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keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 18. Januar 2019

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift des Kandidaten)





Abstract

Während die Entwicklung von technischen Systemen und Computern in den letzten 50
Jahren massiv vorrangeschritten ist, hat sich die Interaktion zwischen Mensch und Maschine
allerdings kaum weiterentwickelt. Obwohl Sprachsteuerungen sich auf Smartphones und vor
allem im Smart Home Bereich immer mehr verbreiten, ist es schwierig, ein flexibles System
zu finden, das sich für spezielle Anwendungsfälle anpassen lässt.

Diese Arbeit stellt ein solches System vor, um aus kurzen Anfragen, meist Sätzen, die In-
tention der Anfrage extrahieren zu können. Dafür werden bekannte Algorithmen verwendet,
die Ähnlichkeiten zwischen Zeichenketten messen, wie beispielweise die Levenshtein Distanz.
Zusätzlich werden Sätze als Zeichenketten interpretiert, bei denen die Zeichen aus Worten
bestehen. Ähnlichkeitssuchen werden also auf zwei Ebenen durchgeführt, auf Wort- und
auf Satzebene. Um die Genauigkeit der Ähnlichkeitssuchen zu verbessern, werden mehrere
der vorher erwähnten Algorithmen zusammengeschlossen. Durch diesen Zusammenschluss
von mehreren Algorithmen bleibt es dem Anwender überlassen, die ideale Balance zwischen
Genauigkeit und Geschwindigkeit für seinen Anwendungsfall zu finden, indem er beispiel-
sweise die Anzahl der Klassifikatoren in einem Ensemble kontrollieren kann.

Ein weiterer Vorteil des vorgestellten Systems ist die Flexibilität bei der Handhabung
der bekannten Wörter und Sätzen. Da es komplett ohne Lernphase auskommt, kann zu
jedem Zeitpunkt das Wörterbuch oder die Sammlung von Anfragen erweitert oder verkleinert
werden.

Der zentrale Punkt dieser Arbeit ist die Evaluation der verschiedenen Ensemble-Methoden
und die Gegenüberstellung mit den einzelnen Algorithmen in den Bereichen Genauigkeit und
Geschwindigkeit.

While the evolution of technical systems and computers advanced massively in the last
50 years, the interaction between human and computer stagnates. Although speech control
systems are widespread on smartphones and smart homes, finding a flexible systems to fit
the assumed use case can be difficult.

This thesis presents such a system, that is designed to extract the intent of short queries.
To this end, common algorithms to measure similarities between strings are used, such as
the Levenshtein distance. Additionally, queries, or sentences, are interpreted as strings as
well, where the individual segments are words instead of characters. Therefore, similarity
searches are performed on two levels, on the word- and the sentence level. To augment
the accuracy of the classifiers, they are incorporated into ensembles. This combination of
algorithms allows the user to find an optimal balance between performance and accuracy for
his use case, for example by reducing or increasing the number of classifiers in an ensemble.

An additional advantage is the flexibilty while handling the dictionary size. As there is
no learning involved, sentences and words can be added or removed at any time.

The main point of this thesis is the evaluation of the different ensemble methods and the
comparison with the individual algorithms in terms of accuracy and performance.
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1 Introduction

Technical systems have evolved massively since the invention of the turing machine, but the
interface between human and machine barely made any progress. For example the keyboard
layout used today still goes back to Christopher Latham Sholes’ proposition in 1878 [22].
Even on the most modern devices like smartphones, the same layout is used to input data.
The other input device used on computers, the mouse, hasn’t undergone much evolution
either since its invention in 1963 by Douglas Engelbart1.

The challenge to navigate complex and convoluted menus is common in many programs.
A more natural way of interacting could be by using natural language. One possibility
would be to use chatbots instead of menus to navigate the functionalities of a service. Ac-
cording to Business Insider2, automated technologies are very attractive to businesses, as
they can improve the user experience and cut down the cost for customer service and sales
representatives.

The user benefits as well, because automated systems can be scaled to deal with many
customers at once, eliminating the need to wait for the next available staff member. But
even in more personal spaces, such as smart homes, controlling devices by language is much
more comfortable than using remotes or switches.

The difference of entering text via speech or keyboard ignored, all these systems have a
step in common, and that is the extraction of the user’s intent. The text that is given to
the system needs to be classified and information needs to be extracted. This is what ETeC,
the Ensemble Text Classifier, is designed to do in a very adjustable manner.

1.1 Motivation

The motivation to build a highly flexible text classifation system originated in the idea of
bringing speech control to an application for mobile phones. This would allow for much
more functionality that can be easily reached, without overloading the UI.

There are a few tools that already offer speech control for mobile apps, such as the Google
Assistant3, Siri4 or Alexa5, but all these cannot offer the flexibility and control to the devel-
oper that ETeC was designed to provide. Furthermore, they all have reduced or very limited
offline functionalities, a downside that does not impact ETeC at all. Howeer, text-to-speech
functionality is not part of ETeC’s design, but there are solutions like Google Voice Typing6.

Challenges need to be met

1. The input texts must be classified correctly, meaning that from a sentence, the intent
and possible variables must be identified correctly. For example the classification of

1http://www.dougengelbart.org/content/view/162/94/, visited on 06.01.2019
2https://www.businessinsider.de/80-of-businesses-want-chatbots-by-2020-2016-12, visited on 28.12.2018
3https://assistant.google.com/, visited on 06.01.2019
4https://www.apple.com/siri/, visited on 06.01.2019
5https://www.amazon.com/b?node=17934671011, visited on 06.01.2019
6https://support.google.com/docs/answer/4492226, visited on 06.01.2019
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1 Introduction

"Where can I get a hot-dog?" should have something like this as result: [type:

directions, variable: food/hot-dog]

2. The system must be flexible, for example, if a request is wrongly classified, this fault
must be fixable without the need to restart the system, let alone train a model.

3. The text classification must be fast, as the idea is to alleviate the interaction a user
has with a system. If the system is slow, there is no benefit over navigating complex
menus.

1.2 Outline

This thesis presents the ETeC system, a flexible text classifier without training or learning
phases. It uses collections of common fuzzy string matching algorithms to improve accuracy.
Additional to typical string matching algorithms, such as the Levenshtein Distance, it uses
various representations of words and sentences in order to utilize algorithms from other areas,
such as statistics or biology.

The remainder of the thesis is structured as follows:

• The second chapter gives background information on word representations, string dis-
tance metrics and classification methods. Additionally, different apporaches of com-
bining the results from multiple classifiers are presented.

• Chapter three gives an overview of the design of ETeC and it’s subsystems, such as
internal representations, preparations and the classification process.

• Chapter four presents the testing methods and results. These results contain ac-
curacy and performance statistics for ensembles and individual classifiers. Different
approaches to building ensembles are also presented and evaluated.

• The final chapter provides an evaluation and conclusion of the presented ETeC system.
It highlights the areas, where future work can improve the functionalities.

2



2 Fundamentals and Related Work

This chapter describes the fundamentals required to understand and develop the ETeC, an
ensemble text classificator for short texts.

First it illuminates word representations, in particular stemming, the soundex system, and
cologne phonetics. These systems simplify the process of reducing a word to its original form
and are a first step towards finding the most similar word.

The core of this similarity search, or fuzzy string matching, are the string distance metrics,
that express the similarity of two words in terms of a number between 0 and 1. As the term
distance metric implies, a lower value means a higher similarity.

To assign a class to a text, the most likely class must be determined. To this end, the
k-nearest neighbor algorithm and the nearest centroid classifier are explained.

ETeC is an ensemble classificator, which means that there are multiple weak classifica-
tors, that form a strong one. Several methods of combining these weak classificators are
illuminated, such as averaging, voting or mixture of experts.

2.1 Word Representations

To classify a text, it is important to be able to identify different forms of a word as the same
word. These forms are mostly different postfixes (rarely prefixes), but the common stem is
usually not the morphological root of the word (for example the forms argue, argues and
arguing only share the stem argu).

Additional to finding a common sequence of characters, words can be grouped by their
sound. Soundex and cologne phonetics transform words into sequences of numbers, which
represent different sounds. These sequences might not be equal for different forms of the
same word, but they are shorter and therefore faster to compare.

2.1.1 Lemmatisation and Stemming

Lemmatisation is the process of reducing a word to its basic form (for example arguing to
argue). This process relies on dictionary lookups, as there are words that cannot be reduced
to their original form in another way (for example am → be). As the goal of ETeC is a
system that is as lightweight as possible, lemmatisation is not an option.

Stemming on the other hand is very suitable for ETeC. In contrast to lemmatisation, the
goal of stemming is not the morphological root of a word, but the longest common substring
of all forms of the same word. This substring might not be a valid word.

Altough there are stemming algorithms that rely on lookup tables, the majority are suffix-
stripping algorithms. They consist of a set of rules that determines, whether a suffix, or word
ending, belongs to the word form and thus can be stripped of or substituted [15]. Such rules
can be: if the word ends in ’ed’, ’ing’ or ’ly’, remove these suffixes.

As the proof of concept for ETeC is the mobile app of the Europa-Park Rust in Germany,
the stemmer used for this thesis is CISTEM [26]. It is a state-of-the-art german stemmer that

3



2 Fundamentals and Related Work

shines in performance as well as in precision. Leonie Weißweiler and Alexander Fraser ”per-
formed a comparative analysis of six publicly available German stemmers, where CISTEM
achieved the best results for f-measure and state-of-the-art results for runtime”1.

2.1.2 Soundex

The soundex algorithm was developed by Robert C. Russell and Margaret King Odell in
the early 1900s and was used to analyse US censuses [24]. It is used to give every word a
code that corresponds to the sound of the word. This code consists of the first letter of the
word, followed by 3 digits that are obtained by substituting the following consonants with
predefined numbers. Similar sounding consonants are assigned the same number. Fig. 2.1
shows the corresponding numbers and letters.

number letter

1 B, F, P, V
2 C, G, J, K, Q, S, X, Z
3 D, T
4 L
5 M, N
6 R

Figure 2.1: The substitution table according to R. Russel and M. King[24]

The algorithm consists of the following steps:

1. Keep the first letter

2. Replace all following letters by their corresponding numbers, ignoring a, e, i, o, u, y,
h, w

3. If a number appears multiple times in a row, without being separated by a vowel,
remove the duplicates

4. Remove all remaining characters except the first one

5. If the resulting code has more or less than four characters, remove all surplus characters
or add zeros until the code has exactly four characters

Following these rules, the strings Smith and Smythe are converted to the same code S530.
Lee is reduced to L000.

2.1.3 Cologne Phonetics

The cologne phonetics algorithm is very similar to the soundex algorithm, but has its focus
on the german language [21]. Additional to the direct conversion from letters to numbers,
the context of a letter is taken into account, too. Fig. 2.2 illustrates these contexts and
presents the numbers.

