s ∗ h2 mod q

σ = (z,X,R)

Note that the part R of the secret key is allowed to be exposed to the public. It thus
serves a similar function as a classic public key, but does not have to be authenticated by a
certificate chain. Instead, its authenticity can be verified with the help of the MPK.

To verify the signature σ = (z,X,R), first the two hash functions used during the key
extraction and signing procedure are recalculated, using the id of the supposed author and
parts of the signature. The result h′1 is multiplied to the MPK and added to the received
R. This result is multiplied with h′2 and then added to the point X. The signature is valid
if this result is equal to z ∗G.

Verify(σ, id,MPK,m) :

h′1 = H1(R, id)

h′2 = H2(id,X,m)

z ∗G ?
= X + h′2 ∗ (R+ h′1 ∗MPK)

The verification works if the message m during signing and verification was the same and
if the id used to generate the secret key skid is the same as the id used to sign and the id
used to verify the signature. In other words, it verifies, that the real author of the message
is the believed author. Otherwise the hash functions would not result in the same integers
and the following equation would no longer hold.

X + h′2 ∗ (R+ h′1 ∗MPK) = X +H2(id,X,m) ∗ (R+H1(R, id) ∗MPK)

= X + h2 ∗ (R+ h1 ∗MPK)

= X + h2 ∗ (r ∗G+ h1 ∗msk ∗G)

= X + h2 ∗ (r + h1 ∗msk) ∗G
= x ∗G+ h2 ∗ s ∗G
= (x+ h2 ∗ s) ∗G
= z ∗G

If a user is not trusted by the PKG anymore, there has to be a mechanism to make this
verification equation not true anymore. This is discussed in the next section.

4.3 Related Work on Revocable Identity-based Signatures

In cryptography, key revocation means that a key should no longer function, i.e., signatures
with this key should no longer be valid because the verification is no longer successful. This
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may be necessary if a user is not trusted anymore, or if the signing key of a trusted user is
leaked, and thus its generated signatures are not trustworthy anymore.

Contrary to PKI based signatures, where validity of participants is verified through cer-
tificates and certificate revocation lists, IBC relies on mathematical revocation mechanisms
that cause the verification process to fail [BGK08]. Because the public key of a user is his
unique id, and therefor can not be chosen newly after compromise, this is necessary. This
mathematical revocation is complex for IBS, because signing keys are justified by the Master
Key Pair (MKP) and are valid as long as they match the current MKP. Thus no single sign-
ing key can be verified, without changing the MKP, which then causes a necessary reissuing
of all non-revoked signing keys to match the new MKP.

This chapter outlines how mathematical revocation can be achieved for IBS, leading to
so-called Revocable Identity-based Signatures (RIBS).

A basic idea, introduced with the first Identity-based signature scheme by Boneh and
Franklin, suggests to append a validity period to the identity string [BF01]. Depending on
the particular use case this validity period can for example be the date. Then a signature
is only valid if (id || date) works as id parameter during verification. If the signing key was
issued for another date, thus the key extraction was performed for (id || other-date), the
verification will automatically fail, without any communication between verifier and another
instance needed. The validity period can be changed to any value, but has to be set for all
IBS participants in advance, and all signing keys will automatically only work until end of
the validity period. Thus the advantage of IBS not needing certificate verification remains.
Nevertheless, as the main disadvantage of this procedure, the PKG has to issue new keys
for all participants at every new validity period, e.g. daily. Additionally each user has to
authenticate himself again, and a secure channel between the PKG and each user has to be
ensured to distribute the new keys. Alternatively the PKG can distribute the new keys by
encrypting them with the old master key pair and identity of the former validity period for
each user and publishing it for all non-revoked users [BGK08]. In both cases the workload
for the PKG, i.e., the generation and secure distribution of the keys increasing linearly with
the number of non-revoked users, causes a huge bottleneck.

Another disadvantage is that a compromised key, even if known before, remains valid until
the validity period expires, because without certificate authentication no knowledge-based
revocation mechanisms are implemented. Furthermore, the original owner cannot easily get
a substitute for secure communication until the end of the validity period, such as generat-
ing a new public key in a PKI setting, because his ID is unique and he cannot just create
any new unique identity until the time expires - since the valid identity for signing remains
unique. Therefore the entire IBS setting would have to be updated to a new MKP.

In [BGK08] Boldyreva, Goyal and Kumar still use the idea of Boneh and Franklin to mod-
ify the identity to contain a validity period, but computational work of the PKG is decreased
logarithmic to the number of non-revoked users without user-PKG interaction needed. To
achieve this, they combine fuzzy IBE with binary tree data structures to remain at loga-
rithmic complexity. In a nutshell, it uses a binary tree to assign attributes to each user,
with those they can decrypt the fuzzy IBE. This way the computational work for calculating
the new keys is only logarithmic to the number of non-revoked users, although individually
encrypted. Yet, a computational overhead for the PKG, all in all larger than in the approach
of Boneh and Franklin [TT12], remains.
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Tseng and Tsai present in [TT12] how key revocation over public channels is possible.
Therefore the private key of every user consists of two components, an initial secret key that
will remain the same for all validity periods, and a time update key, which is periodically
recalculated by the PKG and is allowed to be public, because it only complements the initial
secret key to a valid key. Together they allow all features of IBC. This way, the need for
an encrypted channel between the PKG and the users after the initial key distribution is
eliminated, and computational effort for both the PKG and the users is decreased.

Guggemos introduces the idea of a Key Updatable Signature Scheme (KUSS), where again
revocation is performed by updating the signing and master keys, but using only a single
broadcast message for all signing key updates [Gug20]. Signing keys are newly issued for
validity periods, but the generation of each new signing key is shifted to the individual user,
remaining forward secure and secure after signing key exposures. Therefor the PKG selects
a secret update token ∆ and distributes it privately to all non-revoked users, using a bi-
nary tree data structure. Both the PKG and the users update their keys with respect to
∆, resulting in a valid IBS state without the revoked users. The size of the keys and the
complexity of signing and verifying stays the same. The number of private channels for the
transmission of the random parameter remains only logarithmic to the number of users, and
the PKG’s workload is decreased, since the key generation for each user is omitted [Gug20].
This procedure was conceptually proved on elliptic curves, and as central topic of this thesis,
it is explained in more detail in the next section 4.4.

All in all key revocation in IBC is realized by issuing keys only for certain validity periods.
The length of this periods can vary depending on the use case. To revoke a key, it simply
will not be re-issued for the next validity period. There are various different approaches
for distributing the new keys of a validity period, focusing on decreasing network load and
computational workloads for the PKG or the users. The process of re-issuing the signing
keys is also called key update.

4.4 Revocation with Key Updatable Signature Schemes

The in [Gug20] proposed Key Updatable Signature Scheme (KUSS) is a solution for key
revocation in IBS schemes, where the computational load of the PKG is offloaded on to the
users themselves. This way also the required network bandwidth is reduced, because not the
whole keys have to be communicated to the users.

This section introduces the general concept of KUSS and then gives a concrete example by
showing the Schnorr-like elliptic curve IBS from Galindo and Garcia converted to a KUSS.

4.4.1 Key Updatable Signature Scheme

As discussed in chapter 4.3, key revocation for IBS works by limiting the validity period of
keys to a fixed period of time. This means that revoked members and leaked signing keys
automatically lose their validity at the end of such a period. The mathematical procedure
of verification simply does not work for them anymore, and the revoked members of the IBS
do not receive new valid keys anymore. Unfortunately this forces the PKG to generate new
keys for all non-revoked users at the beginning of each new validity period and distribute
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them to each user via private channels. This leads to a computational bottleneck at sides of
the PKG, and due to the encrypted distribution of all new keys also to higher network load.

The idea of KUSS was proposed by Guggemos in [Gug20] and presents a structure of
transforming IBS that are constructed on cyclic groups in three steps into more efficient
revocable Identity-based Signatures.

The transformation is based on the premise that the PKG chooses a random new master
key pair when updating all keys at the beginning of a new validity period. A validity period
or epoch is referenced with e, thus the next following epoch is e+ 1.
Regarding IBS on cyclic groups G, for key updates following the naive procedure of [BF01],

randomly a mske+1 is chosen from Z∗
|G| and the master public key mpke+1 = mske+1 ∗ g is

calculated by multiplying it to the generator g ∈ G of the group. Now, according to the
Latin Square property [Gug20], choosing a random element of a group as the new mske+1

is equivalent to choosing a random parameter ∆ and multiplying it on a known element of
the group, for example the mske. Both results are random. Due to the closure of a group,
and the uniformly distributed probability of reaching any other element of a cyclic group,
the result ∆ ∗mske = mske+1 is also a valid random new master secret key, equivalent to
a totally randomly sampled one. In the case that the master public key is a product of the
master secret key, multiplying ∆ to mpke yields the to mske+1 corresponding mpke+1, since
mpke+1 = mske+1 ∗ g = ∆ ∗mske ∗ g = ∆ ∗mpke.

Update() :

∆
$← {1, ..., |G| − 1} or Z∗

|G|

mske+1 = ∆ ∗mske

mpke+1 = ∆ ∗mpke

uske+1 = ∆ ∗ uske

Although this new approach of not choosing the new master key pair completely randomly
but updating it by a random parameter leads to the same result as the naive approach,
this different procedure has a big advantage. Since the user signing keys usk, in many
cryptosystems contain a product of themsk and the generator g, the parameter ∆ is sufficient
to update the uske as well, with uske ∗∆ = uske+1. By distributing only the new parameter
∆ to the non-revoked users, they can update their usks themselves to match the new master
key pair. Consequently, the PKG no longer has to calculate the usks itself and then send the
entire key encrypted to each user. It is sufficient if it only transmits the update token ∆ to all
non-revoked users. This can even be done logarithmically to the number of non-revoked users
by using Logical Key Hierarchy (LKH) or Centralized Authorized Key Extension (CAKE)
keying mechanisms [Gug20][GSK+18]. Because the products of ∆ and the old keys remain
elements of G, the size of the msk, mpk and usks, and therefor the signature size, remains
the same. Thus, the computational workload of the PKG and the network load are reduced,
because signatures stay at same size while only the small update token ∆ ∈ Z∗

|G| has to be
broadcasted to all users, and no longer all different usks. A possible downside of the scheme
is that the signature and verification, although remaining at the same complexity, may have
to be changed slightly.
During this mechanism revocation is happening automatically. The users who shall no

longer be part of the IBS, or who illegally use a leaked key, do not receive the update token
∆ and therefore cannot calculate the correct uske+1. This is only holding if ∆ can not be
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derived from the public mpke and mpke+1 = ∆ ∗mpke. For example for elliptic curves this
is the case because of the ECDLP.

This is the underlying idea of KUSS, used to different extends depending on the properties
of the originating IBS. In some cases, as for example for the IBS of Galindo and Garcia not
all keys are updated, and therefore the gsk is still needed during verification.

Guggemos presents a technique of transforming an IBS on cyclic groups into a KUSS in three
steps, all reducing the computational effort of the PKG and the network traffic. The first step
is to transform the IBS into a Two Key Signature Scheme (2KSS), where every epoch a new
symmetric group shared key gsk is additionally used during signature creation and signature
verification. The second is to make updates of this gsk possible to limit trustworthiness of
a key to epochs, resulting in an Updatable Two Key Signature Scheme (U2KSS). And the
last step is the Key Updatable Signature Scheme (KUSS), where the gsk is included in the
usk,mpk and msk, so that it is used passively during signing and verifying. Note that the
use case of [Gug20] was managing group IBS, explaining why the shared secret is called group
shared key. This thesis adapts his method for key revocation after epochs, by changing the
gsk with every new epoch and treating the entire IBS users as group members.

Two Key Signature Scheme (2KSS) The idea is to prove validity of a user, by including
a shared secret gsk into signing and verifying processes as extension to the asymmetric keys.
This secret changes with every new epoch e + 1 and has to be distributed to all IBS users.
Although it can be broadcasted, it has to be encrypted with at least logarithmic complexity
to the number of non-revoked users. This way the PKG does not have to update the MKP
and all usks and the former bottleneck is eliminated. An IBS is transformable into a 2KSS
if the gsk is chosen in such way that it can be included in the mathematical signing process,
resulting in a same sized signature as before. Also it must stay as secure as before.

Updatable Two Key Signature Scheme (U2KSS) To update the gsk, instead of distribut-
ing it newly for every epoch, an update token ∆ is broadcasted. This way the security is
increased because the gsk only has to be distributed once, and the network load during an
update is decreased from the size of gsk to the size of ∆. The update token ∆ is generated
by an instance called Key Update Center (KUC) and privately send to the PKG and all
non-revoked users. They update the group shared key gske+1 = ∆ ∗ gske. The broadcast
message and the signing and verification process remain the same as for 2KSS. By updating
the gsk with a secret ∆, forward security and post compromise security is achieved.

Key Updatable Signature Scheme (KUSS) To construct a KUSS from a U2KSS, the gsk
is included in the asymmetric keys usk, mpk and optionally the msk. This way users can
sign and verify without explicitly using the gsk, because it is included in the keys. It remains
updatable by an update token ∆. By multiplying ∆ to the keys, the same effect is achieved
as if ∆ was multiplied to gsk as done in the U2KSS, and then included in the keys. This
enables verification without confidential knowledge of an gsk, because it is included in the
public mpk. Further the distribution of the gsk to new users is obsolete, because the PKG
includes it in the usk during key extraction. The transformability condition which must hold
for this step is, that usk and gsk must be part of the signing process, and this part must be
precomputed independently of the message. This way the PKG can include gsk in the usk
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already during the extract key process, and the gsk itself does not have to be distributed
to the users. The same must hold for gsk and the mpk during verification, such that a mpk
including the gsk can be used instead of both.

Following these transformation steps, four elliptic curve IBS schemes have been conceptually
proven to be convertible to more efficient KUSS in [Gug20]. One of them is the IBS of Galindo
and Garcia from section 4.2.3.

4.4.2 Example KUSS on Elliptic Curves

Galindo Garcia’s elliptic curve IBS has been introduced in chapter 4.2.3, for an overview
see figure 4.9. It is based on the hardness of ECDLP and uses Schnorr signatures on cyclic
groups. This section explains how it can be converted into a KUSS according to the three
steps from the previous section. In detail it is discussed how the key update works, and how
the signature and verification are changed due to the parameter ∆.

2KSS To convert the IBS into a KUSS a symmetric key gsk ∈ Z∗
q , shared between signer

and verifier, must be used in addition to the asymmetric keys. During signature creation
this key is multiplied to the former z, resulting in z = gsk ∗ (x+h2 ∗ s). It is also multiplied
during the verification, resulting in gsk ∗ (X ++h′2 ∗ (R+ h′1 ∗MPK)). The signature stays
the same, σ = (z,X,R).

The verification of the signature remains correct because the following equation is satisfied.

gsk ∗ (X + h′2 ∗ (R+ h′1 ∗MPK)) = gsk ∗ (x+ h2 ∗ s) ∗G = z ∗G

Thus, the verification is valid as long as it would have been valid within the IBS and the
same gsk was used for signing. As claimed, the security, signatures, and complexity of the
procedures remain the same.

U2KSS To convert the 2KSS to a U2KSS, the gsk must be updatable by an update token
∆. Because Z∗

q is a cyclic group, a random ∆ ∈ Z∗
q can be multiplied to the gsk, with

the new gsk behaving as if chosen randomly, according to the Latin Square Property. The
signature and verification can remain as for 2KSS.

gske+1 = ∆ ∗ gske

KUSS The KUSS is constructed from the U2KSS by integrating the gsk into the msk for
key extraction, into the usk for signing and into the MPK for verifying. This can then be
updated by the token ∆. Figure 4.10 shows its overall procedure.
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Figure 4.10: Elliptic curve KUSS based on the IBS by Galindo and Garcia (see figure 4.9).
The key updates are marked in red.

To make the keys updatable for each epoch e, a gske ∈ Z∗
q is included in the master public

key, by defining it MPKe = gske ∗msk ∗ G. In the case of this IBS the msk ∈ Z∗
q is not

containing the gsk, because else verification will not work.

Setup() :

gsk0
$← Z∗

q

msk : msk ∈ Z∗
q

mpk : MPK0 = gsk0 ∗msk ∗G ∈ G
H1 : G× {0, 1}∗ → Zq

H2 : {0, 1}∗ ×G× {0, 1}∗ → Zq

During key extraction the gske is included in the usk, by multiplying it on the value of s,
leading to se = gske ∗ (r+msk ∗h1). The usk is therefor the tuple (gske ∗ s,R) and matches
the secret gske in the MPKe.

35



4 Background

ExtractKey(id,msk, gske) :

r
$← Z∗

q

R = r ∗G
h1 = H1(R, id)

se = gske ∗ (r +msk ∗ h1) mod q

uskid = (se, R)

At the beginning of each new epoch e+1 an update token ∆e+1 ∈ Z∗
q is chosen randomly

by the KUC, and distributed to the PKG and all users. According to the Latin Square
property, the result of ∆e+1 ∗ gske = gske+1 is also a random element of Z∗

q , and fulfills the
same properties as a randomly chosen gske + 1 would.

To update the gske in the MPKe, the PKG multiplies ∆e+1 to MPKe, because ∆e+1 ∗
MPKe = ∆e+1 ∗ gske ∗msk ∗G = gske+1 ∗msk ∗G = MPKe+1. Although MPKe+1 and
MPKe are public, the parameter ∆ remains secret, since according to ECDLP the reduction
of MPKe ∗∆ = MPKe+1 to ∆ is hard.

The users update the gske in the se of their usk by multiplying ∆e+1 to se. This leads to
∆e+1 ∗ se = ∆e+1 ∗ gske ∗ (r +msk ∗ h1)) = gske+1 ∗ (r +msk ∗ h1)) = se+1 mod q.

Update() :

∆e+1
$← Z∗

q

gske+1 = ∆e+1 ∗ gske mod q ∈ Z∗
q

MPKe+1 = ∆e+1 ∗MPKe ∈ G
usk = (∆e+1 ∗ se mod q ∈ Z∗

q , R ∈ G)

After the update all users now have valid keys, sufficiently equal to those that would have
been calculated and distributed by the PKG with a completely randomly chosen MKP. The
keys remain the same size, and the signing can be performed exactly as in the original IBS.

Sign(m, skid) :

x
$← Z∗

q

X = x ∗G
h2 = H2(id,X,m)

ze = x+ se ∗ h2 mod q

σ = (ze, X,R)

The verification for this KUSS is modified slightly to use the gske, unless the value of
gske ∗ R is appended to the signature, but this would change the signature size. Otherwise
the gske is automatically used, because it is part of the MPKe.

Verify(σ, id,MPK,m) :

h′1 = H1(R, id)

h′2 = H2(id,X,m)

ze ∗G
?
= X + h′2 ∗ (gske ∗R+ h′1 ∗MPKe)
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The verification is only possible if id and m are the same as during signing, and if the gsk
in se, ge and MPKe is the same. Only then the following equation holds.

X + h′2 ∗ (gske ∗R+ h′1 ∗MPKe) = X +H2(id,X,m) ∗ (gske ∗R+H1(R, id) ∗MPKe)

= X + h2 ∗ (gske ∗R+ h1 ∗MPKe)

= X + h2 ∗ (gske ∗ r ∗G+ h1 ∗ gske ∗msk ∗G)

= X + h2 ∗ gske ∗ (r + h1 ∗msk) ∗G
= x ∗G+ h2 ∗ se ∗G
= (x+ h2 ∗ se) ∗G
= ze ∗G

The benefit of this process is that computation and network traffic is reduced significantly,
leading to an overall complexity of signing key revocation of 2 log n, with the PKGs former
computation time of 253ms reduced to 138ms [Gug20]. Achieving such improvements by
transforming other schemes into KUSS would be most valuable.

4.5 Summary

This chapter introduced the concept of Identity-based Signatures as alternative to certifi-
cate management, leading to the problem of expensive signing key revocation, and a smart
solution was found in the Key Updatable Signature Scheme (KUSS). By introducing el-
liptic curve cryptography, the concept of IBS and KUSS was explained by examples with
Schnorr-like IBS on elliptic curves.
Because of the benefits of Identity-based Cryptography and key revocation through KUSS

the goal of this thesis is to convert a lattice-based IBS to a KUSS. Beside forward- and post-
compromise security, this will additionally achieve quantum resistance, since lattice-based
cryptography is still expected to be quantum safe.
The next chapter gives an overview about Lattices and introduces a couple of crypto-

graphic primitives on lattices, starting with the simplest, and step by step leading to an IBS
scheme. The transformability of this lattice-based IBS scheme into a KUSS will then be
investigated.
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This chapter is intended to provide a broad overview of lattice-based cryptography. There-
fore, first the definition of lattices, their properties and their subgroup of q-ary lattices are
presented. Next, their computational hard problems, which make cryptography on lattices
possible in the first place, are outlined. Finally, a number of cryptographic primitives using
lattices are presented, starting with hash functions, private and public key encryption, over
trapdoor functions and digital signatures that are generated with them, up to IBE and IBS.
The intention is to give the reader a feeling for the functionality and underlying security of
lattice-based cryptography and to allow an easier step-by-step understanding of lattice-based
IBS, which is important regarding the desired transformation into KUSS in chapter 6.

5.1 Lattices

The following chapter gives an overview on the mathematical concept of lattices, including
it’s definition, properties and problems. It is based on [CCSKK15], [ZG15] and [Pol11],
whereby the last one is recommended as best introduction for beginners. Besides, Simons
Institude provides good introduction videos to lattices with [Vai15b] and [Mic20].

Definition A lattice is a set of regularly arranged points in Euclidean vector space Rn. It
is a discrete subgroup of (Rn,+) and closed over addition and subtraction. Usually a lattice
is defined by a matrix A. Here holds:

For a lattice Λ in n-dimensional space Rn, be given a set of n generating vectors ai ∈ Rn.
This set {a1, ..., am ∈ Rn} is also written as a matrix A ∈ Rn×m, where each column of A is
a generating vector. If all vectors ai are linearly-independent the matrix is also called basis
matrix B. In this case m ≤ n.

The lattice Λ is then defined by A as follows:

Λ(A) = Λ(a1, ..., am) =
{ m∑

i=1

xiai | xi ∈ Z
}
=

{
Ax | x ∈ Zm

}
A lattice Λ thus consists of all points that can be reached with an integer linear combination

of its generating vectors.
The resulting lattice can be interpreted as a set of points or as a set of vectors. E.g., the

point (1, 4) ∈ Z2 is equivalent to the vector

(
1
4

)
∈ Z2.

Figure 5.1 shows different lattices in two-dimensional space Z2. The basis vectors are
represented by purple arrows, each element of the lattice by a gray dot. Notice that each
lattice point can be reached by a combination of the basis vectors, and that all lattice points
form a regular pattern.
As mentioned, a lattice is only a subgroup of an euclidean space Rn. It does not have

to use the whole euclidean space, meaning it does not have to have the same number of
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(a) B =

(
1 0
0 1

)
creates Z2 (b) B =

(
4 −3
1 2

)
(c) B =

(
2
1

)
Figure 5.1: Different lattices Λ(B) ⊆ Z2, defined by different B.

dimensions as the space it is defined in. Thus the number of linear independent vectors in
A can be smaller than n, i.e it always holds rank(A) ≤ n.

Figure 5.1c shows a lattice defined by a basis B ∈ Z2×1 over the space Z2, i.e., m < n.
The basis B ∈ Z2×1. Thus the resulting lattice consists only of linearly dependent vectors,
slangy one could say it consists of one linearly-independent vector.

The same lattices Λ can be described by an infinite number of different basis vectors. This
means that the basis associated with a lattice is not unique.

The simplest way to generate a generating matrix A′ for a given lattice Λ(A) is to permute
the generating vectors of Λ, which means to swap the columns of the matrix A, or to invert
the direction of at least one vector, i.e., a′i = −1 ∗ ai. Both ways the lattice Λ stays the
same.

For a given basis matrix B ∈ Rn×m one can graphically select a new basis by selecting
m lattice points, that span a parallelepiped, which does not contain further lattice points.
By reducing the angle between the points, arbitrary long vectors can be chosen. Figure 5.2c
might help imagining this.

Figure 5.2 shows the same lattice defined by different basis vectors.

(a) B =

(
3 1
1 2

)
(b) B =

(
1 2

−3 −1

)
(c) B =

(
5 6
5 7

)
Figure 5.2: The same lattice Λ(B) ⊆ Z2, defined by different B.
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5.1.1 Properties of Lattices

Lattices have different properties that help to define problems over them. A selection of
those being relevant for cryptography is given here.

Fundamental Region The fundamental region of a lattice is the parallelepiped generated
by its basis vectors. It is spanned by the dotted grey lines in figures 5.9c and 5.9b.

Its volume V ol can be calculated with the determinant of B [Pol11].

V ol(Fundamental-RegionB) = |det(B)|

Given the same lattice Λ created by two different basis B1 and B2, the fundamental region
is different, but its determinant and hence its volume is staying the same.

Fundamental-regionB1 ̸= Fundamental-regionB2

V ol(Fundamental-regionB1) = V ol(Fundamental-regionB2)

The volume of the fundamental region can be used to proof that two lattices are not the
same. Further it gives an orientation about the density of a lattice. The greater the volume
of the fundamental region, the less dense is the lattice.

Minimum distance and Successive Minima The minimum distance of a lattice Λ is denoted
by λ1(Λ) and is the length of the shortest non-zero vector in Λ. This is similar to the smallest
distance between any two different vectors v, w ∈ Λ.

More general, the ith successive minimum λi(Λ) is the smallest radius r around the origin
containing i linearly-independent vectors in Λ.

Figure 5.3: The minimum distance λ1 and the 2nd successive minimum λ2 of a lattice [Mic20]

For both, the minimum distance and the successive minima, no efficient algorithm is known
for higher n-dimensional spaces. This is known as the Shortest Vector Problem (SVP) and
discussed in section 5.2.

Distance Function Given a lattice Λ ∈ Rn, the distance of a point t ∈ Rn and Λ is defined
as the euclidean distance between t and the next closest lattice point v ∈ Λ [Pol11]. This
means if t ∈ Λ, then dist(t,Λ) = 0.

dist(t,Λ) = min(∥t− v∥) v ∈ Λ
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Covering radius The covering radius ρ of a lattice Λ ∈ Rn is the largest distance a point
t ∈ Rn can have to any lattice point [GMR04].

ρ(Λ) = max(dist(t,Λ))

It can be geometrically imagined as spheres around every lattice point of which the radii are
increased. The radius of the spheres at the moment when the whole space Rn is covered is
the covering radius. It gives an orientation about the density of a lattice.

Dual Lattice The dual lattice Λ∗ of a lattice Λ ∈ Rn is defined as follows [Pol11]:

Λ∗ = {x ∈ span(Λ) ⊆ Rn : ∀v ∈ Λ, ⟨x, v⟩ ∈ Z}

This means it is the set of all vectors x in span(Λ) whose scalar ⟨x, v⟩ is an integer, for all
v ∈ Λ. For example the dual of the n-dimensional integers (Zn)∗ = Zn, because all scalars
are integers as well.
Figure 5.4 shows a random two dimensional lattice in black and its dual in red. As you

can see, the dual of a random lattice looks like a mess and accordingly it is hard to calculate.

Figure 5.4: A random lattice and its dual [Mic20]

Here are the properties of the dual of a lattice Λ. To avoid confusion, here the symbol · is
used instead of ∗ for multiplication.

• (Λ∗)∗ = Λ

• the dual of a rotated lattice Q · Λ is (Q · Λ)∗ = Q · (Λ∗)

• the dual of a scaled lattice q · Λ is (q · Λ)∗ = 1
q · Λ

∗

• Λ1 ⊆ Λ2 ⇐⇒ Λ1
∗ ⊇ Λ2

∗

• If B is a basis of lattice Λ, then (B−1)⊺ = B∗ is a basis of its dual lattice Λ∗.

A dual lattice Λ∗ can be seen as something close to an inverse to Λ.
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5.1.2 Q-ary Lattices

Cryptography is build on q-ary lattices, also called modular lattices. This q-ary lattices
are defined on the integers, and therefor this section defines q-ary lattice not abstractly over
the euclidean space Rn, but directly on Zn. Note that the definitions can be applied to any
space with modular multiplication defined. For references see [MR09] and [Pol11].

Given q ∈ Z often chosen as prime number or prime power, a q-ary lattice Λ of dimension
n satisfies the equation:

qZn ⊆ Λ ⊆ Zn

This means any q-ary lattice is an infinite subset of the former introduced lattices Λ ⊆ Zn.
And it contains at least all points in space that are multiples of q. In general, it can be said
that if vectors x, y ∈ Zn satisfy x ≡ y (mod q), then x ∈ Λ if and only if y ∈ Λ.

Given a matrix A it can generate two important q-ary lattices. One, where the kernel of
A forms the q-ary lattice Λ⊥

q (A), the other q-ary lattice Λq(A) contains the image produced
by A.

Kernel q-ary Lattices This q-ary lattice Λ⊥
q (A) ⊆ Zm, also called Ajtai lattice, is defined

by a q ∈ Z and a basis matrix A ∈ Zn×m
q as followed. Note that the q-ary lattice is a subset

of the space Zm, contrary to the non-modular lattices Λ(A) ⊆ Zn. Figure 5.5 shows the sizes
of the matrices.

Λ⊥
q (A) = {x ∈ Zm : A ∗ x = 0 (mod q)}

This way the lattice is defined by the columns of the basis matrix. The q-ary lattice contains
all vectors, which multiplied with the basic matrix result in a multiple of q. This means that
the basis vectors are combined in such a way that the reached point is a multiple of q in
each dimension. This ‘combination‘ is a m-dimensional vector in the q-ary lattice set. Non
square matrices always generate Λ and Λq in different spaces.

Figure 5.5: Matrix multiplications for calculating the q-ary lattice

For example, let q = 6 and A =

(
4 1
0 3

)
be given. One vector in Λ⊥

q (A) could be
(
7 8

)⊺
,

calculated as follows. (
4 1
0 3

)
∗
(
7
8

)
=

(
36
24

)
=

(
0
0

)
= 0 (mod 6)

Figure 5.6 shows examples for q-ary lattice Λ⊥
q (A) as red dots. The grey dots show Zm,

which is the superset of any q-ary lattice.
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(a) Λ(A) (b) Λ⊥
5 (A) (red) and Λ1

5(A) (yel-
low)

(c) Λ⊥
6 (A) (red) and Λ3

6(A) (yel-
low)

Figure 5.6: Kernel q-ary lattices for A =

(
4 1
0 3

)

Similarly to the previous definition, this q-ary lattice can also be defined by including all
vectors that create not multiples of q, but results that are exactly u greater than multiples
of q.

Λu
q (A) = {x ∈ Zm : A ∗ x = u (mod q)}

These are exemplarily marked as yellow dots in figure 5.6.