The following steps must be taken to convert a string to the corresponding cologne pho-
netics code:
1https://github.com/LeonieWeissweiler/CISTEM, visited on 06.01.2019
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2.2 String Distance Metrics

letter context number

A, E, I, J, O, U, Y 0

H -

B 1
P not before H 1

D, T not before C, S, Z 2

F, V, W 3
P before H 3

G, K, Q 4
C in the initial sound before A, H, K, L, O, Q, R, U, X 4
C before A, H, K, O, Q, U, X except after S, Z 4

X not after C, K, Q 48

L 5

M, N 6

R 7

S, Z 8
C after S, Z 8
C in initial position except before A, H, K, L, O, Q, R, U, X 8
C not before A, H, K, O, Q, U, X 8
D, T before C, S, Z 8
X after C, K, Q 8

Figure 2.2: The substitution table for the cologne phonetics algorithm

1. Replace each letter by the number specified in the lookup table

2. Remove consecutive duplicates

3. Remove all zeros except if it is at the beginning

The cologne phonetics code for the german surnames Schmitt and Schmid is 862. Note
that the codes produced by this algorithm are not truncated, so the name Müller-Lüdenscheidt
generates the code 65752682.

2.2 String Distance Metrics

To analyze words and sentences, several string metrics are employed. These allow the com-
parison of strings beyond equality and give a measure, how similar two strings are.

Some of these metrics, however, are not true metrics in the mathematical sense, as the
triangle inequality is not always fulfilled, but for the needed cases of finding the most resem-
bling words or sentences it has no impact. For example, when searching the most similar
word to wa, the only distances that matter are between wa and all known words wi. The
distance between wi and wi+1 is of no importance.

Normalizing: All these metrics are normalized to the range of [0,1], with 0 meaning equality
or high similarity and 1 meaning low similarity. To scale a value from its current range to

5



2 Fundamentals and Related Work

any desired range, the following formula is used:

valuescaled =
(maxdr −mindr) · (value−mincr)

maxcr −mincr
+mindr (2.1)

where

• mindr and maxdr are the lower and upper bounds of the desired range

• mincr and maxcr are the lower and upper bounds of the current range

As the desired range is [0,1], the formula collapses to:

valuenormalized =
1 · (value−mincr)
maxcr −mincr

+ 0 =
value−mincr
maxcr −mincr

(2.2)

n-Grams: The following section depicts the used string distance algorithms and their func-
tionality is illustrated by an example, using the two strings s1 = saturday and s2 = sunday.
Their lengths are |s1| = 8 and |s2| = 6. For all results, see Sec. 2.2.4.

Some of these algorithms use n-grams for the string comparison. These n-grams are the
collections of all substrings with the length of n. For example, the n-grams for saturday

and n = 2 would be {sa, at, tu, ur, rd, da, ay}. These are also called bigrams.

2.2.1 String-based Algorithms

The first set of algorithms uses the strings directly as input, so order and count of individual
characters matters.

Levenshtein Distance

The most common metric to measure string similarity is the Levenshtein Distance [[14]]. It
is also refered to as Edit Distance. The similarity between two strings is described by the
number of insertions, deletions and substitutions of characters, that is necessary to transform
one string into the other.

For example the Levenshtein Distance between the strings saturday and sunday is three,
as it takes three operations to transform one into the other:

1. delete ’a’: sturday

2. delete ’t’: surday

3. replace ’r’ with ’n’: sunday

The minimum distance between two strings is 0 (when both strings are equal), and the
maximum distance is the length of the longer word (when every letter of the shorter word
must be substituted and the other characters inserted). These two boundaries are used to
normalize the Levenshtein Distance to the required range of [0,1].

As the maximum distance in this case is max(|s1|, |s2|) = |s1| = 8, the normalized Lev-
enshtein Distance is 3−0

8−0 = 3
8 = 0.375.
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2.2 String Distance Metrics

Longest Common Substring

The longest common substring of two strings is the longest sequence of characters that is
present in both sources. In the context of ETeC, only the length of this substring is relevant.
A longer common substring means higher similarity.

The bounds for the length of the longest common substring are 0 (no matching character)
and the length of the shorter word (the shorter word is a substring of the longer one or both
are equal).

A greater substring length means a higher similarity, which is opposed to the initial men-
tioned range of [0,1], so the normalized result must be subtracted from 1.

The longest common substring of the prior example saturday and sunday is day with the
length 3. For the example the result would be 1− 3−0

6−0 = 1− 3
6 = 1− 0.5 = 0.5.

The longest common substring is also known as longest common continuous subsequence.

Longest Common Subsequence

Similar to the longest common substring, the longest common subsequence describes a se-
quence of characters present in both strings, but this sequence can be interrupted by other
characters. Again, the longer the sequence, the higher the similarity.

Its bounds are 0 (no matching character) and the length of the shorter string (the longer
string holds the complete sequence of the shorter one).

For the two example strings saturday and sunday the longest common subsequence is
suday, so the normalized result is 1− 5−0

6−0 = 1− 5
6 = 1− 0.833 = 0.166.

Jaro Similarity

The Jaro Similarity[9] is a string edit distance that was developed by Matthew Jaro for a
survey of hard-to-count population groups. As part of that survey, a record-linkage software
was needed, which was able to match records with a high degree of accuracy. The presented
algorithm uses the linear sum assignment model to match characters in strings.

As there are different components of this algorithm, that can not be depicted with the
example strings saturday and sunday, another example will be used for these components.

The formula for the Jaro Similarity SIMj is:

SIMj(s1, s2) =

{
0 if m = 0
1
3

(
m
|s1| + m

|s2| + m−t
m

)
otherwise

(2.3)

where

m is the number of matching characters

t is bhalf the number of transpositionsc

Matching characters are characters that appear in both strings, but can only be matched
once. Additionally, matching characters’ indices must be within a certain range to each
other. The maximum allowed distance between characters is:
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dmax =

⌊
max(|s1|, |s2|)

2

⌋
− 1 (2.4)

The Jaro distance is the sum of three quotients, namely the number of matching characters
divided by the length of the first string, the number of matching characters divided by the
length of the second string, and the rate of transpositions.

For the strings greenhouse and seabreeze, the maximum allowed distance between

matching characters is bmax(10,9)
2 c − 1 = 5 − 1 = 4. The following table illustrates the

matching characters of these two strings:

position 1 2 3 4 5 6 7 8 9 10

s1 g r e e n h o u s e

index of match in s2 - 5 2 6 - - - - - 7

s2 s e a b r e e z e

The last e of seabreeze has no match in greenhouse, as all es there are already matched.
There are four matching characters.

The two extracted matching sequences are reee for s1 and eree for s2. The number of
transpositions is the number of positions in these two sequences, where the characters do
not match, in this case position 1 and 2. Now we have all values for all unknowns:

m = 4

|s1| = 10

|s2| = 9

t = b22c = 1

Inserting these values into the formula results in 1
3( 4

10 + 4
9 + 4−1

4 ) = 1
3(0.4+0.444+0.75) =

1
31.594 = 0.531. Again the outcome must be subtracted from 1 to get the distance between
s1 and s2, 1− 0.531 = 0.469.

Using the same algorithm for the example strings saturday and sunday yields in the
following values:

m = 5

|s1| = 8

|s2| = 6

t = b32c = 1

The Jaro Similarity for saturday and sunday is (13(58 + 5
6 + 5−1

5 )) = (13(0.625 + 0.833 +
0.8)) = (132.258) = 0.753 and the Jaro Distance is 1− 0.753 = 0.247.

Jaro-Winkler Distance

William Winkler[27] extended the Jaro Similarity by adding an additional rating boost if
the prefix of both strings is equal. The size of the boost depends on the length of the
common prefix. Like the Jaro Similarity, the Jaro-Winkler distance originated from the
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SIMw(s1, s2) = SIMj(s1, s2) + lp(1− SIMj(s1, s2)) (2.5)

need of automatically merging survey lists, ignoring typographical errors in first names or
surnames.

The Jaro-Winkler distance is defined as:

where

l is the common prefix length, up to four characters

p is a constant scaling factor

The scaling factor p should not exceed 0.25, as the total similarity could then be greater
than 1. Winkler used the value p = 0.1.

The Jaro-Winkler Distance then is: dw(s1, s2) = 1− SIMw(s1, s2)

For the example strings saturday and sunday, the Jaro-Winkler distance is 0.753 + 1 ∗
0.1 ∗ (1− 0.753) = 0.753 + 0.1(0.247) = 0.778 and the Jaro-Winkler Distance is 1− 0.778 =
0.222

Hamming Distance

Richard Hamming developed the Hamming Distance for error detecting and correction [6].
It is defined as the number of substitutions required to transform one string into another.
This definition implies that the two strings must have equal length, but can be extended to
any two strings, if the shorter string is filled up with empty characters. In this augmented
form, the Hamming Distance between two strings is the number of substitutions plus the
difference in their lengths.

The lower and upper bounds are 0 (both strings are equal) and the length of the longer
string (all characters of the shorter string must be substituted plus the length difference).
The Hamming Distance between saturday and sunday is 1, as the following table illustrates:

s1 s a t u r d a y

s2 s u n d a y / /

matches 3 7 7 7 7 7 7 7

This distance is again normalized, using its lower and upper bounds, and subtracted from
1: 1− 1−0

8−0 = 1− 1
8 = 1− 0.125 = 0.875.

Note that in cases where the prefixes of the strings have different lengths the Hamming
Distance is high, as a shifts of parts of the word are not considered, in this example the
substring day.

2.2.2 Set-based Algorithms

The set-based algorithms construct sets from the characters of the strings. The sets can
contain the characters, which means that neither the order, nor the count of the individual
characters matter. To reduce this loss of features, the aforementioned n-grams are used to
build the sets.
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Jaccard Index

The Jaccard Index was originally created to measure the distribution of the flora, but in
general it is applicable to any two sets [8]. It is also known as Intersection over Union,
which describes the operations of this algorithm:

J(A,B) =
|A ∩B|
|A ∪B|

(2.6)

The Jaccard Distance is the complement to the Jaccard Index, and it ranges from 0 to 1,
so no normalization is needed:

dJ(A,B) = 1− J(A,B) (2.7)

In the context of strings, the two sets can be collections the characters of the strings. This
implies the following sets of characters:

charsetsaturday: {a,d,r,s,t,u,y} size: 7

charsetsunday: {a,d,n,s,u,y} size: 6

intersection: {a,d,s,u,y} size: 5

union: {a,d,n,r,s,t,u,y} size: 8

The Jaccard Similarity therefore is 1− 5
8 = 1− 0.625 = 0.375.

For a more strict similarity calculation, bigrams (n-grams where n = 2) are used. The
two example strings would produce the following sets of bigrams:

bigramssaturday: {at, ay, da, rd, sa, tu, ur} size: 7

bigramssunday: {ay, da, nd, su, un} size: 5

intersection: {ay, da} size: 2

union: {at, ay, da, nd, rd, sa, su, tu, un, ur} size: 10

Accordingly, the Jaccard Distance between saturday and sunday using bigrams is 1− 2
10 =

1− 0.2 = 0.8.

Dice’s Coefficient

Similar to the Jaccard Index, Dice’s Coefficient was created to measure the association
between species of plants[3]. It is a measurement for the number of common elements,
divided by the sum of the cardinalities of both sets. The original formula is the following:

DC(A,B) =
2|A ∩B|
|A|+ |B|

(2.8)
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Dice’s Coefficient ranges between 0 and 1, but semantically inverse to the needed range,
so it will be subtracted from 1.