Image q-ary Lattices A q-ary lattice can also be defined using the rows of a matrix A.
This Λq(A) is defined by a q ∈ Z and the matrix A ∈ Zn×m

q as following. Again the lattice
vectors are a subset of Zm and not Zn. Figure 5.7 shows the sizes of the matrices.

Λq(A) = {x ∈ Zm : x = A⊺ ∗ s (mod q), for some s ∈ Zn
q }

Here the set of vectors is generated by the rows of A, by using A⊺ as basis to define a new
lattice. The lattice set includes all vectors that are equivalent to this lattice’s points modulo
q.

Figure 5.7: Matrix multiplications for calculating the q-ary lattice

Another way to write this would be Λq(A) = {x ∈ Zm : x mod q = A⊺ ∗ s mod q}. This
means, this q-ary lattice Λq contains all vectors v that can be reached when the rows of the
matrix are used as basis vectors, and its multiples Z∗ q ∗v. Figure 5.8 shows how this subset
can be imagined geometrically. The green dots are elements of Λq(A).
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(a) Λ(A⊺) (b) Λ5(A) (c) Λ6(A)

Figure 5.8: Image q-ary lattices with A =

(
4 1
0 3

)

Again, let q = 6 and A =

(
4 1
0 3

)
be given. As example we randomly show the calculation

for s =
(
2 1

)⊺
. (

4 1
0 3

)
∗
(
2
1

)
=

(
9
3

)
=

(
3
3

)
(mod 6)

This proofs, that
(
3 3

)⊺
is part of Λ6(A), as well as

(
9 − 3

)⊺
and the set Zm ∗ 6 +(

3 0
)⊺

= {...,
(
−9 3

)⊺
,
(
−3 − 3

)⊺
,
(
3 − 3

)⊺
,
(
−3 3

)⊺
,
(
3 3

)⊺
,
(
9 3

)⊺
,
(
3 9

)⊺
,
(
3 15

)⊺
,(

9 15
)⊺

,
(
15 15

)⊺
, ...}, because they are all congruent modulo 6. This way a lattice is

constructed, that will repeat after at least q numbers. The example calculation has to be
repeated for all s ∈ Z2

5 to calculate the whole q-ary lattice.

Properties of q-ary lattices Q-ary lattices are used for cryptography, because they have
certain properties, which are summarized here.

First, in average the kernel q-ary lattice is getting less dense for a larger q, while the image
q-ary lattice is getting more dense.

Besides, for any lattice Λ the following equivalencies hold.

qZm ⊆ Λ ⊆ Zm ⇔ Λ = Λq(A) for some A ⇔ Λ = Λ⊺
q(A) for some A′

This means that all lattices that include qZn can be generated as q-ary lattice by some
matrix A ∈ Zn×m as image, and with some other matrix A′ ∈ Zn′×m as kernel, holding
Λq(A) = Λ = Λ⊺

q(A′). To build the same lattice Λ, A and A′ have to be different, because
it holds that for any fixed A, the lattices Λq(A) and Λ⊺

q(A) are different. This can also be
seen by comparing figures 5.6 and 5.8, that are both defined by the same A.

Further the q-ary lattices that can be constructed with the same A are q-scaled duals of
each other:

Λ⊥
q (A) = q ∗ Λq(A)∗

Λq(A) = q ∗ Λ⊥
q (A)∗
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5.1.3 Lattice Bases in Cryptography

This section intends to give the reader an abstract idea of how lattices can be used for
cryptography, before defining the problems in the following chapter.

Lattices contain an infinite set of vectors, thus it is not possible to list all elements of a
lattice. That is why lattices are not defined by the whole set, but by a basis matrixB ∈ Zn×m.
Given this, theoretically every vector in the lattice is defined, but with increasing dimensions
it is practically unfeasible to calculate the set of all combinations even in only a small range
of Zn. Figure 5.9a gives an impression on how much information about a lattice is provided,
if only some random basis vectors are given. It is hard to estimate where the lattice points
are, and difficult to work out, what combination of the basis vectors is nearest to the point t.
These are the fundamental problems that lattice-based cryptography is based on, and which
will be described more formal in the next chapter.

For now it shall be pointed out, that these problems are differently hard depending on the
given basis B.

For lattices it can be said, that long basis vectors ’hide’ the structure of the real lattice
and short vectors reveal the lattice. If a basis B is given it is easy to divide the space into the
parallelepipeds that are spanned by B. Given a random point t in space, the surrounding
parallelepiped can be calculated by solving the linear equation system B∗x = t and rounding
the result x off, resulting in the edge point of the surrounding parallelepiped. The figures
5.9b and 5.9c show this parallelepiped in grey. To approximate the closest lattice vector v
to the point t, the nearest corner point of the parallelepiped to t is chosen, marked in red.
This procedure is the basic idea of Babais Rounding Technique [Gal12] [Bab86]. As can be
seen in the figures 5.9b and 5.9c it solves the problem with an orthogonal and short basis,
while it returns a wrong “closest” lattice vector when using the long basis.

(a) Space with random basis (b) Rounding with long basis (c) Rounding with short basis

Figure 5.9: The properties of lattice basis

To solve the problem of finding the closest lattice vector a short basis is good, while a long
basis is bad. Solving this problem can be used for decryption. If information must be hidden
in the space, a long vector is good and a short one is bad. This property is useful for public
key encryption. Therefor both qualities are valuable for cryptography, if the problems are
average-case hard.
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5.2 Computational Problems on Lattices

In the following a few of the existing problems on lattices are introduced. In this context, first
the variants of the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP)
are presented, because their worst-case hardness proves the required average-case hardness
of the problems used for lattice-based cryptography. These are the surjective Short Integer
Solution (SIS) problem and the injective Learning With Errors (LWE) problem.

Shortest Vector Problem (SVP) The Shortest Vector Problem searches for the shortest
non-zero vector in a lattice. For higher dimensional lattices no polynomial time algorithm
is known yet. It is NP-hard. The exact definition is the following [Mic16].

Given a lattice Λ ∈ Rn, find a non-zero lattice vector v ∈ Λ\{0}
such that ∥v∥ ≤ ∥u∥, for any u ∈ Λ \ {0}.

As every lattice is infinitely periodic, there are infinite vectors with shortest length. Also
it shall be recalled, that the shortest length is the first successive minimum λ1, hence the
SVP asks for calculating the successive minima of a lattice.

γ-Approximation of SVP (SVPγ) The γ-Approximation of SVP asks for a non-zero lattice
vector with a length smaller than γ∗λ1, for a fixed γ ≥ 1. This problem is a weakend definiton
of SVP and has polynomial time solutions up to some γ-boundary. The exact definition is
the following [Mic16].

Given a lattice Λ ∈ Rn, find a non-zero lattice vector v ∈ Λ\{0}
such that ∥v∥ ≤ γ ∗ ∥u∥, for any u ∈ Λ \ {0} and γ ≥ 1.

Although the problem with γ = 1 (SVP) is NP-hard, for SVPγ it is possible to raise the
limiting factor until a solution is found. Indeed it can be solved for γ = ( 2√

3
)n with n being

the rank of the lattice [LLL82].

Decisional γ-Approximation of SVP (GapSVP) The Decisional γ-Approximation of SVP
is not about searching for the shortest vector, but deciding whether there is a shortest vector.
This decision is approximated for a parameter gamma. The exact definition goes as follows
[Pol11].

Given a lattice Λ ∈ Rn a r ∈ R and γ ≥ 1, return True if
λ1(Λ) ≤ r and return False if λ1(Λ) > γ∗r. If r < λ1(Λ) ≤ γ∗r
True and False can be returned.

The GapSVP is NP hard for a constant γ.

Shortest Independent Vectors Problem (SIVP) The Shortest Independent Vectors Prob-
lem asks for the set of linearly independent vectors, that spans the whole space of the lattice,
and of which none is larger than a given parameter. It is defined as follows [Pol11].
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Given a lattice Λ ∈ Rn with rank d and γ ≥ 1, find the set
of linearly independent vectors v1, ...vd satisfying max(vi) ≤
γ ∗ ∥λd(Λ)∥

This problem is weaker than calculating the d successive minima, because all d vectors can
be smaller or equal the dth successive minimum, and none must be for example ≤ γ∗∥λ1(Λ)∥.
Besides, they do not have to form a basis of the lattice Λ. The SIVP is hard for γ = n

1
log(logn)

[BS99].

Closest Vector Problem (CVP) The Closest Vector Problem searches for the closest lattice
vector to a given point in space. The exact definition is the following [Mic16].

Given a lattice Λ ∈ Rn and a target point t, find a lattice
vector v ∈ Λ such that ∥v − t∥ ≤ ∥u− t∥, for any u ∈ Λ.

Figure 5.9 illustrates the problem. There is no polynomial time algorithm known yet for
solving this problem for higher dimensions. It is worst-case hard.

There exist γ-Approximation of CVP (CVPγ) and Decisional γ-Approximation
of CVP (GapCVP) with definitions similar to the ones for γ-Approximation of SVP and
Decisional γ-Approximation of SVP, but not relevant for this thesis. For further information
it is referred to [Mic16] [Pol11] and [AR05].

5.2.1 Short Integer Solution (SIS)

The Short Integer Solution problem or Small Integer Solution problem is an average-case
hard problem which has been introduced in [Ajt96]. This average-case hardness is based on
the worst-case hardness of SVPγ . Therefore cryptography based on SIS has the advantage
of being proven secure, as described in section 3.2.
Unlike the former problems on lattices, SIS is defined on q-ary lattices. It asks for a short

non-zero lattice vector in the kernel q-ary lattice Λ⊥
q (A) as defined in section 5.1.2. In one

line it states:

Λ⊥
q (A) = {x ∈ Zm : A ∗ x = 0 (mod q)} ⇒ Finding short x is hard

The exact definition is the following [MR07] [Pol11].

Given a matrix A ∈ Zn×m
q with m ≥ n, prime integer q and a

real γ, find a nonzero vector x ∈ Zm \ {0}, such that A ∗ x = 0
mod q and ∥x∥ ≤ γ

This definition is almost the same as the SVPγ in Λ⊥
q (A) but is only average-case hard.

To be sure, that a solution vector x exists at all, the parameters must hold m ≥ n ∗ log(q)
and γ ≥

√
m ∗ q

n
m [MR07].

As small example, solving a SIS problem would be finding a short vector x ∈ Z3 solving
following equation. Because there are more columns than rows, the linear equation system
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presented is underdetermined (see section 2.2.2). There is more than one solution. It can
be imagined, that if n and m are sufficiently large, it is not possible to find a solution with
small integers among all the numerous possible ones.

SIS: Given

(
5 2 3
4 6 9

)
∗ x =

(
0
0

)
(mod 11) ⇒ Find short x

Inhomogeneous Short Integer Solution (ISIS) The Inhomogeneous Short Integer Solution
(ISIS) problem states, that it is hard to find a short non-zero vector x ∈ Zm solving A∗x = u
mod q [LDSH21]. This is equivalent to searching a non-zero short vector in the kernel q-
ary lattice Λu

q as defined in section 5.1.2. The vector u is also called syndrome of the ISIS
instance.

Λu
q (A) = {x ∈ Zm : A ∗ x = u (mod q)} ⇒ Finding short x is hard

This problem is a variation of SIS with the same properties and similar requirements for A
and γ. The distribution of A∗x = u mod q is statistically close to uniform over Zn

q [Vai15b].

5.2.2 Learning With Errors (LWE)

Another average-case hard problem is the Learning With Errors (LWE) problem or Search-
LWE. It’s average-case hardness is based on the worst-case hardness of the GapSVP and
SIVP [Reg09] and the SVP [Pei09]. A good description is provided in [Pol11].
Given a uniformly random matrix A ∈ Zn×m

q , with m > n, prime q ≥ 2 and an error
distribution χ over Zn

q with mean 0. LWE states it is hard to find a uniformly random
s ∈ Zn

q , if only A and the product A⊺ ∗ s+ e ∈ Zm
q is given of which e ∈ Zm

q are errors from
the distribution χ. Note that because all elements of the equation are from Zq, the addition
+ and the multiplication ∗ are modular as well without writing this explicitly. Nevertheless
in this summarizing equation of the LWE problem it is noted as reminder:

Given A and A⊺ ∗ s+ e (mod q) ⇒ Finding s is hard

Note that A⊺ ∗ s + e is the same as s⊺ ∗ A + e⊺. Further for the case m=1, this equation
is equal to ⟨s, a⟩+ e.

This problem is hard to solve if s and e are unknown. If one is derived, the other can easily
be calculated as well. If the errors are small enough, this problem is the same as finding the
next closest vector s in the image q-ary lattice Λq(A) from section 5.1.2.

In [Reg10] LWE is described in terms of linear equation systems. As in chapter 2.2.2, the
random matrix A⊺ ∈ Zm×n can be seen as a set of m linear equations with n unknowns.
With a multiplication A⊺∗s, where s ∈ Zn

q represents a random assignment of the unknowns,
the result is a vector v of which each element vi is the solution of the equation i with the
unknowns from s. The result of v = A⊺ ∗ s is therefore the solution of m linear equations,
and because m > n the unknowns s can be fully reconstructed from v and A using Gaussian
elimination. LWE now states that this is no longer possible if an error ei is added to each
result vi. The equation system gets inconsistent and Gaussian elimination is not possible
anymore. The vector e can be relatively small and is usually chosen randomly from a discrete
Gaussian distribution χ with an expectation µ = 0 and a standard deviation σ = α∗q√

2π
, where

α ∈ (0, 1) is a given parameter of LWE along with n and q. The parameters must be chosen
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such that α− q > 2
√
n so that LWE is average-case hard [Reg09]. The described properties

are the same for an arbitrary number of equations, thus the value of m can be arbitrary.
Therefore LWE can be defined as follows.

Given a random matrix A ∈ Zn×m
q , n ≥ 2, prime integer q, a

real α ∈ (0, 1) and arbitrary number of solutions of A⊺ ∗ s+ e,
where e is any vector from a distribution χ, find the s ∈ Zn

q .

As example on small numbers, solving LWE means to find the unknown s =
(
3 6

)⊺
, when

only A ∈ Z2×3
11 and A⊺ ∗ s+ e are given, whereby A⊺ ∗ s+ e, was calculated using the random

error e =
(
0 1 − 1

)⊺
as follows:

A =

(
5 2 3
4 6 9

)

A⊺ ∗ s+ e =

5 4
2 6
3 9

 ∗ (3
6

)
+

 0
1
−1


=

6
9
8

+

 0
1
−1


=

 6
10
7


LWE: Given

((
5 2 3
4 6 9

)
,
(
6 10 7

)⊺ ) ⇒ Find s =
(
3 6

)⊺
is hard

Decisional Learning With Errors (DLWE) The Decisional Learning With Errors (DLWE)
states that it is not only hard to recover the vector s ∈ Zn

q from A ∈ Zn×m
q and A⊺∗s+e ∈ Zm

q ,
but the result s⊺ ∗A+ e⊺ is not distinguishable from a uniformly random distribution. The
security of DLWE is equivalent to LWE if q is prime and q = poly(n) [Reg09]. This means:(

A, s⊺ ∗A+ e⊺
)
≈

(
A, b

)
, where b ∈ Zm

q is uniformly random

5.3 Cryptography with Lattices

Both problems, Short Integer Solution (SIS) and Learning With Errors (LWE), can be used
for one-way functions, because for both problems the generation of an instance is easy, but
solving it is proven average-case hard. That way lattices can be used for a wide range of
cryptographic applications1, including Identity-based Signatures.