Identical to the Jaccard Index, the characters and the bigrams of the two strings are used
as sets.

The character sets entail the following result: 1− 2∗5
6+7 = 1− 10

13 = 1− 0.769 = 0.231.
Using the same bigram sets and intersection from the Jaccard Index, Dice’s Coefficient

for saturday and sunday is: 1− 2∗2
5+7 = 1− 4

12 = 1− 0.333 = 0.666

Overlap Coefficient

The overlap coefficient, also known as Szymkiewivz-Simpson coefficient, is also related to
the Jaccard Index. The intersection is divided by the size of the smaller set:

OC(A,B) =
|A ∩B|

min(|A|, |B|)
(2.9)

To get a distance measure, the coefficient must be substracted from 1. All values plugged
into the formula, this results in 1 − 5

6 = 1 − 0.833 = 0.167 for the character sets and
1− 2

5 = 1− 0.4 = 0.6 for the bigrams.

2.2.3 Vector-based Algorithms

As the name implies, vector-based distance algorithms need some form of vector represen-
tations of the input strings. While there are established systems, such as word2vec2, that
convert words into vectors that hold semantic meaning, ETeC uses a different approach.
These systems need large datasets and training to build a model, and should be run on
appropriate hardware. ETeC is focused on devices with low end hardware, such as mobile
phones. Therefore the cost of the vector generation should be low.

ETeC uses two methods of generating vectors, that are described in the next two sections.
After that, the vector-based distance algorithms are presented.

Character Vectors

Character Vectors are a very simple vector representation of a string. The dimensions of the
vector are the characters and the values are the quantity of the respective characters. For
the sample string saturday, the corresponding vector would look like this:

dimension a d r s t u y

value 2 1 1 1 1 1 1

When comparing two strings, there might be characters in one string, that don’t occur in
the other one, so the vectors of these strings must be extended by these missing characters.
These vectors can be built by generating the union of the sets of characters of each string.

The set of characters for saturday is, as in the example above, chars1 = {a, d, r, s, t, u, y},
the set for sunday is chars2 = {a, d, n, s, u, y}. The union is chars1 ∪ chars2 = {a, d, n, r, s, t, u, y},
so the vectors to compare are the following:

2https://code.google.com/archive/p/word2vec/
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dimension a d n r s t u y

vsaturday 2 1 0 1 1 1 1 1

vsunday 1 1 1 0 1 0 1 1

TF-IDF

TF-IDF, short for term frequency - inverse document frequency, tries to provide a measure
for how meaningful a word is to a document in a collection of documents, or corpus. Term
frequency describes how often a term is used in a document [?] and inverse document fre-
quency describes how much meaning a single term conveys [25][11]. This is achieved by
examining how often this term is used in other documents of this corpus. For example, the
term the will appear in many documents of different topics, so the meaning of this word is
rather minor.

The term frequency tf(t, d) is calculated by simply counting the occurances of the term
t in the document d. To obtain the inverse document frequency, one must first divide the
number of documents in the corpus Dtotal by the number of documents containing the term
Dt. This quotient is logarithmically scaled. Equation 2.10 illustrates this calculation.

idf(t,D) = log
Dtotal

Dt
(2.10)

The tf-idf value for a document d out of the corpus D can be calculated as seen in equation
2.11.

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D) (2.11)

Euclidian Distance

The Euclidian Distance is a simple distance measurement, specifically the length of a straight
line that connects two points in euclidian space. The character vectors of the two strings to
compare can be interpreted as two points in an n-dimensional space, where n is the size of
the union of the charactersets.

The formula to calculate the euclidian distance is

deuclidian(v1, v2) =

√√√√ n∑
i=1

(v1i − v2i)2

=
√

(v11 − v21)2 + (v12 − v22)2 + ...+ (v1n − v2n)2

(2.12)

To normalize the euclidian distance, the lower and upper bounds are needed. The lower
bound is 0, when both strings are equal, and as an upper bound, the maximum distance
between two strings of the same lengths is used. The maximum distance is reached, are
composed of only one character each.

So for the example strings saturday and sunday, the upper bound is the distance between
aaaaaaaa and bbbbbb. The character vectors of these strings are:

The upper bound is then d(va, vb) =
√

(8− 0)2 + (0− 6)2 =
√

64 + 36 =
√

100 = 10.

Therefore the euclidian distance for saturday and sunday (using the character vectors
from 2.2.3) is:
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dimension a b

va 8 0

vb 0 6

d =
√

(2− 1)2 + (1− 1)2 + (0− 1)2 + (1− 0)2 + (1− 1)2 + (1− 0)2 + (1− 1)2 + (1− 1)2 =√
1 + 0 + 1 + 1 + 0 + 1 + 0 + 0 =

√
4 = 2. Normalizing using the calculated lower and upper

bounds results in 2−0
10−0 = 2

10 = 0.2.

Taxicab Metric

The Taxicab Metric, also known as Manhattan Distance or L1 Distance, has its name from
the grid layout of streets (most prominent in Manhattan). Altough the roots of this metric
date back to Hermann Minkowski in the 19th century, the term taxicab geometry was coined
by Eugene Krause [12].

The taxicab distance between two points is not the shortest straight line, but the sum of
line segments aligned to a grid, that need to be traversed to get from the first to the second
point. This grid is defined by the axes of the coordinate system. So the taxicab distance
can be expressed as the sum of distances for each dimension:

dtaxicab(v1, v2) =
n∑

i=1

|v1i − v2i|

= |v11 − v21|+ |v12 − v22|+ ...+ |v1n − v2n|
(2.13)

Again, two strings are most dissimilar when both are composed of only one character.
So to normalize the taxicab distance between saturday and sunday, aaaaaaaa and bbbbbb

with the aforementioned character vectors are used to calculate the upper bound: dmax =
|8− 0|+ |0− 6| = 14.

The not normalized taxicab distance between saturday and sunday is dtaxicab(v1, v2) =
|2−1|+|1−1|+|0−1|+|1−0|+|1−1|+|1−0|+|1−1|+|1−1| = 1+0+1+1+0+1+0+0 = 4,
which is normalized to 4−0

14−0 = 4
14 = 0.286.

Simple Matching Coefficient

The simple matching coefficient is originally designed for objects that have boolean values in
their attributes. It can be adapted for string matching purposes by neglecting the count of
characters in a word and simply storing whether this character is present, or by comparing
the count for each character. The second option results in a stricter measurement, so within
the context of this work this algorithm will compare strings by the frequency of its characters.

The simple matching coefficient is defined as the number of matching attributes divided
by the number of total attributes:

smc(v1, v2) =
number of matching attributes

number of total attributes
(2.14)

The number of total attributes is the number of dimensions of the character vectors.

For the example strings saturday and sunday, the character vectors from section 2.2.3 can
be used. The matching attributes are d, s, u and v, so the number of matching attributes is 4.
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The number of total attributes is 8, so the simple matching coefficient is smc(v1, v2) = 4
8 =

0.5.

Cosine Similarity

The cosine similarity between two vectors is defined by the direction of the vectors that are
compared. More specific, the cosine similarity is the cosine of the angle between the vectors,
so if the angle is 0◦, the similarity is 1. For vectors that are perpendicular to each other (90◦

angle), the cosine is 0 and for vectors that point in exactly different directions (180◦ angle),
the cosine similarity is -1.

As the dimensions of the vectors describe the frequentness of each character, the values
can only be greater or equal to 0, therefore there are no two vectors that point in different
directions and the cosine similarity is limited to values between 0 and 1, but it has to be
subtracted from 1.

The euclidian dot product formula (v1 · v2 = ||v1|| ||v2|| cosθ) can be reordered to get the
cosine of the angle between two vectors. The resulting formula is the dot product of the
vectors divided by the product of the vectors’ lengths.

cosθ =
v1 · v2

||v1|| ||v2||
(2.15)

||v1|| denotes the length of v1. The dot product can be calculated by adding the products
of the vectors’ components:

v1 · v2 =
n∑

i=1

v1iv2i (2.16)

The cosine similarity for the two example strings therefore is

cs(v1, v2) = 1− 2 ∗ 1 + 1 ∗ 1 + 0 ∗ 1 + 1 ∗ 0 + 1 ∗ 1 + 1 ∗ 0 + 1 ∗ 1 + 1 ∗ 1√
22 + 12 + 02 + 12 + 12 + 12 + 12 + 12

√
12 + 12 + 12 + 02 + 12 + 02 + 12 + 12

= 1− 2 + 1 + 0 + 0 + 1 + 0 + 1 + 1√
4 + 1 + 0 + 1 + 1 + 1 + 1 + 1

√
1 + 1 + 1 + 0 + 1 + 0 + 1 + 1

= 1− 6√
10
√

6
= 1− 6

3.162 · 2.449
= 1− 6

7.746
= 1− 0.775

= 0.225
(2.17)

2.2.4 Example Result Overview

The following table contains all values for the distance between saturday and sunday,
measured by the above presented distance metrics. The input for the string-based algorithms
are the words themselves (saturday and sunday), their stems (saturdai and sundai), their
soundex codes (S363 and S530) and their cologne phontics codes (8272 and 862). For the
set-based and vector-based algorithms, 1 ≤ n ≤ 3 is used for the n-grams. Values are
rounded to three decimals.
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Distance Metric

String-based Algorithms Word Stem Soundex Cologne

Levenshtein Distance 0.375 0.375 0.75 0.5

Longest Common Substring 0.5 0.5 0.75 0.667

Longest Common Subsequence 0.167 0.167 0.5 0.333

Jaro Similarity 0.247 0.247 0.333 0.278

Jaro-Winkler Distance 0.223 0.223 0.3 0.25

Hamming Distance 0.875 0.875 0.75 0.75

Set-based Algorithms n=1 n=2 n=3

Jaccard Index 0.375 0.8 0.889

Dice’s Coefficient 0.231 0.667 0.8

Overlap Coefficient 0.167 0.6 0.75

Euclidian Distance 0.2 0.329 0.392

Vector-based Algorithms n=1 n=2 n=3

Taxicab Metric 0.286 0.667 0.8

Simple Matching Coefficient 0.5 0.8 0.889

Cosine Similarity 0.225 0.662 0.796

2.3 Classification

Classification is the process of categorizing new observations into predefined classes. In the
case of this thesis, the observations are queries and the classes are predefined categories of
queries.

It is the main feature of ETeC, as all input queries must be assigned one of the known
classes of queries, or it must be determined that the query does not fit any of the known
classes.

Two classification algorithms are employed in ETeC, the weighted k-nearest neighbor and
the nearest centroid classifier. These are outlined in this section.

2.3.1 Weighted k-Nearest Neighbor Classifier

The k-nearest neighbor algorithm calculates the distance to all other (classified) observations
and considers only the closest k neighbors. The observation is assigned to the class that the
majority of these k neighbors belongs to [2].

The selection of the parameter k plays an important part in the accuracy of the classifi-
cation. A bigger k can reduce the effect of noise in the data, but may include observations
with large distances to the query. Using a small k can lead to results distorted by noise. For
k=1 the result is a voronoi diagram.