Although lattice-based cryptography has larger key sizes than classical pre-quantum cryp-
tography, compared to other post-quantum cryptography it uses reasonable key sizes of for

1Examples are hash functions, pseudo-random generators, cryptographic hash functions, secret key and
public key encryption, signatures, identity-based and attribute-based encryption and signatures, oblivious
transfer and fully homomorphic encryption, fully homomorphic signatures, functional encryption and
program obfuscation.
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example a 2592 Byte public key for Dilithium5, providing the highest NIST Security Level
[BDK+21]. Further the implementation of lattice-based cryptography is easy and efficient,
because it is based on simple matrix arithmetic. Additionally it is parallelizable [BHWA22].
And another tremendous advantage of lattice-based cryptography is its so-far quantum resis-
tance. Neither for classical nor for quantum computers there is a polynomial time algorithm
known that can solve the underlying problems SIS and LWE. Due to the immense research
on error-corrected quantum computers, this advantage weighs a lot.

Because the mechanisms of lattice-based cryptography are similar for different primitives,
this section starts introducing the most basic ones, getting step by step more complex,
intending to make the understanding of the final concept of Identity-based Signatures more
intuitive.

Note that in the following, whenever arithmetic is performed on Zq the operation + is an
addition modulo q and the operation ∗ is a multiplication modulo q without needing this to
be written explicitly. Nevertheless it is stated in some equations to remind the reader of this
fact.

5.3.1 Ajtai’s Hash Function

Together with the Short Integer Solution (SIS) problem Ajtai introduced the first crypto-
graphic usage of lattices in [Ajt96]. This is a cryptographic hash function, the so-called Ajtai
Hash Function, based on the hardness of SIS.

For this, let a uniformly random matrix A ∈ Zn×m
q , with prime q and m > n ∗ log(q) be

given. The function hA : {0, 1}m → Zn
q is defined by:

hA(r) = A ∗ r (mod q)

As insecure example with small numbers we could calculate the hash of the number 5 with

the function parameters n = 2,m = 4, q = 7 and A =

(
5 1 4 2
6 3 2 1

)
. The binary value of 5 is

0101, therefor we set r to the value r =
(
0 1 0 1

)⊺
.

hA(r) = A ∗ r =

(
5 1 4 2
6 3 2 1

)
∗


0
1
0
1

 (mod 7) =
(
3 4

)

Figure 5.10 shows graphically what Ajtai’s Hash Function does, using the same values as
in the former example. The lattice is constructed on A as basis vectors, shown as purple
arrows. The hash value h(t) is marked as blue point. It can not easily be seen which other
input values would lead to the same point h(t).

Because m > n ∗ log(q), equivalent to 2m > qn where 2m is the number of possible inputs
and qn is the number of possible outputs of hA, the function is compressing. The input r
contains more information than the output hA(r).

The function is collision-resistant because of the following. Assuming there was a collision
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Figure 5.10: hA(
(
0 1 0 1

)⊺
) with A =

(
5 1 4 2
6 3 2 1

)

of r and r′, this would mean that hA(r) = hA(r
′).

hA(r) = hA(r
′)

A ∗ r = A ∗ r′ (mod q)

A ∗ r −A ∗ r′ = 0 (mod q)

A ∗ (r − r′) = 0 (mod q)

(5.1)

Because r and r′ ∈ {0, 1}m are short as they are only consisting of values 0 or 1, the distance
between both vectors must be small, bounded by

√
m ∗ 12 =

√
m. That is why finding the

vector r′ given the vector r would be the solution of the SIS problem, which is hard. So it is
also hard to find a r′ which would return the same hash value as r, and that is why Ajtai‘s
Hash Function is collision-resistant and a so-called One-way Function or surjective Trapdoor
Function.

5.3.2 Secret-Key Encryption

Symmetric encryption, also called secret-key encryption, uses the same key for encryption
as for decryption. Because symmetric encryption is less threatened by quantum computers
as public key encryption, a lattice-based secret-key encryption is due to its key sizes not
relevant in practice. But it helps to understand the concepts of the public-key encryption
schemes in the following sections. Therefore here the basic concept of secret-key encryption
with lattices is explained [Vai15b], and accompanied by small number examples. Figure 5.11
gives an overview of the scheme.

For secret-key encryption a uniformly random secret key s ∈ Zn
q is chosen, where q is

prime and n is the so-called security parameter. Additionally a publicly known uniformly
random a ∈ Zn

q is used.

secret key : s ∈ Zn
q
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Figure 5.11: Secret-key encryption of a bit

A single bit m ∈ {0, 1} can be encrypted as follows. Here a small random error e with
∥e∥ < q/4 ∈ Z is chosen from a distribution χ during encryption and deleted directly after,
because it is not needed for decryption.

Enc(m, s) : c =
(
a, b

)
with b = ⟨s, a⟩+ e+m ∗ ⌊q/2⌋ (mod q)

As mentioned in section 5.2.2, ⟨s, a⟩+ e is a LWE instance generated by a matrix a ∈ Zn×1.
Thus the encryption generates a LWE instance, with a small error vector e or a larger error
vector e +m ∗ ⌊q/2⌋ if m = 1. Note that the DLWE states that ⟨s, a⟩ + e looks uniformly
random. Thus this procedure mimics an information theoretically secure OTP encryption
(see section 3.1), by adding the message information stored in m ∗ ⌊q/2⌋ to the random
looking value of ⟨s, a⟩+ e, causing the result b to also look random. The vector a has to be
part of the resulting cipher because it is needed for decryption.
As example Alice picks the public parameters q = 7 and a =

(
4 3

)⊺
. Further she and

Bob share the secret key s =
(
2 6

)⊺
. For encrypting the message m ∈ 0, 1 she uses e = 1

and calculates the cipher c and sends it to Bob:

b = ⟨s, a⟩+ e+m ∗ ⌊q/2⌋

= ⟨
(
2
6

)
,

(
4
3

)
⟩+ 1 +m ∗ ⌊7/2⌋

= 2 ∗ 4 + 6 ∗ 3 + 1 +m ∗ 3
m=1
= 5 + 1 + 1 ∗ 3 = 2⇒ c =

(
a =

(
4
3

)
, b = 2

)
m=0
= 5 + 1 + 0 ∗ 3 = 6⇒ c =

(
a =

(
4
3

)
, b = 6

)
What this encryption does geometrically is shown in figure 5.12 using the same vectors

as in the former example. The scalar of the vectors s and a is defined by
{∑n

i=1 siai

}
and
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because ai ∈ Zq it is also a point in the lattice spanned by B =
(
4 3

)
(see the definition

of lattices in section 5.1). The basis vectors are shown as purple arrows and span a one-
dimensional q-ary lattice in Z7. All lattice points are marked as gray dots, marking a possible
result of a =

(
4 3

)⊺
times any possible secret s. The scalar ⟨s, a⟩ is marked as green point

x = 5, the random looking cipher of m = 0 being ⟨s, a⟩+ e is marked as blue point b0 = 6.
And the cipher of m = 1 being b1 = x′+ ⌊q/2⌋ = 2 is marked as red dot. It can be seen that
b0 nor b1 give any indication of the values of s or e if x was not known.

Figure 5.12: Encryption of m = 1 as one-dimensional lattice

Decryption uses the same secret key as for encryption:

Dec(a, b, s) : m = Roundq/2(b− ⟨s, a⟩) (mod q)

By subtracting the real value of ⟨s, a⟩ from b = ⟨s, a⟩+ e+m ∗ ⌊q/2⌋ one gets e+m ∗ ⌊q/2⌋,
which is either the small error e in the case the message was 0 or e+ ⌊q/2⌋, in the case the
message was 1. By rounding to q/2 we result in the sent message m ∈ {0, 1} because the
small e is insignificant.

Roundq/2(b− ⟨s, a⟩)
= Roundq/2((⟨s, a⟩+ e+m ∗ ⌊q/2⌋)− ⟨s, a⟩)
= Roundq/2(e+m ∗ ⌊q/2⌋)
≈ Roundq/2(m ∗ ⌊q/2⌋)
= m

In the case of Bob, for decrypting the cipher c =
( (

4 3
)⊺

, 6
)
he uses the public q = 7

and the same secret key s⊺ =
(
2 6

)
as Alice.

m = Roundq/2(b− ⟨s, a⟩)

= Round7/2(6− ⟨
(
2
6

)
,

(
4
3

)
⟩)

= Round3.5(6− 5)

= Round3.5(1)

= 0

He calculates the difference between part b of the cipher and the real value of ⟨s, a⟩, which
is 6− 5 = 1. The result 1 is nearer to 0 than to q/2 inside Z7. So the message is 0.

In case of c =
( (

4 3
)⊺

, 2
)
we get 6 − 2 = 4, which is nearer to 3.5 than to 0. The

resulting message is 1.

Figure 5.13 shows the regions of Z7 in which b would encode the message m = 0 in yellow,
and regions in which b would encode m = 1 in red. The green dot is x = ⟨s, a⟩ ∈ Z7 from
which the secret key s can be calculated.
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Figure 5.13: Decryption for s =

(
2
6

)
and a =

(
4
3

)

5.3.3 Regev Public-Key Cryptosystem

In 2005 it was demonstrated by Oded Regev in [Reg10] that lattices can also be used for
public-key encryption. An overview of the procedure is given in figure 5.14.

Figure 5.14: Public-key encryption of a bit

For public-key encryption, the previous secret-key encryption is extended. It is also based
on LWE and DLWE. The size of the parameters is a possible choice guaranteeing security
and correctness after [Reg10].

Again, an equally distributed random vector s ∈ Zn
q is used as secret key, with q being

prime, n ∈ Z being the security parameter and holding n2 < q < 2∗n2. A uniformly random
matrix A ∈ Zn×m

q and m = 1.1 ∗ n ∗ log(q) is chosen as part of the public key. An error
vector e ∈ Zm

q from a distribution χ with ∥e∥ < q/4 is used for public key generation. The
key pair is computed as follows:

secret key : s ∈ Zn
q

public key : (A ∈ Zn×m
q , b⊺ ∈ Z1×m

q ) with b⊺ = s⊺ ∗A+ e⊺

Part b⊺ of the public key can be seen as a symmetric encryption of m zeros. Note that
s⊺ ∗ A + e⊺ = A⊺ ∗ s + e (mod q), hence it is a LWE instance with small errors, that is
located around a lattice vector in Λq(A). Yet, to the public it looks like uniformly random,
according to DLWE.
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Suppose Alice chooses q = 13, the random uniformly distributed s =
(
2 9

)⊺
, A =(

2 12 8
5 9 10

)
and e =

(
0 1 − 1

)⊺
, her key is composed as follows. Note that the size of

q,m and n are not secure, but chosen for having an easier example.

secret key =

(
2
9

)
b⊺ = s⊺ ∗A+ e⊺

=
(
2 9

)
∗
(
2 12 8
5 9 10

)
+
(
0 1 − 1

)
=

(
10 1 2

)
+
(
0 1 − 1

)
=

(
10 2 1

)
public key =

((2 12 8
5 9 10

)
,
(
10 2 1

)
)

To encrypt a message m ∈ {0, 1}, the matrix A is multiplied with a random vector
r ∈ {0, 1}m, and b⊺ is multiplied with this r as well. Note that b⊺ ∗ r = ⟨b, r⟩. Similar
to symmetric encryption, the resulting b ∗ r is added to m ∗ ⌊q/2⌋. The resulting cipher is
composed of (A ∗ r, b⊺ ∗ r +m ∗ ⌊q/2⌋).

Enc(m,A, b) : c =
(
A′, b′

)
=

(
A ∗ r, b⊺ ∗ r +m ∗ ⌊q/2⌋

)
with r

$← {0, 1}m

By multiplying A with r, the sender selects random columns of the matrix, which he will
use to encode his message. Since the publicly known A∗r of the cipher cannot be decomposed
into r according to SIS, an adversary does not know which columns of A were chosen for
encryption. Because b looks random by itself, b⊺ ∗ r also looks random, and b⊺ ∗ r + ⌊q/2⌋
cannot be decrypted for the same reason as for symmetric encryption.
In case Bob sends the message m = 1 to Alice, he chooses for example the random vector

r =
(
1 0 1

)⊺
and computes the cipher as follows.

A′ = A ∗ r =

(
2 12 8
5 9 10

)
∗

1
0
1


=

(
10
2

)

b′ = b⊺ ∗ r +m ∗ ⌊q/2⌋ =
(
10 2 1

)
∗

1
0
1

+ 1 ∗ ⌊13/2⌋

= 11 + 6 = 4

c =
((10

2

)
, 4
)

To decrypt a cipher, the secret key s is used.

Dec(A′, b′, s) : m = Roundq/2(b
′ − s⊺ ∗A′)
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The decryption is working, even though r is unknown to the receiver and cannot be derived
from either A∗r nor b⊺∗r. This is because b⊺∗r is composed of (s⊺∗A+e⊺)∗r = (s⊺∗A∗r+e∗r).
Because A′ = A ∗ r is also sent as part of the cipher, the receiver only needs to multiply his
secret key by A ∗ r. Subtracting this result from b′ yields r ∗ e⊺ + m ∗ ⌊q/2⌋, of which the
error is small enough to discard it. Thus the receiver obtains the message m, encoded in
m ∗ ⌊q/2⌋, without needing to know what r has been, in other words, which columns of the
public key have been used to encrypt it.

b′ − s⊺ ∗A′ = (b⊺ ∗ r +m ∗ ⌊q/2⌋)− s⊺ ∗A′

= (s⊺ ∗A+ e⊺) ∗ r +m ∗ ⌊q/2⌋)− s⊺ ∗A ∗ r
= s⊺ ∗A ∗ r + e⊺ ∗ r +m ∗ ⌊q/2⌋ − s⊺ ∗A ∗ r
= e⊺ ∗ r +m ∗ ⌊q/2⌋
≈ m ∗ ⌊q/2⌋

To decrypt Bob’s message c = (A′, b′) = (

(
10
2

)
, 4) Alice must use her secret key s =

(
2 9

)
as following to obtain the original message m = 1.

m = Roundq/2(b
′ − s⊺ ∗A′)

= Round13/2(4−
(
2 9

)
∗
(
10
2

)
)

= Round6.5(4− 12)

= Round6.5(5)

= 1

This cryptosystem has the disadvantage, that all public keys are very close to the lattice
points of Λq(A), and therefor the possible public keys are very sparse. Hence this cryptosys-
tem is not reasonable for IBE, where every id is hashed to public key, because this is not
possible for such public keys [GPV08]. Therefore another public-key encryption scheme has
been invented.

5.3.4 Dual Public-Key Cryptosystem

The dual cryptosystem introduced in [GPV08] is another kind of asymmetric encryption
scheme on lattices. For dual encryption the keys are also based on a uniformly random matrix
A, but instead of being generated by an LWE one-way function, the key pair is generated with
an ISIS one-way function. This way the range and domain space are exchanged compared
to the Regev cryptosystem, and one can be sure that there are enough public keys. This
is also where the name “dual“ cryptosystem origins from. Its security is based on the ISIS
and DLWE problems. Figure 5.15 shows the overall procedure and all mechanisms are
accompanied with small number examples.

For key generation, a uniformly random distributed matrix A ∈ Zn×m
q is chosen, with q

being prime and m > 2 ∗ n ∗ log(q). The secret key is a small vector x ∈ Zm sampled from
a distribution DZm,σ. This Gaussian distribution is used to sample m-dimensional integer
vectors around 0 with a standard deviation of σ. For more details see [GPV08], but it is
enough to know that x is a small vector from x ∈ Zm. The public key consists of the matrix
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Figure 5.15: Dual encryption of a bit

A and the solution of the ISIS one-way function A ∗ x = u ∈ Zn
q , similar to Ajtai’s hash

function from section 5.10. Given u and A, x cannot be derived from them.

secret key : x ∈ {0, 1}m

public key : (A ∈ Zn×m
q , u ∈ Zn

q ) with A ∗ x = u

As a small number example, suppose Alice chooses q = 13, the random uniformly dis-

tributed x =
(
0 1 1

)⊺
and A =

(
2 12 8
5 9 10

)
, her key is composed as follows.

secret key =
(
0 1 1

)⊺
u = A ∗ x

=

(
2 12 8
5 9 10

)
∗

0
1
1


=

(
7
6

)
public key =

((2 12 8
5 9 10

)
,

(
7
6

)
)

To encrypt a message m ∈ {0, 1}, a random vector s ∈ Zn
q is chosen. The cipher then

consists of the tuple (b⊺ = s⊺ ∗ A + e⊺, b′ = s⊺ ∗ u + e′ + m ∗ ⌊q/2⌋). The first part is the
LWE problem based on A, looking random but containing s. The second part is the LWE
problem based on u, looking random but containing s and hiding the message m∗⌊q/2⌋) the
same way as in secret-key and public-key encryption. The result looks random, but contains
the information of the message m.

Enc(m,A, u) : c =
(
b⊺ = s⊺ ∗A+ e⊺, b′ = s⊺ ∗ u+ e′ +m ∗ ⌊q/2⌋

)
with s

$← Zn
q
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In case Bob sends the message m = 1 to Alice, he chooses a random vector in Z2
13, for

example s =
(
2 10

)⊺
. Additionally he uses the random small errors e =

(
−1 0 1

)⊺
and

e′ = −1 and computes the cipher with her public key as follows.

b⊺ = s⊺ ∗A+ e⊺ =
(
2 10

)
∗
(
2 12 8
5 9 10

)
+
(
−1 0 1

)
=

(
2 10 12

)
+
(
−1 0 1

)
=

(
1 10 0

)
b′ = s⊺ ∗ u+ e′ +m ∗ ⌊q/2⌋ =

(
2 10

)
∗
(
7
6

)
− 1 + 1 ∗ ⌊13/2⌋

= 9− 1 + 6

= 14

c =
( (

1 10 0
)
, 14

)
To decrypt the cipher c = (b⊺, b′), the receiver multiplies the secret key x to the first part

of the cipher and subtracts the result from the second part of the cipher. This decryption
works in the same way as symmetric encryption, except that instead of a shared vector s
the product vector of A ∗ x hides the secret.

Dec(b′, b⊺, x) : m = Roundq/2(b
′ − b⊺ ∗ x)

The message m is hidden in the random looking b′ = s⊺ ∗ u+ e′ +m ∗ ⌊q/2⌋. To contain
this information one would have to subtract (s⊺ ∗ u + e′ + m ∗ ⌊q/2⌋) − (s⊺ ∗ u + e′), and
because firstly s is unknown and therefore s⊺ ∗u cannot be calculated directly, and secondly
s⊺ ∗A+ e⊺ is given, the necessary subtraction can only be done with the knowledge of x, as
shown here.

b′ − b⊺ ∗ x = (s⊺ ∗ u+ e′ +m ∗ ⌊q/2⌋)− (s⊺ ∗A+ e⊺) ∗ x
= s⊺ ∗ u+ e′ +m ∗ ⌊q/2⌋ − s⊺ ∗A ∗ x+ e⊺ ∗ x
A∗x=u
= s⊺ ∗ u+ e′ +m ∗ ⌊q/2⌋ − s⊺ ∗ u+ e⊺ ∗ x

= e′ +m ∗ ⌊q/2⌋+ e⊺ ∗ x
≈ m ∗ ⌊q/2⌋

Because the errors are small, by rounding to q/2, the original message can be restored to
0, for a result close to 0 or q, or to 1, for a result close to q/2.

In our example Alice would decrypt Bob’s message c =
( (

1 10 0
)
, 14

)
by using her secret

key x =
(
0 1 1

)⊺
as following to receive the original message m = 1.

m = Roundq/2(b
′ − b⊺ ∗ x)

= Round13/2(14−
(
1 10 0

)
∗

0
1
1

)

= Round6.5(14− 10)

= Round6.5(4)

= 1
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5.3.5 Preimage Sampleable Trapdoor Functions

Another cryptographic primitive that can be implemented using lattices are trapdoor func-
tions, that allow an easy way to construct digital signatures and IBE. They were first
invented on lattices in [GPV08], based on an earlier work of Ajtai [Ajt99].

Trapdoor Functions are, similar to hash functions, easy to compute in one direction and
difficult in the other. But unlike hash functions, for trapdoor functions there is a secret, the
so-called trapdoor T , which can be used to easily compute the difficult reverse computation,
the preimage.

Lattices allow the construction of trapdoor functions based on LWE and on ISIS. This
means the one-way function of LWE and ISIS can be inverted if a secret trapdoor is known.
In the following it is first shown how the DLWE and LWE problems can be solved with
a given Type 1 Trapdoor. Then the concept of a Gadget Matrix to generate trapdoors is
introduced. Finally it is explained how the Gadget Matrix can be used to create Type 2
Trapdoors that can solve ISIS as well. The following outlines the concept from [GPV08].
Also the lecture notes were used for understanding [Vai15a], [Vai15c] and [VG15] can be
recommended.

Type 1 Trapdoors for solving LWE So suppose we are given a vector y ∈ Zm
q , and a matrix

A ∈ Zn×m
q . The y looks random, so we don’t know if it is actually a random vector, or if it

is an LWE sample with the given matrix A, i.e., y = s⊺ ∗A+ e⊺.

Now, if we knew a short vector t ∈ Λ⊥(A) ⊂ Zm
q for which holds A ∗ t = 0 mod q, we

could determine whether y is an LWE sample with the matrix A. This means we can solve
Decisional Learning With Errors (DLWE). The for this required vector t is nearly impossible
to derive from the matrix A, according to SIS. This vector t is our trapdoor for DLWE, this
means only if we know t, we can solve DLWE for A.

So, in summary, it is given:

y ∈ Zm
q

?
= s⊺ ∗A+ e⊺ A ∈ Zn×m

q short t ∈ Zm
q , solving A ∗ t = 0 mod q

The DLWE problem is solved by calculating the scalar of y and the trapdoor t. If y is just
random, the result of ⟨y, t⟩ = y⊺ ∗ t is also random. But if y is a LWE sample of the matrix
A, then the result is small since a small error vector multiplied to a small vector t results in
a small product.

y⊺ ∗ t = (s⊺ ∗A+ e⊺) ∗ t
= s⊺ ∗A ∗ t+ e⊺ ∗ t

A∗t=0
= s⊺ ∗ 0 + e⊺ ∗ t
= e⊺ ∗ t is small

Thus, the result e⊺ ∗ t lets us solve DLWE, but we cannot recover the error e yet. For this, t
would have to have an inverse in Zq (for n-dimensional inverses see chapter 2.2.2). To achieve
this, instead of a vector t, we need a matrix T that is a short basis for Λ⊥(A). Therefor,
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given A ∈ Zn×m
q , TA has to satisfy the following properties:

• TA ∈ Zm×m
q

• ∥TA∥ is small

• A ∗ TA = 0 mod q with 0 = 0n×m

• TA has rank m over Z

Since the matrix T is full-rank, it is invertible, though only in the space Z and not Zq.
Nevertheless we can find a T−1

A , so that TA ∗ T−1
A = Idm = 1. This allows us to reconstruct

the error e.

y⊺ ∗ TA = (s⊺ ∗A+ e⊺) ∗ TA

= s⊺ ∗A ∗ TA + e⊺ ∗ TA

A∗TA=0
= e⊺ ∗ TA

TA∗T−1
A =1

=⇒ e⊺ ∗ TA ∗ T−1
A (No modular multiplication because T−1

A ∈ Zm×m)

= e⊺

Since the matrix A consists of more columns than rows, we can also calculate its right-
inverse A−1

right. With this inverse and the already reconstructed error e, we can recover s,
and have broken LWE.

e⊺
=⇒ y⊺ − e⊺ = (s⊺ ∗A+ e⊺)− e⊺

= s⊺ ∗A
A∗A−1

right=1
=⇒ s⊺ ∗A ∗A−1

right = s⊺

In conclusion, if we have a generating matrix A and an associated trapdoor matrix TA

given, we can use LWE as a trapdoor function now. But the remaining difficulty is that
the matrix A must be randomly distributed, and after SIS the computation of an associated
trapdoor T is impossible - otherwise everybody could compute the trapdoor and it would
not be a trapdoor anymore. This problem is solved by generating A and a corresponding
trapdoor in one go - using a special gadget.

The Gadget Matrix for Sampling a Trapdoor Pair To generate the desired random matrix
A together with its corresponding trapdoor, a full-rank and uniformly distributed matrix G
is used, for which the corresponding trapdoor TG is already known. It is called the Gadget
matrix. As reminder, this matrix cannot be chosen directly as the matrix A because it is
not uniformly random, and further its trapdoor is not secret. However, we can use it to
sample a matrix A and its trapdoor. How and why this works is explained in this and the
next paragraph.
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The gadget matrix G ∈ Zn×nlogq is defined by the horizontal vector g.

g =
(
1 2 4 8...2⌈logq⌉−1

)
∈ Z1×logq

q

G = g ⊗ Idn ∈ Zn×n∗logq
q

=


g 0 · · · 0
0 g · · · 0
...

...
. . .

...
0 0 · · · g



=


1 2 4 · · · 2⌈logq⌉−1 0 0 0 · · · 0 · · · 0 0 0 · · · 0

0 0 0 · · · 0 1 2 4 · · · 2⌈logq⌉−1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
. . .

...
...

...
...

...

0 0 0 · · · 0 0 0 0 · · · 0 · · · 1 2 4 · · · 2⌈logq⌉−1



The gadget matrix G is a binary recomposition matrix. If binary : Zq → {0, 1}logq is a
function that returns the binary composition of its input as vector, G can do the following
with xi < q.

G ∗ b =

x1
...
xn

 for b =

binary(x1)
...

binary(xn)



For example, given x1 = 1, x2 = 6, x3 = 5 and q = 7

G ∗ b =

1 2 4 0 0 0 0 0 0
0 0 0 1 2 4 0 0 0
0 0 0 0 0 0 1 2 4

 ∗



1
0
0
0
1
1
1
0
1


=

1
6
5
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The to G corresponding trapdoor TG looks as follows.

TG = Tg ⊗ Idn ∈ Zn×n∗logq
q

=


Tg 0 · · · 0
0 Tg · · · 0
...

...
. . .

...
0 0 · · · Tg



with Tg =



2 0 0 · · · 0
−1 2 0 · · · 0

0 −1 2
. . .

... binary(q)
...

. . .
. . .

. . . 0
... · · · 0 −1 2
0 · · · 0 0 −1


∈ Zlogq×logq

q

As an example, chosen q = 7 we can prove that TG is the trapdoor of G.

G ∗ TG =

1 2 4 0 0 0 0 0 0
0 0 0 1 2 4 0 0 0
0 0 0 0 0 0 1 2 4

 ∗



2 0 1 0 0 0 0 0 0
−1 2 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 2 0 1 0 0 0
0 0 0 −1 2 1 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 −1 2 1
0 0 0 0 0 0 0 −1 1


(mod 7)

=

0 0 7 0 0 0 0 0 0
0 0 0 0 0 7 0 0 0
0 0 0 0 0 0 0 0 7

 (mod 7)

= 0 (mod 7)

Tg is short, its length is
√
5 or O(

√
logq), and since its determinant det(Tg) ̸= 0 it is also

full-rank over Z, though not over Zq. From this it follows that also TG is short, full-rank
over Z, and additionally lies in the nullspace of G, which means G ∗ TG = 0 mod q. Hence,
it holds that TG is a trapdoor of G.

As a resume of this paragraph, we can use G and TG to solve a LWE sample y = s⊺ ∗G+e
mod q exactly as explained in the previous paragraph, only that A = G and TA = TG.
However, this does not help us directly because G is not random, and in addition the
trapdoor TG is public knowledge. However, we can now use G and TG to construct a
uniformly randomly distributed A with a corresponding trapdoor.

Type 2 Trapdoors for solving LWE and ISIS To revert LWE and ISIS our trapdoor re-
quirements can be changed a little. To accomplish our goals, we will also suffice with a
trapdoor matrix R that, when multiplied by the random matrix A, yields our gadget ma-
trix G. This allows us to convert our LWE sample respective matrix A to an LWE sample
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respective matrix G, and then solve this with our trapdoor TG. Why and exactly how this
works is explained in this paragraph.
Besides it should be mentioned that instead of G and TG we could use any other equal

dimensional matrix G′ of which we know a trapdoor T ′
G. However, the matrix G is very

well suited for this purpose because of the easy to compute power-of-2 calculations and the
simple binary recomposition concept.
As before, our new pair of matrices consists on the one side of a linearly independent

uniformly random distributed matrix A, and on the other side of the trapdoor matrix R,
that is small and thus can not be calculated from A according to ISIS. But now R has to
satisfy the following equation, where G is the Gadget matrix from the former paragraph.

A ∗R = G (mod q) and ∥R∥ is small

When A and the corresponding R are known, DLWE can be solved by multiplying the
trapdoor R onto the LWE-sample y = s⊺ ∗ A + e. In this way the random matrix A is
transformed to the structured matrix G, for which the trapdoor is known. The error of the
LWE sample is also changed, but due to e and R being small, the product e∗R = e′ remains
small as well. The DLWE problem can now be decided for the new LWE sample y′ with
respect to G, in the same way as in the first paragraph, using the trapdoor TG from the
second paragraph. If y′ is small, then y was a LWE sample with respect to A.

Transform A to G =⇒ y⊺ ∗R = (s⊺ ∗A+ e⊺) ∗R
= s⊺ ∗A ∗R+ e⊺ ∗R

A∗R=G
= s⊺ ∗G+ e⊺ ∗R
= s⊺ ∗G+ e′⊺

= y′

Solve DLWE regarding G =⇒ y′⊺ ∗ TG = (s⊺ ∗G+ e⊺) ∗ TG

= s⊺ ∗G ∗ TG + e′⊺ ∗ TG

G∗TG=0
= s⊺ ∗ 0 + e′⊺ ∗ TG

= e′⊺ ∗ TG is small

Further it is possible to solve the LWE problem from the former result. To do so, we
reconstruct the error e′ of our y′ as before. If this is known we can reconstruct s as well.

y′⊺ ∗ TG = e′⊺ ∗ TG

Calculate e′
TG∗T−1

G =1
=⇒ e′⊺ ∗ TG ∗ T−1

G (mod q)

= e′⊺

Reconstruct s
e′

=⇒ y⊺ − e′⊺

= (s⊺ ∗G+′ e⊺)− e′⊺

= s⊺ ∗G
G∗G−1

right=1
=⇒ s⊺ ∗G ∗G−1

= s⊺
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Thus the matrices A and R are sufficient for a trapdoor function based on LWE. However,
with their help we can also solve the ISIS problem A ∗ x = u mod q. Therefore we have to
proceed the other way round.

Given a solution x′ for the ISIS problem G ∗x′ = u (mod q) regarding G, we can multiply
R on the left side of the solution. This product R ∗ x′ = x is also small, because R and x′

are small, and it solves the ISIS problem in respect to A, because A ∗R = G mod q.

u = G ∗ x′

= A ∗R ∗ x′

R∗x′=x
=⇒ u = A ∗ x

And because G is the binary decomposition matrix, a possible solution for x′ is easy to
find. For this, the row concatenation of the results of the binary function from paragraph
5.3.5 can be used for each element of v. This vector consists only of 0 and 1, is accordingly
short and results multiplied with G in the vector v, as shown in the previous paragraph.