Fig. 2.3 shows the effect of selecting larger or smaller values for k. The green dot is
the new observation, the continuous line shows the relevant neighbors for k = 3, two red
triangles and one blue box. In this case, the green dot would be assigned to the class of
the red triangles. The relevant neighbors for k = 5 are shown by the dotted line, three blue
boxes and still only two red triangles, which means that the green dot would be assigned to
the blue box class in this case.

Additionally, the neighbors can be weighted so that closer neighbors play a larger role
in the decision than neighbors that are further away [7]. This can significantly improve
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Image Source: https://en.wikipedia.org/wiki/K-nearest neighbors algorithm

Figure 2.3: Illustration of the k-nearest neighbor Algorithm with k=3 (continuous line) and
k=5 (dotted line)

precision, especially when k is large, as it reduces the effect of observations that are far
away. A common and simple weighting function in dependence of the distance d is w = 1

d .

2.3.2 Nearest Centroid Classifier

To classify an observation using the nearest centroid classifier, the mean distance from the
observation to each class must be calculated. The class with the nearest mean is the class
that is assigned to the observation.

Using this algorithm with the TF-IDF vectors is also known as Roccio Classifier[10], due
to its similarity with the Roccio Algorithm[23].

2.3.3 Nearest Sample Classifier

The nearest sample classifier is a special case of both the nearest centroid and the nearest
neighbor classifier, if every class only consists of one sample. In the case of classes with
several samples, the class with the smallest distance from any of its samples to the new
observation is chosen.

2.4 Ensemble Methods

Ensemble methods enjoy great popularity in machine learning contexts [20][4], as they can
overcome several problematic fields, such as learners getting stuck in local optima or wrong
hypothesis caused by the choice of the training data set. For pure classification without
learning there is less information, but the principles should apply as well, as the presented
string distance metrics could as well be trained classifiers.

Condorcet’s jury theorem serves as basis for ensemble methods [1]. Based in political
science, the Marquis de Condorcet argued, that, given a choice between two options, a
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jury of independent voters is more likely to pick the correct choice, the larger the jury is.
Furthermore, each voter must have a probability higher than 50% of choosing the right
decision[13].

Within the scope of this thesis, the voters are the distance metrics. There are several
methods of combining the individual votes, that are presented in the following sections.

2.4.1 Averaging

Averaging is the most common method for ensembles that handle numeric values. As the
name implies, the ensemble’s result is the average of the individual classifiers. There are two
different kinds of averaging, simple and weighted averaging.

The formula for simple averaging is shown in equation 2.18. The individual distances di
of each string distance metric are added up and divided by the number of metrics n.

D(v1, v2) =
1

n

n∑
i=1

dn(v1, v2) (2.18)

Weighted averaging introduces the idea of different importances of the individual distance
metrics. These weights can be predefined or dependent on the input and its attributes,
within the scope of this thesis these attributes are for example number of words of the query
or lengths of the words. The formula for weighted averaging is shown in equation 2.19. Each
distance di is multiplied by a weighting factor wi specific for this metric.

Dw(v1, v2) =
1

n

n∑
i=1

widn(v1, v2) (2.19)

Simple averaging can be seen as a special form of weighted averaging with all weights
wi = 1, but weighted averaging is not superior in most cases [28]. A lot of weights have to
be learned which can quickly lead to overfitting, and is contrary to the no-learning design of
ETeC.

2.4.2 Voting

Analogous to averaging, voting is the go to method for nominal outputs. Each classifier
determines the class it should belong to, and then a vote is cast to determine the final result.
Several methods are common for voting procedures:

• Majority Voting: If any class gets more than 50% of the votes, this class is assigned
to the new observation, otherwise the observation gets rejected.

• Plurality Voting: The class with the most votes is assigned to the observation.
Rejection is not possible, as there is always at least one class with the largest number
of votes. Ties are possible, and must be broken arbitrarily.

• Weighted Voting: Similar to plurality voting, but each classifier gets a weight ac-
cording to its classification precision.
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This section provides insight into the conceptual design of ETeC. The goal is to build an
ensemble classifier that is able to identify short text requests. The first use case is planned
to be a speech control tool for smartphones. But in contrast to its existing competitors like
Alexa1, Siri2 or the Google Assistant3, ETeC is designed to work offline and without the
need for machine learning.

This chapter provides information about the requirements for ETeC, the basic structure
and the scientific issues that are adressed in this thesis.

3.1 Requirements

ETeC must meet a set of requirements that set it apart from other text classifiers. These
requirements are as follows:

• Complete offline functionality: All calculations must take place on the device
where the query is created, no communication to other devices needed.

• Easily updateable: Adding, removing or changing stored queries must be possible
without much effort

• Low demands to CPU and Memory: As the majority of devices ETeC runs on
are smartphones, memory and cpu requirements must be low.

• Fast: Queries should be evaluated quickly.

3.2 Internal Representations

There are four different types that are used in ETeC:

• Words are the basic building blocks.

• Queries are short texts that are either in the list of known observations or are to be
classified. Essentially, queries are sentences with a specific intent, for example, ”Where
can I get a Hamburger” would be a query with the intent of directions to a hamburger
restaurant.

• Variables are optional parts of queries. They can be exchanged without altering the
class of a query. An example would be the query ”Where can I get a Hamburger”,
where Hamburger is the variable (cf. ”Where can I get a Hot Dog”). Variables have

1https://www.amazon.com/alexa/
2https://www.apple.com/ios/siri/
3https://assistant.google.com/
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names and a list of manifestations. In this case the variable’s name could be Fast

Food while the manifestations could be [Hamburger, Cheeseburger, Hot Dog, ...].

• Query Classes are collections of queries that have the same intent. For example, the
queries ”Where can I get a [Fast Food]?” and ”Where is the nearest [Fast Food] joint.”
both belong to the class ”local search”. Classes store information on which variables
are allowed, therefore every query belonging to this class has the same constraints
regarding variables. The class ”local search” could allow variables such as [fast food]
and [drinks].

To reduce the workload for the classification algorithm, all the different forms a word can
be in are created at the startup.

3.2.1 Words

Words are stored as purely lower case strings. Additionally, the soundex and cologne pho-
netics codes and the stem are saved as strings as well.

The n-grams are stored in two different versions: as sets and as vectors. All n-grams for
1 ≤ n ≤ 3 are stored. Finally, the TF-IDF vector is calculated and stored as well.

For example, the complete internal representation of Mississippi is

id 42

word mississippi

soundex m221

cologne phonetics 6881

stem mississippi

1-gram set i m p s

1-gram vector 4 1 2 4

2-gram set ip is mi pi pp si ss

2-gram vector 1 2 1 1 1 2 2

3-gram set ipp iss mis ppi sip sis ssi

3-gram vector 1 2 1 1 1 1 2

TF-IDF 0.2 0.81 ... (random values for demonstration purposes)

In the table the TF-IDF vector values are random values and are just for demonstration
purposes. It is also notable that the corpus in the scope of this thesis is the collection of all
queries, and a document is the collection of all queries of a single class. The collection of all
words is referred to as dictionary.

3.2.2 Queries and Classes

Queries are saved as text and as a sequence of word IDs. Additionaly, their type is stored
as well. Classes are represented by their name and a list of allowed variables.

A sample dictionary, query and query class is demonstrated in the following tables:
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Dictionary

word id

a 1
can 2
get 3
how 4
i 5
we 6
when 7
where 8

Query

text ”where can i get a [fast food]”

ID sequence 8, 2, 5, 3, 1

type local search

Class

name local search

constraints [fast food],
[drinks], ...

3.3 Preparations vs Runtime

To keep the query-catalogue updateable, ETeC must be able to accept a list of queries in
a human readable form. Once loaded and processed, the catalogue can be stored in binary
to reduce load times. Unless there are updates to the catalogue, the binary version can be
used.

When the human readable version is loaded, some preparations must be done:

• Store the words used in the queries. For each word:

– transform it to lower case

– replace special characters (ä to ae, for example)

– remove all remaining non alphanumeric characters

– create the soundex code

– create the cologne phonetics code

– extract the stem

– extract n-grams for 1 ≤ n ≤ 3 as sets and vectors

– assign an ID

• Store the queries with word IDs and class

• Calculate TF-IDF vectors for each word

• Store the type of variables for each class

• Store constant variables

These operations are done to keep the computational cost at runtime as low as possible.
Storing all the different forms for each word means a higher memory load, but decreases
runtime significantly.

Once everything is stored, calculated and extracted, it can be saved in a binary file, which
speeds up the loading time considerably. All of these internal representations must be created
only, when updates to the query-catalogues are issued.
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3.4 Classification Process

The first step of the classification is the word-level analysis. The goal is to identify the words
from the input and generate a sequence of their ids, so that the sentence-level analysis can
compare these instead of strings.

3.4.1 Word-Level Analysis

The word-level analysis is divided into two phases, the preselection and the actual compari-
son. Every word of the input text must be matched against all words in the dictionary. This
process is even more costly, as the matching process consists of many or all of the string
distance calculations presented earlier.

To improve performance, a preselection can be made. Words are ruled out, that don’t fit
certain criteria before the comparison even begins.

Preselection

The preselection process is a very simple character comparison. If the first n characters of
the input word don’t match the first n characters of the word in the dictionary, the string
distance calculations will not be performed and the next dictionary word is tested.

The subject of this comparison can vary. Either the word, the stem, the soundex or
cologne phonetics code can be used.

It is very important to determine the right value for n, as if it is too large, the right word
might be pruned, and if it is too low, the search will slow down. n must be dependent on
the word size.

Section 4.3.1 will provide a list of parameters, that work best in the scope of the conducted
tests, and insight into the testing method.

Additionally to filtering out unfitting words before the comparison, a threshold can be
used to stop comparison, once a word is found, that is similar enough to the input word, i.e.
the distance between the words is below the given threshold. Section 4.3.2 will provide the
testing methods and optimal thresholds.

Comparison

The actual comparison will take place for all words that are permitted by the preselection
algorithm. For each chosen distance metric, the distance between every input word and
every word from the dictionary is calculated. The decision on the most similar word can
be reached either by choosing the word with the lowest average distance or by selecting the
word with the most votes (see section 2.4).

To find the correct ensemble size, composition and method, several tests were conducted.
Section 4.4.5 shows the correlation tests and provides a table with the results, Section 4.2
features the performance and accuracy of the string distance metrics, and Section 4.4 exhibits
the effectiveness of the ensemble methods.

3.4.2 Sentence-Level Analysis

The sentence-level analysis is very similar to the word-level analysis, as both entities are just
sequences; words being sequences of characters and sentences being sequences of words. Once
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the input queries are broken down into sequences of word-ids, the comparison of sentences
mirrors the comparison of words.

The main difference between sentence-level- and word-level analysis is that on the sentence
level, multiple sequences with major differences can belong to the same class, for example the
sentences ”Where is the nearest supermarket” and ”How can I get to the nearest supermarket”
basically have the same meaning, but are vastly different. The classes could be introduced
to the word-level in the form of groups of synonyms, for example the verbs start, begin and
commence, but in the context of this thesis, this additional overhead would lack an associated
benefit.

3.4.3 Named Entities

Named entity is a term that originated in the field of message understanding and information
extraction [5]. In this context, a named entity is a sequence of words that depicts a real-
world entity, like a person, an object or a brand name. In the context of this thesis, named
entities are the variables of the queries.