In summary, for lattice-based trapdoor functions we do not necessarily need a pair of
matrices A and TA, satisfying A ∗TA = 0 mod q, which is mathematically hard to find. It’s
enough to know a pair A and R, for which A ∗R mod q = G is true. How to generate this
is quite simple and works as follows.

Sampling Trapdoors We want to find a pair of matrices A ∈ Zn×m0+nlogq
q and R ∈

Zm0+nlogq×nlogq
q that satisfies A ∗ R = G mod q, for G ∈ Zn×nlogq

q . At the same time the
matrix A must be uniformly random, while the length of R must be small. Therefore we first
choose a linear independent equally random distributed matrix A0 ∈ Zn×m0 . In addition,
we sample a matrix R0 ∈ {0, 1}m0×nlogq with Bernoulli(12) probability. Our final matrix A
is then composed of the columns of A0 concatenated with the result of −A0 ∗R0 +G. And
R is selected as concatenation of the rows of R0 and the identity matrix Idnlogq.

A0
$← Zn×m0 R0

$← {0, 1}m0×nlogq

A =
(
A0 −A0 ∗R0 +G

)
R =

 R0

Idnlogq


Because the elements of A0 multiplied with those of R0 are erased by the sum of −A0 ∗R0

in −A0∗R0+G, the product A∗R mod q yields the gadget matrix G. Figure 5.16 illustrates
the size and composition of the matrices.

With this procedure, uniformly random matrices A along with a corresponding trapdoor
can be generated for LWE or ISIS trapdoor functions. And although A is public, the secret
trapdoor R cannot be computed from −A0∗R0+G according to the ISIS problem, the result
of −A0 ∗R0 +G is even looking statistically random.

5.3.6 Full-Domain Hash Signatures

The trapdoor functions presented in the previous chapter make it possible to implement
further cryptographic primitives with lattices. The simplest of these are digital signatures
according to the hash-and-sign paradigm, which were also presented in [GPV08].
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Figure 5.16: The Matrix A and its trapdoor R

Here, the message to be signed is hashed into the value space of an ISIS trapdoor function,
and the trapdoor function’s preimage of the hash is used as the signature. This signing
mechanism is also called Full-Domain Hash (FDH). The verifier can then check the signature
by applying it to the trapdoor function and proving that the message originates from the
owner of the trapdoor. This way, the trapdoor function f serves as public key, and the
inverse function f−1 with the help of the trapdoor as signing key.

This section describes how this signature scheme on lattices is working. Figure 5.17 shows
an overview of the procedure.

Figure 5.17: Lattice-based FDH Signatures

For the signature keys, a trapdoor function is generated, meaning that a pair of matrices
A and TA is generated, for which A ∗ TA = G mod q holds, according to paragraph 5.3.5.
The public key then is the trapdoor function fA(x) = A ∗ x mod q, the signing key is the
inverse function f−1

A (TA, y) = SolveISIS. SolveISIS refers to the ISIS solution procedure
from chapter 5.3.5. The set of small solution vectors that solve ISIS is denoted with Dn =
{x : ∥x∥ ≤ σ∗ω

√
logm} ⊂ Zm

q . For more details about the parameters σ, ω see [GPV08], but
it is enough to know that all elements from Dn are small enough to generate ISIS instances.
In addition, as public parameter a hash function H : {0, 1}∗ → Zn

q exists that maps any
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message to the value space of the trapdoor function fA.

public key : fA(x) = A ∗ x mod q fA : Zm
q → Zn

q

signing key : f−1
A (TA, y) = SolveISIS f−1

A : Zn
q → Dn ⊂ Zm

q

H : {0, 1}∗ → Zn
q

To sign a message m, its hash H(m) is computed. The signature σ is the preimage of the
trapdoor function for this hash, which is a small vector x ∈ Dn satisfying A ∗ x = H(m).
This can only be computed using the trapdoor TA, i.e., only by the owner of the public key
fA who is the creator of the matrix pair A, TA.

Sign(m,TA,) : σ = f−1
A (TA, H(m))

Verifying a signature works simply by solving the public trapdoor function of the claimed
author for σ and checking if ∥σ∥ is small enough to be an ISIS instance, hence if x ∈ Dn. If
the result is small and equal to the hash of the message, the owner of the public key created
the signature.

Verify(σ,m,A) : H(m)
?
= fA(σ) = A ∗ σ mod q

∥σ∥
?
∈ Dn ⇔ ∥σ∥

?
= small

The verification can be accomplished by simple matrix-vector multiplication and is an
example of what makes lattice-based cryptography that promising. Besides this signature
scheme enables lattice-based IBE.

5.3.7 Identity-based Encryption

Identity-based Encryption was introduced also in [GPV08]. It uses ISIS trapdoor functions
from section 5.3.5 for the key extraction, and for the encryption it uses the dual public-key
encryption scheme from section 5.15. For an introduction to Identity-based Cryptography
(IBC) see chapter 4.2. Figure 5.18 gives an overview of the scheme.

For the IBE scheme, the PKG generates a trapdoor function fA with matrices A ∈ Zn×m
q

and the corresponding TA, according to chapter 5.3.5. A is used as master public key MPK
and TA ∈ Zm×nlogq=k

q , as master secret keyMSK. In addition, the system requires a publicly
known hash function H : {0, 1}∗ → Zn

q that maps any string to the result space of the ISIS
problem A ∗ x = u mod q. Thus, every id can be mapped to an ISIS syndrome u.

Setup() :

MPK : A ∈ Zn×m
q

MSK : TA ∈ Zm×k
q with A ∗ TA = G mod q and ∥TA∥ is small

H : {0, 1}∗ → Zn
q

The private key skid of a user is computed using the trapdoor TA. For this, the PKG solves
the ISIS problem fA(x) = A∗x mod q = H(id) as described in section 5.3.5. Thus the result
is from the set Dn ⊂ Zm that contains all short vectors x solving A ∗x mod q = H(id), and
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Figure 5.18: Lattice-based Identity-based Encryption

is chosen as skid. Hence, the skid is a FDH signature of the id signed by the PKG. For FDH
signatures see section 5.3.6.

ExtractKey(id) : f−1
A (TA, H(id)) = skid ∈ Dn ⊂ Zm

To send a message m ∈ {0, 1} to a user with identity id, the dual cryptosystem from
section 5.3.4 is used, except that the public key u is the result of H(id). Thus, the cipher
consists of the tuple c = (b⊺, b′).

Enc(m, id,A) : c =
(
b⊺ = s⊺ ∗A+ e⊺, b′ = s⊺ ∗H(id) + e′ +m ∗ ⌊q/2⌋

)
with s

$← Zn
q

For decryption also the procedure of the dual cryptosystem is used, whereby the secret
key skid is used as x.

Dec(b′, b⊺, skid) : m = Roundq/2(b
′ − b⊺ ∗ skid)

For an explanation of why the dual cryptosystem works, as long as A ∗ x = u mod q and
∥x∥ is small, see chapter 5.3.4. The usage of the Regev Public-Key Encryption from chapter
5.3.3 is not possible, because there would be less possible public keys, and so a function H
could not be realized [Vai15b].
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5.3.8 Lyubashevsky Signatures

Another signature scheme was presented by Lyubashevsky in [Lyu12]. It has average-case
security based on the worst-case hardness of SIVP, and it has similarities to Schnorr signa-
tures [Sch91] and the elliptic curve Schnorr signature scheme from section 4.1.4. Figure 5.19
gives an overview of the signature scheme.

Figure 5.19: Lattice-based Lyubashevsky Signatures

For the key pair, a small sized matrix S ∈ {−d, ...0, ...d}m×k is chosen as the secret key.
The elements of S all have absolute values smaller than a parameter d. Thus the matrix
consists of k short vectors from Dn ⊂ Zm

q . The public key consists of a uniformly random
matrix A ∈ Zn×m

q and the product of A and S, named U . Based on the ISIS assumption, the
small sized S cannot be reconstructed from A and U , and remains secret. Additionally a hash
function is used, that maps binary values to short vectors from {v : v ∈ {−1, 0, 1}k ∧ ∥v∥ ≤
κ} ⊂ Zk

q . For the size of the constant κ see [Lyu12], but it is enough to know that the results
of the hash function are short.

secret key : S ∈ {−d, ...0, ...d}m×k such that ∥S∥ is small

public key :
(
A ∈ Zn×m

q , U = A ∗ S ∈ Zn×k
q )

H : Zn
q × {0, 1}∗ → {v : v ∈ {−1, 0, 1}k ∧ ∥v∥ is small}

To sign a message m ∈ {0, 1}∗, a random but short vector x ∈ Zm is sampled from
a distribution DZm,σ̃. This Gaussian distribution is used to sample small m-dimensional
integer vectors with a standard deviation of σ̃. For more details see [Lyu12], but it is enough
to know that x is a small vector from x ∈ Zm. Then, typical for Schnorr signatures, this
x is hidden in the public part A and hashed together with the message m to the value
h ∈ Zk. The short h is multiplied to the short secret key S and the short x is added to the
product. This is done without modulo reduction. The result, called z, together with h form
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the signature σ = (z, h).

Sign(m,S) : x
$← DZm,σ̃ ⊂ Zm

q

h = H(A ∗ x,m)

z = x+ S ∗ h without mod q

σ = (z, h)

To verify the signature σ the part A of the public key is multiplied to z. Then U is
multiplied to h, and subtracted from the previous result. The hash of this together with
the apparent message m must equal h. Additionally the length of z must be smaller than
η ∗ σ̃ ∗

√
m for the signature to be valid, because only then one can be sure, that the original

small S was used during signing. Otherwise an adversary could have generated some larger
S′ satisfying the equation A∗S′ = U which is not hard, and signed in the name of the owner
of the public key A,U . For details about the constant η see [Lyu12].

Verify(σ,m,A,U) : h
?
= H

(
A ∗ z − U ∗ h,m

)
∥z∥

?
< η ∗ σ̃ ∗

√
m

The verification works as long as the same message m, public key A and secret key S are
used for signing and verifying, because only then the following equation holds.

H(A ∗ z − U ∗ h,m) = H(A ∗ (x+ S ∗ h)− U ∗ h,m)

= H(A ∗ x+A ∗ S ∗ h− U ∗ h,m)

= H(A ∗ x+ U ∗ h− U ∗ h,m)

= H(A ∗ x,m)

= h

5.3.9 Identity-based Signatures

As the final stage of this lattice-based cryptography chapter the focus of this thesis, the
Identity-based Signatures (IBS) on lattices have been reached. These were developed some
years after IBE, for example in [Rüc10], [THY13] or [LHZL13], all using the trapdoors from
[Vai15b] and lattice basis delegation [CHKP12] to generate the signing keys.

The idea of Tian and Huang in [TH14] requires only trapdoor functions with lattices to
generate the signing keys. It uses the FDH signatures from section 5.3.6 to create the user
secret keys, and the signatures are following the Lyubashevsky signature scheme from section
5.3.8. Figure 5.20 shows the overall procedure.

The IBS requires a trapdoor function from chapter 5.3.5, where A ∈ Zn×m
q is used as

master public key MPK, and TA ∈ Zm×nlogq=k
q as master secret key MSK. It must hold,

that m > 5∗nlogq and q ≥ 3 is prime. In addition, a hash function H1 : {0, 1}∗ → Zn×k
q that

maps any string to a matrix, and a hash functionH : {0, 1}∗ → {v : v ∈ {−1, 0, 1}k∧∥v∥ ≤ η}
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Figure 5.20: Lattice-based Identity-based Signatures

that maps any string to a short vector with length of at most the constant η ∈ N, is needed.

Setup() :

MPK : A ∈ Zn×m
q

MSK : TA ∈ Zm×k
q with A ∗ TA = G mod q and ∥TA∥ is small

H1 : {0, 1}∗ → Zn×k
q

H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}k ∧ ∥v∥ is small}

To assign a private signing key skid to a user with identity id, the PKG calculates the
hash H1(id) and solves the ISIS problem A ∗ xi = ui mod q for all i = 1, ...k columns of
H1(id). This means the PKG creates k FDH signatures. Each result xi ∈ Dn = {x : ∥x∥ ≤
σ̂ ∗ ω

√
logm} ⊂ Zm

q is then concatenated to a new matrix Sid ∈ Zm×k
q , which will satisfy

A ∗ Sid = H1(id) mod q and has a small length ∥Sid∥ ≤ σ̂ ∗ ω
√
logm. For the value of σ̂, ω

see [TH14]. This will be the user’s signing key. Note that only the PKG can calculate such
short vectors with the help of the trapdoor TA = MSK.

ExtractKey(id, TA) : Sidi = f−1
A (TA, H1(id)i) for i = 1, ..., k

Sid ∈ Zm×k
q

∥Sid∥ is small

To sign a message m ∈ {0, 1} the Schnorr-like signatures of Lyubashevsky are used.
A random but short vector x ∈ Zm is sampled from a distribution DZm,σ̃. This Gaussian
distribution is used to sample small m-dimensional integer vectors with a standard deviation
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of σ̃. For the value of σ̃ see [TH14]. Then the hash h = H(A ∗ y,m) is computed, which
hides the x on the one hand because of the collision-resistance of H, and on the other hand
because of the ISIS assumption, according to which one cannot find a small x from A ∗ x
mod q. Also, the same x is hidden in the equation z = Sid ∗ h + x. The signing key Sid

can not be reconstructed from z because of LWE. The final signature consists of the tuple
σ = (z, h).

Sign(m,Sid) : x
$← DZm,σ̃ ⊂ Zm

q

h = H(A ∗ x,m)

z = x+ Sid ∗ h without mod q

σ = (z, h)

To verify a signature, the h is recomputed by the receiver using the public MPK = A
and id of the supposed author, and compared to the h that was received. Additionally it
checks whether ∥z∥ ≤ 2 ∗ σ̃ ∗

√
m. This way it can be assured, that Sid was short, and really

assigned to the user by the PKG.

Verify(σ,m, id,A) : h
?
= H

(
A ∗ z −H1(id) ∗ h,m

)
∥z∥

?
≤ 2 ∗ σ̃ ∗

√
m

By multiplying the MPK A to the value z we get the value of A∗Sid ∗h+A∗x. According
to the properties of our signing key, this is equal to H1(id) ∗ h + A ∗ x. By subtracting
H1(id) ∗ h, which can also be calculated using the public parameters, we get A ∗ x allowing
the comparison H(A ∗ x,m) = h. This signature cannot be misused by strangers, because
during verification A ∗ Sid = H(id) must hold and z remains short. Moreover, the signing
key remains hidden under the ISIS assumption.

H(A ∗ z −H1(id) ∗ h,m) = H(A ∗ (x+ Sid ∗ h)−H1(id) ∗ h,m)

= H(A ∗ x+A ∗ Sid ∗ h−H1(id) ∗ h,m)

= H(A ∗ x+H1(id) ∗ h−H1(id) ∗ h,m)

= H(A ∗ x,m)

= h

As now can be seen, this lattice-based IBS scheme would have to create a completely
new trapdoor function as master key pair to revoke a single user key. Additionally it would
have to create new signing keys for all non-revoked users and distribute them over secret
channels. Also for lattice-based IBS in particular there are approaches of making signing
key revocation more efficient. The next section gives an overview about the state of the art
on lattice-based Revocable Identity-based Signatures (RIBS).

5.4 Related Work on Revocable Identity-based Signatures with
Lattices

There has been research on key revocation specifically for identity-based signature schemes
based on lattices. The ideas are based on the general revocation ideas for identity-based
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signature schemes, that were already presented in section 4.3. It shall be mentioned, that
every IBS supports user key revocation, by adding validity period timestamps to the identity
strings, following the proposal of Boneh and Franklin [BF01]. The ideas presented in the
following enable more efficient revocation. Unlike earlier IBS schemes based on pairings like
[GG09], the lattice-based IBS schemes are considered to be quantum secure, and are there-
fore more promising. The IBS schemes that enable efficient user key revocation are called
Revocable Identity-based Signatures (RIBS).

The first lattice-based RIBS scheme was introduced by Xiang in 2015 [Xia15]. The lattice-
based IBS issues new signing keys for every validity period following the procedure of
Boldyreva et al. [BGK08], that already was introduced in section 4.3. Here validity pe-
riods are created by appending a timestamp to the identity string as proposed by Boneh and
Franklin in [BF01], and encrypting the new keys within a binary data structure. Therefore
the workload for the PKG is reduced to the logarithm of the number of non-revoked users.
This scheme requires private channels for distributing the key update, and the size of signing
keys grows logarithmically, which makes the scheme inefficient [HTH17].

In 2017, Hung et al. [HTH17] designed a RIBS on lattices that adapts the idea of Tseng
and Tsai [TT12], also already introduced before. The signing key consists of two components,
a fixed initial signing key and a changing time update key. At the beginning of each new
validity period, new time update keys are transmitted to each non-revoked user over a public
channel. The verification will only work if the signing key and the new time update key were
used for the signature. This RIBS scheme is based on the SIS problem. Both keys are cho-
sen with Gaussian sampling over NTRU lattices, and the signatures follow Lyubaschevski’s
rejection sampling technique from section 5.3.8. In this case, instead of one short signing
key, a tuple of two such signing keys is used. The time update key is another tuple with the
same properties, but with the time stamp of the validity period hashed inside, it is regularly
calculated and distributed by the PKG. The signature uses both signing keys in combination
with both time update keys, resulting in a larger signature, a three tuple, compared to the
only naive revocable IBS from chapter 5.3.9. An advantage of this method is that signature
keys and signatures have still quite small sizes, and instead of calculating all signing keys
newly and distributing them privately, only the time update keys have to be calculated and
can be public, which reduces computational effort same as required bandwidth. Yet, this
method is insecure under signing key exposures [XWW20].

In 2018, Langois et al. [LLNW14] published an IBS scheme with verifier-local revocation
(VRL), claiming to have constructed the first quantum-safe VRL IBS. Only the verifiers
receive revocation information, and not the signers. The idea follows the premise that less
users verify compared to those that sign, and thus computation time and network traffic can
be reduced, when only they need update tokens for new validity periods. The scheme is based
on the ISIS problem and uses Bonsai tree hard lattices [CHKP12] to create zero-knowledge
proofs as signatures. Users receive group secret keys and sign with them in combination with
the public MPK. For verification, beside the master public key revocation tokens are used.
Although those need to be securely transmitted to verifiers, it is claimed that computation
and network bandwidth are still reduced compared to alternative RIBS.

In 2020, Xie et al. [XWW20] present a RIBS based on the tree structure of Boldyreva et
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al. [BGK08] and the left-right lattices and delegation technology of Agrawal et al. [ABB10a],
but this is updatable via public channels. It is considered the first RIBS on lattices with
signing key exposure resistance. At the beginning of each validity period t an update key
KUt is generated and distributed to all users via public channels. The users can update their
signing key SKID with basis delegation [ABB10b] using the KUt. Signing and verification
is performed using the validity period t and the current signing and public keys. The keys
and signature sizes of this RIBS are larger than those of Hung et al. [XWW20]. Similar as
in [CLL+12], a binary tree revocation list is maintained by the PKG for choosing the update
key KUt. Because of this logarithmic complexity to the number of users combined with the
distribution of the update keys over a public channel, this method provides a highly scalable
solution for RIBS compared to the previous approaches.

In 2022, He et al. [HQG+22] present a generic construction method of forward-secure RIBS
applicable on lattice-based IBS constructed on the SIS problem. Here, similar to [Gug20],
the signing keys of the users are updated by a token. The validity period t is included in the
signature and verification process. The disadvantage of this approach is that the key lengths
grow logarithmically in relation to the number of validity periods.

Beside all the presented approaches the Key Updatable Signature Schemes (KUSS) of
Guggemos from [Gug20] that were introduced in section 4.4, would preserve the size of all
keys, without changing the complexity of the signature and verification procedures. Although
a private channel is needed to distribute the update tokens, this could give an advantage
to the RIBSs mentioned here. For this reason, the following chapter investigates how an
existing IBS on lattices can be transformed into a KUSS, even if lattices do not form cyclic
groups as it is the case for existing elliptic curve KUSS.

5.5 Summary

This section gave an introduction to lattices and their geometrical meaning. Furthermore
the computational hard problems on lattices were introduced, of which SIS and LWE are
even proven average-case hard, exactly as needed for cryptography. Based on this, several
cryptographic schemes were explained, finally leading to an Identity-based Signature scheme
constructed on lattices. Besides, existing efficient revocable IBS schemes were presented.

The next section will finally deal with the main goal of this thesis. It discusses possibilities
of how the lattice-based IBS can be converted to an efficiently revocable KUSS.
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After a lot of background knowledge was introduced, this chapter finally addresses the main
question of this thesis, namely how the lattice-based IBS from Tian and Huang [TH14],
which was introduced in section 5.3.9, can be converted into an efficiently revocable Key
Updatable Signature Scheme (KUSS) from section 4.4.

The advantages of KUSS are that they allow signing key revocation that reduces the
computational load of the PKG and lowers the network traffic, while it preserves the key
and signature sizes and therefor the security of the original IBS. Further this revocation
mechanism achieves forward and post compromise security. The advantages of lattice-based
cryptography lie in its so-far quantum resistance and its lightweight matrix operations. By
combining the schemes, all those beneficial properties could be achieved in one.

Guggemos demonstrated the concept of KUSS among others on the elliptic curve IBS
by Galindo and Garcia [GG09], which uses the concept of Schnorr signatures. The lattice-
based IBS by Tian and Huang was chosen for the following investigation because it uses
Lyubashevsky signatures. These are similar to the Schnorr signature scheme, as can be
easily seen by comparing figures 4.6 and 5.19. Therefore also both IBS schemes are similar
in some ways, as can be seen by comparing figures 4.9 and 5.20.

At first, this chapter explains possibilities to transform the lattice-based IBS scheme into
2KSS and U2KSS schemes, following the idea of Guggemos in [Gug20] on how to transform
elliptic curve IBS schemes into KUSS. Since lattices do not form cyclic groups, the transfor-
mation into KUSS according to the approach of Guggemos turned out to be difficult. Thus,
in the second section, the requirements which must be fulfilled to ensure an intact KUSS
are analysed and are compared with the lattice-based IBS. Finally, the chapter concludes by
summarizing the findings of the requirements analysis, pointing out what still is needed for
obtaining a fully functional KUSS.

6.1 Lattice-based 2KSS and U2KSS

In order to achieve signing key revocation, it is possible to include an additional symmetric
gsk in the signing and verification process of the IBS by Tian and Huang that changes with
every epoch, the same way as for the IBS by Galindo and Garcia from section 4.4.2. This
way a lattice-based Two Key Signature Scheme (2KSS) and Updatable Two Key Signature
Scheme (U2KSS) is constructed.

2KSS By multiplying a symmetric secret gsk to the result of A ∗ y during signing, leading
to the signature σ = (h = H(gsk ∗A∗y,m), z = Sid ∗h+y), a 2KSS is achieved by changing

the first step of the verification to h
?
= H(gsk ∗ (A ∗ z−H1(id) ∗h ∗h),m). This way the size

of a valid signature stays the same, holding ∥z∥≤2 ∗ σ̃ ∗
√
m, because only the input to the

hash function changes, and the output remains same sized. The signature can still only be
generated by the owner of a short Sid and thus is trusted by the PKG. Further verification
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is only successful if also the gsk was the same for signing and verifying, as the following
equation shows.

H(gsk ∗ (A ∗ z −H1(id) ∗ h),m) = H(gsk ∗ (A ∗ (Sid ∗ h+ y)−H1(id) ∗ h),m)

= H(gsk ∗ (A ∗ Sid ∗ h+A ∗ y −H1(id) ∗ h),m)

= H(gsk ∗ (H1(id) ∗ h+A ∗ y −H1(id) ∗ h),m)

= H(gsk ∗A ∗ y,m)

= h

Because the result is mapped to a hash, the dimension of gsk ∗ A ∗ y can be different to
A ∗ y without violating the transformability condition from section 4.4.1. As long as the
output of the hash function remains from the same set, the signature stays the same. Thus
the gsk can be a scalar ∈ Z, a horizontal vector ∈ Zn or a matrix ∈ Zn×n, as long as the
hash function H is collision-resistant.

U2KSS The gske is updated by a token ∆e+1 ∈ Zq no matter what dimensions gske has.

gske+1 = ∆e+1 ∗ gske

Because gske is not part of any public parameter, but only the input of a cryptographic hash
function, it does not matter that the knowledge of gske and gske+1 allow the calculation of
∆e+1. Two signatures σe and σe+1 will not reveal any information about ∆e+1 because of
the collision-resistance of the hash function.

The difficulty within transforming the lattice-based IBS into a KUSS is that the keys are not
correlated in such way that one is a multiple of the other, as it is the case for IBS schemes on
cyclic groups like the one from Galindo and Garcia using elliptic curves. There, because usk
and mpk are multiples of the msk and the multiplication is a transitive relation, the gsk and
update tokens ∆ could be multiplied on all of them, to make the scheme work in the same
way with new but still matching keys. The master key pair of the lattice-based IBS consists
of a random matrix and its trapdoor as introduced in section 5.3.5. They behave rather
similar to inverse of each other. Multiplying the same token on both will break it’s trapdoor
properties, and therefor the whole functionality of the scheme. To construct a KUSS on such
an IBS the requirements will be analyzed from top to bottom, and checked for applicability.

6.2 Lattice-based KUSS Requirements Analysis

The following section analyzes what properties are required for revocation with token updates
in a KUSS, and examines how and to what degree these properties are met in the lattice-
based IBS of Tian and Huang [TH14] from section 5.3.9. In particular it is discussed what set
the update token ∆ must be from, and where it must be applied, to fulfill all requirements.
The gsk0 will then be set to a suitable element of the same set. Table 6.1 summarizes which
possible ∆ meets which requirements for a KUSS.

In a nutshell it is searched for an additional secret key gske that is passively used in the
signing and verification process, by including it in the calculation of the master public key
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gsk,∆ ∈ Zq (Zm
q )⊺ Zm×k

q Zm×m
q {0, 1}m×m

Operation ∗ ∗ + ∗ ∗
Sid remains same sized Side+1 ∈ Zm×k

q ✓ ✗ ✓ ✓ ✓

A ∗ Sid remains H1(id) Ae+1 ∗ Side+1 = H1(id) ✓ ✗ ✓ ✓

∆ hidden in A ∗∆−1 Ae, Ae ∗∆−1 ≠⇒ ∆−1 ✗ ✓ ✓

Extract Sid in later epoch extract key(id, epoche) ✓ ✓

Verification equation he
?
= H(Ae∗ze−H1(id)∗he,m) ✓ ✓

∥Sid∥ remains small ∥x+ Side+1 ∗ h∥ ≤ 2 ∗ σ̃ ∗
√
m ✗ ?

Table 6.1: Possible ∆s and their properties

MPK = A ∈ Zn×m
q and the individual signing keys usk = Sid ∈ Zm×k

q . This must then be
updatable by a token ∆e+1. This means that the keys are manipulated according to ∆e+ 1
in such way that the included value of gske is changed to a new value gske+1. Because gsk0
is the start of a chain of updated gske+1, it will be set to the identity element of the group
where ∆ is chosen from, and all properties will be discussed only for ∆, representative for
the properties of gske as well, because all gske will be from the same group as ∆. Note that
within a KUSS the key updates must be achieved in a way that the keys, the signatures, the
complexity of the signature and verification processes, and the security of the IBS remain
the same. This is only possible if the following requirements are met.

Sid remains same sized The first condition for a KUSS from [Gug20] is that the keys of
the scheme remain the same size. Given the signing key Sid ∈ Zm×k

q , in order to get ∆ ∗ Sid

with the same dimensions, it is only possible to choose ∆ either as a scalar from Zq, or as
a square matrix from Zm×m

q . A vector or a matrix of other dimensions would result in a

∆ ∗Sid with a different size. In order to get an updated signing key ∆+Sid from Zm×k
q , the

∆ must have the same size as Sid. Thus, when multiplying ∆ to Sid, it can not be a vector
or a differently dimensioned matrix than Zm×m

q . When adding ∆, it must be from the set

Zm×k
q .

A ∗ Sid remains H1(id) Another condition is that the signing key Sid multiplied to the
right of the public key A must result in the hash H1(id) for the verification to work. In other
words, the equation A ∗ Sid = H1(id) must still be satisfied after the key update, therefor
Ae+1 ∗ Se+1 = Ae+1 ∗∆ ∗ Side = H1(id) or Ae+1 ∗ Se+1 = Ae+1 ∗ (∆ + Side) = H1(id). As is
seen in the equation, the public key A needs to be updated as well to meet this condition,
but contrary to the procedure for elliptic curves, the same ∆ cannot simply be multiplied to
A as well. The equation holds if two inverse elements are placed around the multiplication,
leading to Ae ∗∆−1 ∗∆∗Side = H1(id). During an update the MSK = A is also updated by
calculating Ae+1 = Ae∗∆−1. Because ∆−1 and ∆ have to be inverse regarding multiplication,
an update token from the group (Zm×k

q ,+) is no option anymore.

∆ hidden in A∗∆ To ensure that the update token ∆ remains a secret only between non-
revoked users although ∆−1 is contained in the public key A, it must be ensured that it
is hidden in A, i.e., it can not be calculated from Ae and Ae+1. Otherwise revoked users
could compute ∆ from ∆−1 and the public parameters, and update their keys secretly,
although they are not trusted by the PKG anymore. Thus, it is necessary that if Ae and
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Ae+1 = Ae ∗∆−1 are given, the ∆ must not be derivable from them. The operation A ∗∆−1

must therefore be a one-way function.

Suppose ∆ is a scalar from Zq, then the ∆ can be easily recovered from Ae+1 = Ae ∗∆−1

and Ae, by simply dividing any element of matrix Ae+1 through the same positioned element
of matrix Ae, i.e Ae+1ij ∗ (Aeij )

−1 = Ae ∗∆−1. Because the elements of the matrix are from
the field (Zq,+, ∗), there exist inverse elements for multiplication. Thus a ∆ ∈ Zq is no
candidate for the KUSS.

Another option for ∆ is a full-rank matrix M ∈ Zm×m
q that therefor is invertible. In this

case Ae+1 = A ∗M−1 and Ae must not allow reconstruction of M−1. According to the ISIS
assumption from section 5.2.1, if A ∈ Zn×m

q and A ∗ S = U ∈ Zm×k
q with small ∥S∥ are

given, then it is hard to find any short S. So a ∆ = M ∈ Zm×m
n with small ∥M−1∥ would

be a candidate for the KUSS.