At the time of this thesis, the named entity extraction is motivated by the assumption
that the variable manifestations are part of the dictionary with the same id. For example,
burger, pizza and sandwich all have the same id, as they are part of the variable group fast
food.

Many other techniques for named entity recognition exist[19] [17], but are not part of this
thesis.

3.5 Research Questions

This thesis aims to provide answers to the following questions:

• How accurate and how fast can a text classifier be without learning?

• What is the ideal ensemble method for this use case?

• What are the ideal weights and thresholds for the string distance metrics?

• What is the optimal method and the corresponding parameters for preselection?
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This section will explain the tests that were conducted. These tests can be split into three
different categories:

• Correlation Test: This test focuses on the correlation of the distance metrics. As
the condorcet-jury-theorem states, the accuracy of the ensemble improves with more
independent jury members. This test should provide insight into the process of building
ensembles that outperform the individual metrics.

• Performance-based tests: As one requirement of ETeC is to run on smaller devices,
such as smartphones, performance may be critical. These tests aim to clarify how large
the ensembles may be and still provide acceptable performance. Another performance
factor may be the size of the dictionary.

• Accuracy-based tests: The accuracy of the individual distance metrics, as well as
the ensembles, plays the largest role. These tests state how well each ensemble or
metric perform.

These tests are performed on two different tiers: The word-level-analysis and the sentence-
level-analysis.

The goal of the tests of the word-level is to find the best method to determine for a given
word the closest word in a dictionary. The definition of the best method can vary for each
application area, for example in a mobile environment performance might be more important
than accuracy.

The sentence-level analysis focuses on finding the correct corresponding query class. The
similarity between the sentence- and the word-level analysis becomes apparent when taking
into account the representation of words and sentences: both are sequences. While words
are made up of characters, sentences are composed of words. Thus the algorithms can be
applied to both with minor adjustments. These adjustments are explained in section 4.5

With the exception of the correlation test, each test is executed with a number of different
testset sizes. These testsets are either random collections of words or classified sentences.

In this section, the distance metrics, word representations and precompare methods will
be referred to by abbreviations, depicted in the following table:
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Term Abbreviation

Distance Metrics

Levenshtein Distance lev

Longest Common Subsequence lss

Longest Common Substring lcs

Jaro Similarity jar

Jaro-Winkler Distance jwd

Hamming Distance ham

Jaccard Index jac

Dice’s Coefficent dic

Overlap Coefficient ovr

Euclidian Distance euc

Taxicab Metric (Manhattan Distance) man

Simple Matching Coefficient smd

Cosine Similarity cos

Word Representations

Word wrd

Soundex snd

Cologne Phonetics clg

Stem stm

1-gram 1gr

2-gram 2gr

3-gram 3gr

Precompare Methods

Word-based wopc

Soundex-based sopc

Cologne Phonetics-based copc

Stem-based stpc

No Precompare nopc

4.1 Testset Generation and Sources

There are two types of testsets, words with their different forms and a classified collection
of sentences.

The set of words is extracted from Daniel Naber’s Language Tool, using the instructions
on his website 1. It contains a list of 362.671 forms of 50.307 different german words. At the
start of the tests, all forms are read and stored as strings (see Appendix 3). A set of indices
with the size of the word-set is created and shuffled using the Mersenne Twister [16]. The
first n indices of the shuffled set are utilized to build the final testset, where n is the number
of words defined by the user. The testset contains the words in their different forms (wrd,
snd, clg and stm).

There are two sets that are being generated, the words set and the stems set. For the stems
set, the wrd representation is replaced by the stm of the word, thus creating a potentially
smaller set (The stems set is smaller, when two words are present in the words set, that share

1http://www.danielnaber.de/morphologie/, visited on 08.12.2018
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the same stem). The following table shows the average size of the stem sets for different
words set sizes. For each size, there were four random testsets generated.

Words set size Average stems set size Percentage

10 10 100%

50 50 100%

100 99,75 99,75%

250 248,5 99,4%

500 494,25 98,85%

1000 977,25 97,73%

2000 1907 95,35%

4000 3660 91,5%

8000 6675,25 83,44%

16000 11545 72,16%

32000 18164,5 56,76%

100000 31912 31,91%

200000 41726 20,86%

362671 50307 13,87%

For the tests, the words set is used as source, and the stems set as target, i.e. for every
word from the words set, the goal is to find the corresponding stem in the stems set. For
fast validation, the corresponding ids are stored in a map.

The collection of classified sentences was created in a collaboration with the Europa Park
Rust2. In a survey amongst the visitors of the amusement park, a list of five topics with
up to nine different questions per topic was collected. These questions were classified by
an employee of the park and the writer of this thesis. Additionally, the FAQ section of the
park’s hotel page3 was incorporated to the collection of questions, raising the total number of
questions to 35. Along with these questions, 78 variables were introduced, consisting mostly
of points of interest (PoIs) in the park. This testset is interesting because almost every
question uses variables, and the variables may be easily confused (for example there are the
PoIs eurosat, euromir and eurotower), but there are only few questions and classes.

Therefore another testset is used, the SMS Spam Collection Data Set from the UCI Ma-
chine Learning Repository4. This dataset contains 5574 sms messages that are classified into
two categories, spam and ham.

4.2 Distance Metrics

Before ensembles are generated and tested, it is important to see how the individual distance
metrics perform. Each distance metric was tested by providing a source testset, from which
every word needed to be matched to its corresponding stem in the target testset. This was
done by simply iterating over the target testset, calculating the distance to every candidate
and picking the one with the lowest distance (see Appendix 4). The overall accuracy of an
algorithm is the number of correct classifactions divided by the size of the source testset.

2https://www.europapark.de/, visited on 08.12.2018
3https://www.europapark.de/de/uebernachten/info-service/faq-europa-park-hotels, visited on 03.01.2019
4https://archive.ics.uci.edu/ml/datasets/sms+spam+collection, visited on 03.01.2019
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For larger testsets this is a very time-consuming process, therefore the employed testsets
contained 10, 50, 100, 250, 500, 1000, 2000, 4000, 8000 and 16000 words. According to
Liu Na [18], 95% of common texts are made up by about 3000 words, so the testsets are
big enough to reproduce different use cases. For each testset size, four random sets were
generated and the results of these four tests were averaged.

In addition to the accuracy, the performance of each algorithm was recorded, i.e. the total
time it took to classify all words. This time was also divided by the number of comparisons,
which is the number of words in the source testset multiplied by the size of the target testset.
Appendix 6 shows the class that was used to measure the time.

The process of finding the most similar word in the dictionary can be seen as the special
case of both the nearest neighbour and nearest centroid classifier presented in Section 2.3.3,
where the classes only consist of one observation, or phrased the other way around, each
word in the dictionary represents its own class. In this case with one-piece classes, both
classifiers behave the same.

4.2.1 Accuracy Results

Figure 4.1: Results of the individual accuracy tests for each string-based distance metric.
Metrics with the same algorithm but different input types (such as stm or clg)
share the same color.

Fig. 4.1 shows the test results for the string distance metrics, a table with the results
can be found in Appendix 9. What can be seen is that up until 1000 words, several metrics
still have accuracies higher than 90%, with ham stm, jwd stm and lev stm with the highest
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accuracy of 97,3%. At 4000 words, these three still lead, but their accuracy is reduced to
90,333%, dropping to 71.333% at 16000 words. At 500 words, the last metric (ham wrd) has
a local maximum, but with increasing testset size the accuracy of every algorithm declines.

The different manifestations of the lss algorithm also show that the choice of type plays
an important role. While lss wrd and lss stm are among the top classificators, lss clg is
the second worst and lss snd can be found in the lower third of all string-based distance
metrics. This does not come as a surprise, given that with increased word count, it is more
likely to have words that sound similar.

Figure 4.2: Test results of set-based string distance metrics.

The set-based algorithms draw a similar picture (see Fig. 4.2). Interestingly, the 2gr

versions of the algorithms show the best results, while the 1gr and 3gr versions compete for
the least accurate method. Again, up until 1000 words, results of up to 95% are reached,
but at 16000 words the highest accuracy is reached by jac 2gr with only 43,67%.

In line with expectations, the results of the vector-based algorithms are very similar to
the results of the set-based methods (see Fig. 4.3). Only the absence of an approach with
an accuracy as low as ovr 1gr sets the two charts apart.

Appendix 7 provides a summary of all individual string distance metrics, colored by type.
Here can be seen, that every algorithm suffers the same fate of declining accuracy with an
increasing number of words.

4.2.2 Performance Results

The performance of the string distance metrics is highly dependent on word size and for
the set and vector based approaches on the number of unique characters in a word. Fur-
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Figure 4.3: Test results of vector-based string distance metrics.

thermore, the implementation of the set- and vector-based algorithms leaves much room for
optimization, as vectors must be augmented for every comparison. This decision was made
with memory requirements in mind, as otherwise each word would need to reserve space
for each character of the alphabet, even when this character is not present in the word (see
Section 2.2.3). An implementation of sparse vectors would solve this problem, but the aim of
the thesis is not the fastest implementation, but improving the performance by other means.

To smooth out the effect of different word sizes, the presented results are from a testrun
with 16000 words. The tests were run without any multithreading optimizations on an Intel
Core i7 4790k with 16GB RAM. The testing program was built using Visual Studio 2017
and its default compiler flags for the Release configuration on the x64 Platform:

/GS /GL /W3 /Gy /Zc:wchar t /Zi /Gm- /O2 /Fd"x64\Release\vc141.pdb"
/Zc:inline /fp:precise /D "NDEBUG" /D " CONSOLE" /D " UNICODE" /D "UNICODE"

/errorReport:prompt /WX- /Zc:forScope /Gd /Oi /MD /FC /Fa"x64\Release\"
/EHsc /nologo /Fo"x64\Release\" /Fp"x64\Release\ETEC-Tests.pch"
/diagnostics:classic

Figure 4.4 shows the average time per comparison for every distance metrics. The jumps
from lcs wrd to ovr 1gr and from ovr 2gr to man 1gr can be explained by the aforemen-
tioned implementation details.

Interestingly, the set- and vector-based algorithms show clearly, that 1-grams are fastest to
process, while 2-grams mostly come in last place. The reason for the faster 3-gram processing
seems to lie in quantity of n-grams that needs to be processed. While one could think that a
lower n means more n-grams, it is important to notice that multiple occurences of the same
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n-gram are only counted once for the set-based algorithms. For the vector-based algorithms
it does not make a difference either, as recurring n-grams only increase the associated value
in the vector, not the count of n-grams. As clarification, the table from Section 3.2.1 shows
that the word Mississippi has only four 1-grams and seven 2- and 3-grams.

Figure 4.4: Performance comparison of the algorithms. The y-axis depicts the average time
per comparison in ms.

As the ham-algorithms simply perform comparisons for each position in the strings, it
comes as no surprise that the different versions of this algorithm take first place.