Further the ISIS problem implies, that it is possible to find some S solving A ∗ S = U ,
but not such with small ∥S∥. Based on this it is assumed that if there are several solutions
S′ for an equation A ∗ S = U , then there also are several solutions M−1′ for the equation
Ae ∗M−1 = Ae+1 independent of the size of ∥M−1∥. Another point of view on the same
assumption is, that with A being not quadratic, but having more columns than rows, i.e.,
m > n, the linear equation system presented by this matrix has more unknown variables than
equations (see section 2.2.2). Now to reconstruct M−1, one would solve the equation system,
but since there are more unknowns than equations there is more than one possible solution
for M−1. Roughly approximated, with A ∈ Zn×m

q there are up to qm−n possible solutions,
because the unknowns that are not solved during Gaussian elimination could take any value
of the definition range Zq. Of these multiple possibilities M−1′ the actual ∆−1 = M−1 is only
one, so the probability for adversaries to determine the actual ∆−1 is 1

qm−n and is considered

negligible. Accordingly, a ∆ = M ∈ Zm×m
q with an arbitrary large ∥M−1∥ remains as well

candidate for the KUSS, so far allowing any full-rank M ∈ Zm×m
q . In order to support

this assumption it must be investigated whether the M−1 can be reconstructed using a left
inverse of A by calculating Aeleft

−1 ∗Ae+1 = Ae
−1
left ∗Ae ∗M−1 = M−1.

Since it is possible to hide the ∆ in the public key, according to the ISIS assumption, it
is investigated if this is also feasible with LWE. LWE hides an S ∈ Zk×n

q and E ∈ Zk×m
q in

the sum S ∗ A + E, even if A ∈ Zn×m
q and S ∗ A + E ∈ Zk×m

q are known. In a KUSS that
updates A with a ∆−1 = (S,E) by calculating Ae+1 = S ∗Ae+E, the Sids must be updated
in a way satisfying Ae+1 ∗ Side+1 = (S ∗ Ae + E) ∗ Side+1 = H1(id). This approach seems
much more complicated and therefore has not been explored further.

Extract Sid in later epoch Furthermore the KUSS must allow the issuing of new signing
keys at a later epoch for newly joining users. Thus key extraction using the master secret
key must be possible also after the master public key was updated.

In the lattice-based IBS the master secret key TA is a trapdoor for the ISIS problem with
respect to the master public key A, holding A ∗ TA = G and small ∥TA∥. After an update,
the new master public key is A ∗M−1. To preserve the functionality of key extraction, the
master secret key TA would have to be manipulated to TAe+1 , now satisfying the trapdoor
properties in respect to Ae+1. To fulfill the equation Ae+1 ∗ TAe+1 = Ae ∗M−1 ∗ TAe+1 = G,
the matrix M could be multiplied to the left side of TAe . However, depending on the choice
of M , the size of ∥TA∥ will grow during an update, causing the TAe+1 to lose its trapdoor
properties. Whether such an update of the master secret key TA is possible would therefore
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6.2 Lattice-based KUSS Requirements Analysis

depend on the selection of ∆ = M , which will be discussed later in more detail.

A more straightforward alternative to enable key extraction in later epochs is to let the
PKG use the same master secret key TA over the whole time, and store the first master
public key A0 and all previous update tokens (∆1, ...,∆e). When a new user joins, the PKG
computes the Sid0 for the user using the original A0 and the trapdoor TA, and then updates
Sid0 using the stored update tokens up to the current validity period e, before transferring
it to the user. This is the same as storing the gsk and updating it according to every new
∆e+1, by calculating gske+1 = ∆e+1 ∗ gske = ∆e+1 ∗ ∆e ∗ ... ∗ ∆1 ∗ gsk0. This mechanism
does not further restrict the choice of ∆.

At this stage it was found that a KUSS with an update token ∆ = M ∈ Zm×m
q and M

being full-rank could be possible. Another condition of a KUSS is that the verification is
working after at most slight modifications preserving the same complexity, and after the
token updates the same security must be guaranteed as before. The verification in the
lattice-based IBS by Tian and Huang is performed in two steps. Both are investigated
separately.

Verification equation holds One step of the verification is checking that h = H(A ∗ z −
H1(id) ∗ h,m). After an update, any non-revoked user signing key is Side+1 = ∆ ∗ Side . The
verification equation still works with the updated keys.

H(Ae+1 ∗ ze+1 −H1(id) ∗ he+1,m) = H(Ae+1 ∗ (Side+1 ∗ he+1 + y)−H1(id) ∗ he+1,m)

= H(Ae+1 ∗ Side+1 ∗ he+1 +Ae+1 ∗ y −H1(id) ∗ he+1,m)

= H(H1(id) ∗ he+1 +Ae+1 ∗ y −H1(id) ∗ he+1,m)

= H(Ae+1 ∗ y,m)

= h

The verification only works if Side+1 fulfills Ae+1 ∗ Side+1 = H1(id), and the message during
signing and verification is the same. Additionally, for users with not updated keys, the
function does not hold and the verification fails, because Ae+1 ∗ Side ̸= H1(id). Thus the
sketched KUSS works regarding this requirement.

Sid remains short The second part of the verification is to check that ∥z∥ ≤ 2 ∗ σ̃ ∗
√
m.

Because during signing h and x are short, z = x+Sid ∗h is also short as long as Sid is short.
And according to ISIS, only the PKG can calculate a short matrix Sid by using the master
secret key, the trapdoor TA. Thus the requirement of ∥z∥ ≤ 2 ∗ σ̃ ∗

√
m proves the PKG’s

trust in the user and gives him his legitimacy. If ∥z∥ was greater, then the signature was
created with a longer Sid, and could have been self-created by an adversary. Therefore, the
security of the IBS is based on the condition that Sid must not exceed a certain size.

For the KUSS this means that a signing key also after an update ∆∗Side must not exceed
a certain size either. Consequently, the ∆ must be a matrix M ∈ Zm×m

q which fulfills the
property that the product of it with a small matrix results in a matrix of same or smaller
size. This means that the individual elements of the matrices must in average remain the
same size or converge towards 0.

If a random ∆ = M ∈ Zm×m
q is chosen, then ∥Sid∥ also grows randomly after an update.

This is not allowed.
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If ∆ = M ∈ {0, 1}m×m, thus consisting only of small elements, then the size of the product
remains smaller than in the previous scenario, but still grows. Since each element of Side+1

is the sum of m small elements from Side , each new element can grow up to m times the
previous elements size. After i updates, the size of an actually legitimate key would already
be mi times larger than originally. Thus, after some updates it will exceed the requirement
of ∥Side+1∥ being small enough to satisfy ∥z∥ ≤ 2 ∗ σ̃ ∗

√
m and does not provide security

anymore. It remains to be investigated how many iterations of updates are possible until
the signing key size exceeds the limit, and the system is not secure.

With this all possible candidates for the ∆ were discussed, leaving the solution of an
M ∈ {0, 1}m×m and the number of possible updates until violating the length restriction to
be investigated.

6.3 Findings

In summary, the lattice-based IBS of Tian and Huang would transform into a KUSS if the
update tokens ∆ were square full-rank matrices, which multiplied to Sid result again in a
small matrix. Thus the following properties must be fulfilled.

∆ ∈ Zm×m
q ∧ rank(∆) = m ∧ ∆e+1 ∗Side = Side+1 , with ∥x+Side+1 ∗h∥ ≤ 2∗ σ̃ ∗

√
m

Assuming such an update token ∆ exists, the KUSS works as following. Note that because
the set where ∆ is from is not defined more precise yet, it is denoted with Zm×m

q to specify
its dimensions. Further the gsk of the KUSS is chosen as the identity element of the group
of which ∆ is from, thus gsk = gsk−1 = Idm
The MSK of the KUSS still is an ISIS trapdoor TA with respect to a random A. The

MPK0 is the product of A and the gsk−1
0 = Idm, which is the neutral element for multipli-

cation.

Setup() :

gsk0 = Idm ∈ Zm×m
q

MPK0 = A ∗ gsk−1
0 ∈ Zn×m

q

MSK = TA ∈ Zm×k
q with A ∗ TA = G mod q and ∥TA∥ is small

If a new key needs to be issued in any epoch e, the PKG can use the trapdoor TA matching
the original matrix A = MPK0 to calculate the key Sid for the user, and updates it with
the current gske = ∆e ∗ ... ∗∆1 ∗ gsk0. Note that because MPK0 = A ∗ gsk−1

0 , for the KUSS
Sid0 = gsk0 ∗ Sid.

ExtractKey(id, TA, gske) :

Sidi = f−1
A (TA, H1(id)i) for i = 1, ..., k

Side = gske ∗ Sid ∈ Zm×k
q

During an update all users compute ∆e+1∗Side = ∆e+1∗∆e∗...∗gsk0∗Sid = Side+1 to reissue
their key. The PKG updates the master public key by computing the inverse of ∆e+1, and
multiplying that to the right ofMPKe, leading toMPKe∗∆−1

e+1 = A∗gsk−1
0 ∗...∗∆−1

e ∗∆−1
e+1 =
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MPKe+1. Additionally it calculates the new gske+1 = ∆e+1∗gske = ∆e+1∗∆e∗...∗∆1∗gsk0,
that is needed for the key extraction.

Update() :

∆e+1
$← Zm×m

q

MPKe+1 = MPKe ∗∆−1
e+1

gske+1 = ∆e+1 ∗ gske
Side+1 = ∆e+1 ∗ Side

Signing and Verifying will remain the same as before, only now using the Side instead of Sid,
and the MPKe instead of MPK = A. With a ∆ fulfilling the requirements from above,
first ∥x+ Side+1 ∗ h∥ ≤ 2 ∗ σ̃ ∗

√
m holds, and second the following equation holds.

MPKe ∗ Side

= A ∗ gsk−1
0 ∗∆

−1
1 ∗ ... ∗∆

−1
e ∗∆e ∗ ... ∗∆1 ∗ gsk0 ∗ Sid

= A ∗ Idm ∗ Sid

= A ∗ Sid

= H1(id)

Figure 6.1 shows the overall procedure of the outlined lattice-based KUSS.

Figure 6.1: KUSS constructed from the lattice-based IBS by Tian and Huang (see figure
5.20). The key updates are marked in red.
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6.4 Open Problems

After having sketched an incomplete concept for a KUSS constructed from the lattice-based
IBS of Tian and Huang from section 5.3.9, it is summarized what remains to be completed
for the KUSS to be fully functional. Furthermore, the assumptions that need to be proven
to ensure the security of the system are stated, and an outlook is given on the next steps to
be taken in the event that a satisfactory ∆ is found and a working KUSS is constructed.

The main goal will be to find a ∆ that fulfills the characteristics that have been worked out
in the previous requirements analysis, and were summarized in section 6.3. It is necessary
to find a matrix that is full-rank, and multiplied to the left of a matrix of small size results
in a matrix whose size remains the same, decreases, or grows at most negligibly. In case
the matrix grows, then it has to be estimated how many updates can be performed before
verification is no longer possible, because the maximum size of Sid is exceeded. This is as
well to be investigated for the solution with a ∆ consisting only from 0s and 1s. Alternatively
it must be proven that no such ∆ exists.
Further, for the security of the KUSS it is necessary to prove whether, after updating the

master public key Ae with a ∆ = M ∈ Zm×m
q to Ae+1 = Ae ∗M−1, the specific M−1 can no

longer be recovered from the public matrices Ae and Ae+1. For this, it may be necessary to
investigate how many inverse, left inverse and pseudo inverse of A exist.
Optionally, it can be investigated whether the issuing of keys for new users can be simplified

by updating the msk as well with every key update, instead of using the gsk during key
extraction. This way key extraction could be simplified.
Once a ∆ is found that matches all requirements needed for the KUSS, the next step

is to implement the KUSS as a proof of concept. Based on this implementation, it can be
compared whether there actually is a reduction in network load and the PKG’s computational
effort compared to the original IBS and other revocation mechanisms from chapter 5.4.
Alongside a security proof of the system must be made.
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Identity-based Signatures are an alternative to authentication using certificates. Instead of
a public key, the unique identity of a user is used for verification, whereby the overhead
arising from verifying public key ownership is omitted. The downside of this method is that
revocation of user keys causes a large overhead, with the bottleneck in the PKG. Because
this is not suitable in dynamic settings, mechanisms exist to make revocation in IBS more
efficient, resulting in so-called RIBS.

One of them is the Key Updatable Signature Scheme (KUSS) from [Gug20] by Guggemos,
which allows revocation by adding a secret to the keys used during signing and verification
processes. For verification this secret is updated by all non-revoked users, using a secret
update token. Since the users update their keys themselves, the computational effort of
the PKG is decreased and network traffic is reduced. Guggemos presents three steps to
transform four different elliptic curve IBS, first into 2KSS, then into U2KSS, and finally into
KUSS.

These constructed KUSS rely on the average-case hardness of ECDLP. Due to the inten-
sive research on sufficient error-corrected quantum computers, the security of these systems
is threatened. Lattice-based Cryptography is a so-far quantum resistant alternative to com-
mon public-key cryptography.

This thesis investigates whether an efficient revocation method for IBS schemes, the so-
called KUSS [Gug20], can be applied on a quantum-safe IBS scheme on lattices in order to
achieve an efficiently revocable and quantum-safe IBS.

For this purpose, this thesis gives a broad introduction to the underlying concepts of
lattice-based cryptography. Based on the consequential understanding of lattice-based sig-
nature schemes, the functionality of the lattice-based IBS by Tian and Huang from [TH14]
is explained. It uses an ISIS trapdoor function for the key extraction, and Lyubashevsky
signatures for the signing and verifying. This IBS is used to analyse how far it can be
transformed towards an efficiently revocable KUSS following the proposal of Guggemos for
elliptic curve IBS.

The lattice-based IBS is transformed into a 2KSS and a U2KSS, by multiplying an addi-
tional shared secret to the input of the hash function during signing and verification. The
further transformation from the U2KSS is not possible straightforward after the elliptic
curve schemes, because regarding the lattice master key pair, one is not the multiple of the
other. Therefore the KUSS is analysed with respect to which requirements allow signing
key updates with tokens. The identified requirements are compared with the properties of
the lattice-based IBS, limiting the number of candidate update tokens to a quadratic matrix
with full rank consisting of integers modulo prime. Additionally this matrix, when multiplied
modulo on a short matrix, must result in another short matrix. Such a concrete matrix is
not found nor has its existence been disproven. Under the assumption that such a matrix
exists and is used as update token, a lattice-based KUSS is designed, where signing key
updates are performed by multiplying the matrix to the user signing keys, and the inverse
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of the matrix is multiplied to the master public key, and in such way allows revocation after
the idea of Guggemos. Nevertheless, the concrete update token matrix fulfilling the required
properties needs to be found in order to realize the quantum resistant lattice-based KUSS.

Future Work

On the basis of this work, it is first essential to find a possible update token that meets the
requirements that are specified during this thesis, and which enables a complete transforma-
tion of a lattice-based IBS into a KUSS. Alternatively, it can be investigated whether the
token can be chosen in such a way that at least a limited number of updates is possible.

If such a suitable update token is found, allowing unlimited revocation or only a limited
number of revocations, the KUSS has to be implemented as a proof of concept. In addition,
it needs to be investigated whether this lattice-based KUSS compared to other lattice-based
revocable IBS actually results in the expected performance advantages that were found for
elliptic curve KUSS.

Furthermore, the designed KUSS is partially based on assumptions which must be proven,
and which are summarised in section 6.4.

In any case, it can be investigated whether the first and second transformation of the
lattice-based IBS into 2KSS and U2KSS already bring any performance advantages.

In addition, the basic understanding of lattice-based cryptography conveyed through this
thesis serves as a starting point for investigation on whether other lattice-based IBS, for
example those using basis delegation, are suitable for transforming into KUSS.
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[Bab86] Babai, László: On Lovász’lattice reduction and the nearest lattice point prob-
lem. In: Combinatorica 6 (1986), S. 1–13
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