4.3 Preselection and Thresholds

The performance results from Section 4.2.2 show that finding the most similiar word in a
small to medium dictionary can be done quite fast, but for very large dictionaries long com-
putation times are predetermined. For example, the Second Edition of the Oxford English
Dictionary contains 218.632 words (of which only 141.476 words are currently in use)5. Us-
ing this dictionary, it would take 12,68ms to find the most similar word using the fastest
algorithm, (ham snd). Using the slowest algorithm, euc 2gr, it would take 1.2 seconds.
Considering the usage of mutliple algorithms, these times will be even higher.

This section presents two methods to reduce computation time while keeping accuracy the
same, sometimes even improving it.

5https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language/, visited on
26.12.2018
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4.3.1 Preselection Algorithms

One possible solution to improve scaling is the application of the preselection algorithm
presented in Section 3.4.1. The goal of this algorithm is to reduce the number of costly
comparisons, by ruling out words from the comparison based on the first few characters.
The idea is related to stemming, because they both follow the same assumption, that words
and their different forms mostly have the same characters in the beginning.

For a given input word, the first n characters are matched against the first n characters
of every word in the dictionary. If they are the congruent, the actual comparison using the
string distance metrics is performed. If not, the word from the dictionary is ignored.

The goal of this algorithm is to reduce the number of costly comparisons and thus increase
performance. To this end, a suitable n must be found, as a too small one would lead to too
many comparisons and a large n might decrease accuracy, if the correct words are filtered
out. Additionally, the size of n might vary with word sizes.

To find a fitting n, all words from Daniel Naber’s Language Tool were taken and sorted
by size. Then for each size, the percentage of words that start with the same n characters
as their stem was calculated for all ns. Beginning with n = 1, each n was tested, and the
first n with a percentage below 95% was chosen. The same was done using the soundex and
cologne phonetics algorithms on the words and their stems. Words with sizes smaller than
4 have been ignored, but this limit was ignored for the cologne phonetics codes. Soundex
codes have the length 4 by definition.

A table with optimal values ns for all word sizes can be found in Appendix 10. These
values are only optimal in the scope of the presented tests and may need to be recalculated
for other use cases.

Each of the 45 string distance metrics was tested with five different preselection algorithms:
word-based, stem-based, soundex-based and cologne phonetics-based preselection. The fifth
algorithm was a dummy function, that always returned true, so it is equivalent to using no
preselection. These tests were performed on a testset of size 16000. For better readability,
only the results for the fastest (ham snd), the slowest (euc 2gr), one of the most accurate
(lev stm) and one of the least accurate (ovr 1gr) algorithms are presented. These four also
represent all three types of string distance metrics.

Figure 4.5 shows the changes in accuracy and computation for the four algorithms. As
expected, every preselection method reduces the computation time, in the case of euc 2gr

with the stem-based preselection from 1082.22 seconds down to 4.05 seconds. Additionally,
the accuracy benefits greatly from the preselection. ovr 1gr jumps from 0.625% to 72.32%,
as the stemming-based preselection filters out many unfit words.

4.3.2 Thresholds

So far, the whole dictionary is iterated over in order to find the most similar word. With
the preselection the computation time can be greatly reduced, but still every word needs to
be examined. This can be prevented by using thresholds. Once the distance between an
input word and any word in the dictionary is low enough, i.e. below a given threshold, the
iteration can be stopped. The thresholds are specific to the distance metric.

Once again, it is important to find a fitting threshold, so that the accuracy is not di-
minished. To find optimal thresholds, every threshold between 0 and 0.5 in steps of 0.01
was tested using multiple testset sizes, until the thresholds converged to the final values,
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Figure 4.5: Comparison of accuracy and performance of the different preselection algorithms.
These results are based on a testset of size 16000. The unit used in the accuracy
figure is percent, the computation times are in seconds.

presented in Appendix 12.

Figure 4.6 shows the change in accuracy and performance for the aforementioned algo-
rithms with and without stopping below the given threshold. This test was performed using
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a testset size of 4000 words. As one can see, the accuracy drops by two to four percent, but
computation time is reduced by a significant amount.

4.3.3 Combination of Thresholds and Preselection

Preselection and thresholds can be used in combination, further reducing the computation
time, but also reducing the accuracy, as Figure 4.6 shows. For clarity, only the most accurate
of the previous algorithms (lev stm) is shown with the different preselection algorithms and
the thresholds.

Figure 4.6: Comparison of accuracy and performance of the algorithms with and without
thresholds. The testset used for this test contained 4000 words.

4.4 Ensemble Methods

The last section shows the possibilities and limitations of the string distance metrics when
used individually. This section illustrates the effects of using an ensemble of multiple al-
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gorithms. As presented in Section 2.4, two methods of combining the results are used:
averaging and voting.

4.4.1 Assembling Ensembles

Ensembles are subsets of a set containing all 45 algorithms, S = {lev wrd, lev stm, ..., cos 3gr},
so the number of possible combinations is the cardinality of the power set minus one,
as the empty set is not an ensemble. The count of all possible ensembles therefore is
|P(S)| − 1 = 2|S| − 1 = 245 − 1 = 35, 184, 372, 088, 832 − 1 = 35, 184, 372, 088, 831. As
it would be unreasonable to test all of these ensembles, a selection must be made.

First, all ensembles with an even number of algorithms were pruned, so that voting ensem-
bles could not produce a tie. Then, a selection was made based on results from tests with all
ensembles of size 3 and size 5. There are 14,190 ensembles of size 3 and 1,221,759 ensembles
of size 5. It was found out, that over 80% of the 1000 most accurate ensembles of size 5 were
supersets of the 1000 most accurate ensembles of size 3. This led to the assumption that
supersets of good ensembles will still perform good.

Following this hypothesis, the 20 most accurate ensembles (the best ten voting and the
best ten averaging ensembles) for a given size i were taken and all supersets of size i+2
were generated. These were tested with a testset of 1000 words four times each. Through
repetition of this method up to i = 43, in total 137,577 ensembles were generated and tested
with 1000 words.

4.4.2 Ensemble Accuracy

Additional tests with 2000, 4000, 8000 and 16000 words were made, but in order to keep test-
ing times within reason, the number of ensembles was gradually tuned down. The following
table shows the number of ensembles used for each testset size:

Testset Size Number of Ensembles Size Explanation

1,000 201 best 10 of each size

2,000 201 best 10 of each size

4,000 41 best 2 of each size

8,000 21 best of each size

16,000 6 best 6 overall

Figure 4.7: Illustration of ensemble count for each testset size between 1,000 and 16,000
words.

After each round of tests, the best n ensembles were kept for each ensemble size. Ensemble
sizes are all odd numbers in range from 5 to 45. There is only one ensemble with size 45,
namely the ensemble that contains all individual algorithms.

Each testset size was tested four times, and the results were averaged. Figure 4.8 shows
the highest accuracy of the individual algorithms compared to the highest accuracy of all
ensembles, grouped by testset size. While the accuracy of the best individual distance metric
(lev stm) clearly decreases with increasing word count, there is always at least one averaging
ensemble that reaches 100% accuracy. The voting ensembles are slightly below 100%, but
are still by far more accurate than the individual metrics.
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Figure 4.8: Comparison of the most accurate individual metric and ensembles with averaging
and voting.

The smallest tested averaging ensemble, that classified all 16000 words correctly, contains
lev stm, lcs wrd, jar stm, jwd stm and man 2gr. The best voting ensemble had 15952 cor-
rect classifications (99.7%) and contains lev stm, lss wrd, jwd wrd, ham stm and jac 3gr.
The dominance of word-, stem- and cologne phonetics-based algorithms is apparent, but
might be caused by the method of generating ensembles. Set- and vector-based algorithms
seem to be less succesful in ensembles. The next sections try to enlighten the factors that
determine the quality of an ensemble.

The used method for generating good ensembles is very time consuming, as one has to:

1. build ensembles

2. generate their supersets

3. test these supersets

4. prune the bad performing ensembles

5. repeat from step 2 until maximum size is reached

To find a better way to build ensembles, one must first understand, why a specific ensemble
performs good or bad. The condorcet-jury-theorem states that the quality of a jury increases
with the number of independet jurors. Translated to fit to the proposition of this thesis,

36



4.4 Ensemble Methods

the quality of an ensemble increases with the number of individual algorithms, but they also
must be as independent of each other as possible.

The following sections examine different aspects of ensembles, for example the size of an
ensemble, and opposes them with the accuracy of the ensemble. To provide a measure of
correlation, the Pearson correlation coefficient is calculated using the following formula:

r =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

(4.1)

where:

•
∑

is short for
∑n

i=0

• n is the total number of word pairs

• xi is the parameter, for example the ensemble size for ensemble i

• yi is the accuracy of ensemble i

The pearson correlation coefficient has values between -1 and +1, where 0 is no correlation
and -1 and +1 are total negative and positive correlations.

4.4.3 Average Accuracy

Figure 4.9: The average accuracy of ensemble members for each ensemble of size 5. The
x-axis shows the accuracy of the ensemble, the y-axis the average accuracy of the
ensemble’s members.
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To determine the correlation between the accuracies of the members of an ensemble and
the ensemble’s accuracy, all ensembles with five members were generated and tested with a
testset of 1000 words. The results are presented in Figure 4.9.

The Pearson correlation coefficient between the average accuracy of an ensemble’s members
and the accuracy of the ensemble is 0.34040113, indicating a slight correlation.

4.4.4 Size

The previously mentioned 137,577 generated ensembles were taken as a basis for the size-
based accuracy comparison. Each of these ensembles were tested four times with a testset
containing 1000 words. Figure 4.10 shows the average accuracies of these ensembles. As one
can see, the average accuracy meanders between 97% and 98% with the only outlier, namely
size 3 with only 94.2439%. This suggests that up until five ensemble members, size plays an
important role, but it is important to remember that the tested ensembles represent only a
fraction of the possible ones (137,577 out of 35,184,372,088,831).

Figure 4.10: Comparison of the accuracy of different sized ensembles.

The correlation coefficient between the size of an ensemble and its accuracy is -0.09057907,
supporting the assumption that size does play a minor role.

4.4.5 Correlation of Distance Metrics

With the subordinated role the size of the ensemble seems to play, this section illustrates the
effect the average correlation between distance metrics in an ensemble has on the accuracy.

The correlation of distance metrics is also calculated using Pearson’s correlation coeffi-
cient. The input data sets are the distances for each pair of words wi, wj calculated by
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two different distance metrics X and Y . So each distance dX(wi, wj) is matched with the
distance dY (wi, wj).

The correlation test was conducted nine times with randomly generated testset containing
1000 words each. For a collection of 1000 words, there are 1000 · 999 = 999000 pairs of
words. Distances are calculated for each of these pairs and for each distance metric, resulting
in 999000 · 45 = 44955000 distance computations. The pearson correlation coefficient is
calculated for every pair of distance metrics, i.e. 45 · 44 = 1980 times.

Appendix 8 shows a table for all 45 distance metrics. The correlation coefficient is lower
for blue cells, and red cells indicate a higher correlation. The noticable red box area at the
bottom right shows that the set-based and vector-based algorithms are more interrelated
than the string-based algorithms. This does not come as a surprise regarding that each set-
and vector-based algorithm is present three times, with different n-gram sizes.

Figure 4.11: Relationship between Accuracy and Average Correlation in Ensembles of Size
5. The opacity illustrates the number of ensembles in this area, with darker
color meaning more ensembles.

To calculate the average correlation of an ensemble, all pairs of members are built and
their correlations are summed up. This sum is then divided by the number of member pairs.

Figure 4.11 shows the average correlation for all 1,221,759 ensembles of size 5 together
with their accuracy. Although it cannot be observed that a lower average correlation entails
a higher accuracy, most ensembles’ average correlation lies below 0.5. It is interesting to
notice that the spread of the average correlation grows with the accuracy of the ensemble.

The average correlation of metrics in an ensemble was contrasted to the accuracy, and
the pearson correlation coefficient was calculated for this comparison, yielding a result of
0.04673. Again, it can not be generally said that the correlation between ensemble members
plays an important role for the accuracy of the ensemble.
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4.4.6 Ensemble Performance

This section compares the performance overhead of the two ensemble methods, averaging
and voting. To this end, 45 ensembles of all sizes were built. The following pseudo code
snippets show the different algorithms:

// averaging

stopwatch.start();

foreach (input_word : input_dictionary) {

foreach (target_word : target_dictionary) {

foreach (metric : ensemble) {

calculate distance between input_word and target_word

}

calculate the average distance

if (average distance < current minimum) {

store average distance as current minimum

}

}

return target_word with lowest average

}

stopwatch.stop();

// voting ensemble

stopwatch.start();

foreach (input_word : input_dictionary) {

foreach (metric : ensemble) {

foreach (target_word : target_dictionary) {

calculate distance between input_word and target_word using metric

if (distance < current minimum) {

store distance as current minimum

}

}

}

count the votes by each ensemble

return the target_word with most votes

}

stopwatch.stop();

The tests were conducted with 100 input words and a 10.000 target words. Figure 4.12
shows the time it took each ensemble to perform the classification. The steep rise in time at
ensemble size 24 can be explained by looking at Figure 4.4, as the metric with number 24 is
the first set-based algorithm, that is substantially slower.

It can be seen that voting introduces more performance overhead than averaging.

4.5 Sentences

Sentences can be classified similarly to the way words are found in the dictionary.
Sentences can be seen as a sequence of words (or their ids). These sequences are very

similar to strings, but the number of characters increases from 26 characters (only lower
case) to the number of words in the dictionary. As the distance metrics do not compare
individual items in a sequence, or characters in a string (for example a is closer to b than to
c), but only equality checks (a is not equal to b), this has no effect on the distance metrics.
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Figure 4.12: Time in seconds it takes to classify a word using different ensemble sizes.

The addition of variables as presented in Section 3.4.3 brings another slight change. To
realize this feature, all variables of a single type are mapped to the same id. For example,
hot dog, pizza and burger could all share the id 42. This way, the sentences "Where can I

buy a hot dog", "Where can I buy a pizza?" and "Where can I buy a burger?" are
transformed into the same sequence of ids.

The last change is the introduction of classes. One could argue that the dictionary is a
collection of classes with only one observation each. Or in other words, each word of the
dictionary represents its own class. For classes with multiple observations, there are two
other classification algorithms that can be used. These methods are the k-nearest-neighbour
algorithm and the nearest centroid classifier, presented in Section 2.3.

As the triangle inequality is not fulfilled for all distance metrics, the centroid for every
class must be recalculated for every input question.

To test the classification of sentences it makes sense to split the testsets into two groups,
a sample set and a validation set. The sample set depicts the texts that are known to the
ETeC system, and the validation set are a combination of known and unknown sentences
that need to be classified.

4.5.1 Europa Park Testset

The Europa Park testset is used to validate the functionality of variables in sentences. As
there are only a few questions it is not well suited for splitting these questions into a sample
and validation set, so all input sentences were known to the ETeC system. The used questions
and variables can be seen in Appendix 13 and 14.

For the tests, all questions were assigned random variables of the correct type four times,
so each sentence was classified four times with different variables. The dictionary contained
the 189 words that were present in the sentences, and the most accurate ensemble was used
to classify the words of the input questions, namely the averaging ensemble presented in
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Section 4.4.2.
As in the context of questions, neither stemming nor soundex or cologne phonetics are

useful, the string-based distance metrics were used on the sequences of word ids. Set- and
vector-based approaches were given the bigrams of the sequences, as they proved to be the
most accurate. Sentence classification was done by an ensemble that contained all of these
metrics and used the averaging method.

With these small sentence and word collections, it does not come as a surprise that all
sentences and variables were classified correctly. On average the classification of a single
sentence took less than 5ms, which allows for the use of the ETeC system on a variety of
different devices.

4.5.2 SMS Spam Collection

This testset contrasts with the europa park testset, as it has many questions (5574), but only
two classes. This allows for a few interesting observations considering the needed number of
sample questions per class. For the tests, a fraction of these questions were chosen randomly
to build the classes. These were used to classify all questions. The number of correct
classifications divided by the number of questions provides the accuracy of the method. All
tests were performed with an ensemble containing all the distance metrics presented in the
previous section.

The following table shows the different sizes for the sample set and classification set, as well
as the results using the different classification algorithms, namely k-nearest neighbor (knn),
nearest centroid classification (ncc) and simply assuming the class of the closest sample (cs).
Additionally, the total time it took to run all three methods was recorded. The sets were
chosen randomly from the collection. To reduce the factor of randomness, each test was
conducted four times and the results were averaged.

Sample Set Size Test Set Size cs knn ncc total time
sample set size

100 100 100% 92% 50% 21.873s

100 200 92% 87.5% 39% 42.4111s

100 500 90.6% 90% 40.4% 107.987s

100 1000 88.4% 88% 43.1% 189.126s

100 2000 88.3% 88.7% 48.2% 365.318s

100 5574 92.88% 91.8% 41.6% 804.433s

50 1000 84.7% 85.6% 44.1% 130.284s

200 1000 89.4% 89.4% 29.5% 231.544s

500 1000 92.6% 90.1% 34.6% 482.468s

1000 5574 93.88% 91.8% 41.6% 3615.08s

The last four tests show that a larger sample set does not mean a significantly higher
accuracy, if the augmentation of the sample set is not specifically tailored to the wrongly
classified observations.

Generally it can be seen that the nearest centroid classifier seems to be unfitting for
this use case. Additionally, the number of sample question must be chosen based on the
requirements of the case of application. A high number increases the accuracy but also
reduces performance. As ETEC does not need to be trained, it is possible to start with a
minimum number of questions and add ones that are not classified correctly, thus increasing
the number of questions based on real demand.
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This thesis presents the ETeC, a system for text classification using ensembles of simple
string-, set- and vector-based algorithms, with the restriction of not using any kind of learning
algorithms. Without learning, the classification can be refined and improved at runtime by
adding new sample texts. There is no model that needs to be trained first.

First, common string comparison methods are presented, as well as transformations from
strings to sets and vectors, thus enabling the system to use comparison algorithms from these
domains. In total, 13 algorithms are presented. Additionally, different representations, such
as the soundex algorithm or n-grams are illustrated and used to augment the number of
possible ensemble methods to 45. For the six string-based algorithms, the different repre-
sentations are the plain string, its stem, its soundex code and its cologne phonetics code.
The seven set- and vector-based metrics are applied using n-grams with 1 ≤ n ≤ 3. Each of
these metrics is used as a classifier, assigning the class, or word, with the lowest distance to
a new observation.

After describing the functionalities of these comparison algorithms, the used ensemble
methods are presented, along with different classification approaches. An ensemble is a
collection of individual classifiers that can overcome the shortcomings of individual metrics
by combining the results. The presented methods for the combination of results are averaging
for numeric values and voting for nominal values.

To determine the correct class of a new observation, there are two techniques that are
used in this thesis: the k-nearest-neighbor classifier (kNN) and the nearest centroid classifier
(NCC). Using the kNN, an object is classified by a majority vote of its k-nearest neigh-
bors. The NCC calculates the mean distance to each class for a new observation, called the
centroid. As its name implies, the new observation is assigned the class with the nearest
centroid.

There are two classifications that take place in the ETeC system: first, each word is
matched to its most similar word from a dictionary, thus reduced to an id, and then the
sequence of these ids are matched against the classes of known sentences, thus determining
the correct class of the sentence.

The dictionary is built by providing the ETeC system with a collection of sample sentences.
Each word from these sentences is then reduced to its stem and put in the dictionary. This
method is chosen to minimize the dictionary size, as different forms of the same word are
reduced to the same stem. Finding the most similar word in the dictionary can be seen as
the kNN algorithm with k = 1, the finding of the single nearest neighbor.

Several tests were conducted to contrast the individual metrics with ensembles regarding
performance and accuracy. Obviously in terms of performance, an ensemble is always slower
than any of its members, but the accuracy of ensembles surpasses the individual metrics.
Using two testsets, the SMS Spam Collection1 and an testset of questions individually built
for this thesis in collaboration with the Europa Park Rust2, several tests were conducted to

1https://archive.ics.uci.edu/ml/datasets/sms+spam+collection, visited on 03.01.2019
2https://www.europapark.de/, visited on 06.01.2019
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5 Conclusion and Outlook

show that sentences can be correctly classified, even when containing variables.

The tests also showed that performance can be greatly improved by using thresholds and
preselection. If the distance to an examined word is below a threshold, all other comparisons
can be skipped, as it is likely that the current word is the correct one. Preselection prevents
costly comparisons with words that can be ruled out based on easily recognizable features.
In this thesis, these features were the first few characters of the words or their soundex and
cologne phonetics codes.

The thesis tries to provide insight into the building of ensembles and what to look for in
order to build an adequate ensemble. To this end, the average accuracy of ensemble members,
the correlation among the ensemble members and the size of an ensemble is examined and
contrasted with the ensemble’s accuracy. Opposing to the condorcet-jury-theorem, which
states that the more independent members a jury has, the more likely it is to choose the
correct alternative of two options, the only factor that seems to play a major role in ensemble
building is the accuracy of the individual members. The importance of the size of an ensemble
is greatly diminished, once the ensemble has five or more members, and the correlation
between members does not seem to have an impact at all.

The main advantage of ETeC over comparable systems is the flexibility. As there is no
learning or training involved at any time, words and sentences can be added or removed at
will. For example, if in a specific use case, there is a question that is often assigned the
wrong class, this question can simply be added to the collection of known questions without
further effort. Even classes can be added and removed at runtime.

The research questions proposed in section 3.5 are all answered within this thesis.

5.1 Future Work

Although the tests provided show the advantages of using ensembles, there is still room for
a vast amount of improvements.

One shortcoming is that variables can only consist of one word. Having multi-word vari-
ables would probably lead to wrong classifications, especially when the variable part is longer
than the static part. For example, asking for showtimes in a cinema could be done using the
template "When is ’movie-variable’ on?". With long titles this could lead to sentences
like "When is ’Fantastic Beasts and Where to Find Them’ on?".

This thesis ignores the possible optimizations through parallelism. The ensembles can be
highly paralleled as there is no interaction of the metrics, only their results are used to build
the average or the vote. Additionally, currently the classification is implemented as a linear
search, which can be split up and handled by multiple threads at once.

The concept of not having a corresponding value in the dictionary does not exist in neither
the word-level nor the sentence-level analysis, there is always one element with a minimal
distance. Adding this concept might affect the accuracy considerarbly and must be examined.
A simple solution could be a threshold, over which a word or sentence is marked unknown.
For voting, a minimal number of votes could be specified, for example, half of all voters must
vote for the same item.

Much insight is to be gained in the area of ensemble building. The suggested reasons for
ensembles with high accuracies leave much to be desired, as in the case of the presented
45 individual classifiers, 35,184,372,088,832 ensembles can be built. The trial and error
procedure of this thesis is not feasible for higher numbers of classifiers, and even in this
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case only covered a small fraction of all ensembles. The set of examined ensembles consists
of all ensembles of size three (14,190 ensembles) and five (1,221,759 ensembles) and the
generated supersets of the best performing ensembles (137,577 ensembles), which make up
only 0.000003903% (1.373.526 of 35.184.372.088.832 ensembles).

Lastly, ETeC groups sentences by intent, i.e. stores sentences in classes, but for words,
the possibility of using classes is neglected so far. It is thinkable, that words could also be
grouped by meaning, so that synonyms belong to the same class. This could reduce the
amount of stored sentences, as for example Let’s go over there and Let’s walk over

there would provide the same sequence of word-class ids.
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Appendix

1 Model

1.1 The Word Class

// source: own implementation

class Word {

public:

Word();

Word(const std:: string & pWord , const int & pId);

Word(const Word & other);

~Word();

std:: string word , soundex , cologne , stem;

std::map <std::string , int > unigram_vector , bigram_vector , trigram_vector;

std::set <std::string > unigram_set , bigram_set , trigram_set;

int id;

bool operator <(const Word & other) {

return word < other.word;

}

bool operator ==( const Word & other) {

return word.compare(other.word) == 0;

}

};
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1.2 The Question Class

// source: own implementation

class Question

{

private:

std::vector <size_t > ids;

std:: string type;

std:: string text;

std:: string answer_text;

std::map <std::string , std::vector <size_t >> vars;

public:

Question(const std::vector <size_t > & pIds , const std:: string pType , const

std:: string pText);

Question(const Question & other);

~Question ();

void SetAnswer(const std:: string & answer);

const std:: string & GetAnswer ();

const std:: string & GetType () const;

const std::vector <size_t > & GetIDs () const;

std:: string GetText () const;

};
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2 Distance Metrics

2 Distance Metrics

2.1 Levenshtein Distance

// Source: https ://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/

Levenshtein_distance#C++

// visited on 23.12.2018

float levenshteinDistance(const Word & wrd1 , const Word & wrd2 , const short &

type) {

const std:: string & str1 = type == 1 ? wrd1.word :

type == 2 ? wrd1.soundex :

type == 3 ? wrd1.cologne :

type == 4 ? wrd1.stem : std:: string ();

const std:: string & str2 = type == 1 ? wrd2.word :

type == 2 ? wrd2.soundex :

type == 3 ? wrd2.cologne :

type == 4 ? wrd2.stem : std:: string ();

if (str1.empty () || str2.empty ()) {

return -1;

}

const std:: size_t len1 = str1.size(), len2 = str2.size();

std::vector <unsigned int > col(len2 + 1), prevCol(len2 + 1);

for (unsigned int i = 0; i < prevCol.size(); i++) {

prevCol[i] = i;

}

for (unsigned int i = 0; i < len1; i++) {

col [0] = i + 1;

for (unsigned int j = 0; j < len2; j++) {

col[j + 1] = std::min(std::min(prevCol [1 + j] + 1, col[j] + 1), prevCol

[j] + (str1[i] == str2[j] ? 0 : 1));

}

col.swap(prevCol);

}

return ScaleToRange(prevCol[len2], { 0,std::max(len1 , len2) }, { 0,1 });

}
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2.2 Longest Common Substring

// Source: https ://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/

Longest_Common\_Substring#C++_2

// visited on 23.12.2018

float longestCommonSubstring(const Word & wrd1 , const Word & wrd2 , const

short & type)

{

const std:: string & str1 = type == 1 ? wrd1.word :

type == 2 ? wrd1.soundex :

type == 3 ? wrd1.cologne :

type == 4 ? wrd1.stem : std:: string ();

const std:: string & str2 = type == 1 ? wrd2.word :

type == 2 ? wrd2.soundex :

type == 3 ? wrd2.cologne :

type == 4 ? wrd2.stem : std:: string ();

if (str1.empty () || str2.empty ()) {

return -1;

}

int *curr = new int[str2.size()];

int *prev = new int[str2.size()];

int *swap = nullptr;

int maxSubstr = 0;

for (int i = 0; i<str1.size(); ++i) {

for (int j = 0; j<str2.size(); ++j) {

if (str1[i] != str2[j]) {

curr[j] = 0;

} else {

if (i == 0 || j == 0) {

curr[j] = 1;

} else {

curr[j] = 1 + prev[j - 1];

}

if (maxSubstr < curr[j]) {

maxSubstr = curr[j];

}

}

}

swap = curr;

curr = prev;

prev = swap;

}

delete [] curr;

delete [] prev;

return 1 - ScaleToRange(maxSubstr , { 0,std::min(str1.size(),str2.size()) },

{ 0,1 });

}
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2.3 Longest Common Subsequence

// Source: https :// www.geeksforgeeks.org/space -optimized -solution -lcs/

// visited on 11.01.2019

float longestCommonSubsequence(const Word & wrd1 , const Word & wrd2 , const

short & type) {

const std:: string & str1 = type == 1 ? wrd1.word :

type == 2 ? wrd1.soundex :

type == 3 ? wrd1.cologne :

type == 4 ? wrd1.stem : std:: string ();

const std:: string & str2 = type == 1 ? wrd2.word :

type == 2 ? wrd2.soundex :

type == 3 ? wrd2.cologne :

type == 4 ? wrd2.stem : std:: string ();

if (str1.empty () || str2.empty ()) {

return -1;

}

std::vector <std::vector <int >> L(2, std::vector <int >(str2.size() + 1));

// Binary index , used to index current row and previous row.

bool bi;

for (int i = 0; i <= str1.size(); ++i) {

// Compute current binary index

bi = i & 1;

for (int j = 0; j <= str2.size(); ++j) {

if (i == 0 || j == 0) {

L[bi][j] = 0;

} else if (str1[i - 1] == str2[j - 1]) {

L[bi][j] = L[1 - bi][j - 1] + 1;

} else {

L[bi][j] = std::max(L[1 - bi][j], L[bi][j - 1]);

}

}

}

return 1 - ScaleToRange(L[bi][str2.size()],

{ 0,std::min(str1.size(),str2.size()) }, { 0,1 });

}
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2.4 Jaro Similarity

// based on https :// rosettacode.org/wiki/Jaro_distance

// visited on 15.01.2019

float jaroSimilarity(const Word & wrd1 , const Word & wrd2 , const short & type

) {

const std:: string & str1 = type == 1 ? wrd1.word :

type == 2 ? wrd1.soundex :

type == 3 ? wrd1.cologne :

type == 4 ? wrd1.stem : std:: string ();

const std:: string & str2 = type == 1 ? wrd2.word :

type == 2 ? wrd2.soundex :

type == 3 ? wrd2.cologne :

type == 4 ? wrd2.stem : std:: string ();

if (str1.empty () || str2.empty ()) {

return -1;

}

const unsigned int l1 = str1.size(), l2 = str2.size();

if (l1 + l2 == 0) {

return 0;

}

if (l1 + l2 == 1) {

return 1;

}

if (l1 == 1 && l2 == 1) {

return str1 [0] == str2 [0] ? 0 : 1;

}

std::vector <short > s1_matches(l1);

std::vector <short > s2_matches(l2);

for (auto & e : s1_matches) {

e = 0;

}

for (auto & e : s2_matches) {

e = 0;

}

// calculate matches

float m = 0;

int max_distance = std:: floor(std::max(l1 , l2) / 2.f) - 1;

for (int i = 0; i < l1; ++i) {

for (int j = -max_distance; j <= max_distance; ++j) {

// bounds checking

if (i + j >= 0 && i + j < l2) {

if (str1[i] == str2[i + j] && !s2_matches[i + j]) {

++m;

s1_matches[i] = 1;

s2_matches[i + j] = 1;

break;

}

}

}

}
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if (m == 0) { return 1; }

// calculate number of transpositions

float t = 0.0;

unsigned int k = 0;

for (unsigned int i = 0; i < l1; i++) {

if (s1_matches[i])

{

while (! s2_matches[k]) k++;

if (str1[i] != str2[k]) t += 0.5;

k++;

}

}

t = floor(t);

return 1.f - ((m / l1 + m / l2 + (m - t) / m) / 3.0);

}
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2.5 Jaro Winkler Distance

// source: own implementation

float jaroWinklerDistance(const Word & wrd1 , const Word & wrd2 , const short &

type , const float & jaroSim)

{

const std:: string & str1 = type == 1 ? wrd1.word :

type == 2 ? wrd1.soundex :

type == 3 ? wrd1.cologne :

type == 4 ? wrd1.stem : std:: string ();

const std:: string & str2 = type == 1 ? wrd2.word :

type == 2 ? wrd2.soundex :

type == 3 ? wrd2.cologne :

type == 4 ? wrd2.stem : std:: string ();

if (str1.empty () || str2.empty ()) {

return -1;

}

float distance = 1.f - (jaroSim != -1 ? jaroSim : jaroSimilarity(wrd1 , wrd2

, type));

unsigned int prefixLength = 0, i = 0;

while (str1.size() > i && str2.size() > i && i < 4 && str1[i] == str2[i]) {

++ prefixLength;

++i;

}

return 1.f - (distance + (prefixLength * 0.1 * (1 - distance)));

}
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2.6 Hamming Distance

// source: own implementation

float hammingDistance(const Word & wrd1 , const Word & wrd2 , const short &

type) {

const std:: string & str1 = type == 1 ? wrd1.word :

type == 2 ? wrd1.soundex :

type == 3 ? wrd1.cologne :

type == 4 ? wrd1.stem : std:: string ();

const std:: string & str2 = type == 1 ? wrd2.word :

type == 2 ? wrd2.soundex :

type == 3 ? wrd2.cologne :

type == 4 ? wrd2.stem : std:: string ();

if (str1.empty () || str2.empty ()) {

return -1; // abstention

}

float hamming = abs(static_cast <float >(str1.size()) - str2.size());

for (int i = 0; i < std::min(str1.size(), str2.size()); ++i) {

if (str1[i] != str2[i]) {

++ hamming;

}

}

return hamming / std::max(str1.size(), str2.size());

}
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2.7 Jaccard Index

// source: own implementation

float jaccardIndex(const Word & w1 , const Word & w2 , const short & n)

{

const std::set <std::string > set1 = n == 1 ? w1.unigram_set :

n == 2 ? w1.bigram_set :

n == 3 ? w1.trigram_set : std::set <std::string >();

const std::set <std::string > set2 = n == 1 ? w2.unigram_set :

n == 2 ? w2.bigram_set :

n == 3 ? w2.trigram_set : std::set <std::string >();

if (set1.empty () || set2.empty ()) {

return -1; // abstention

}

float intersections = 0;

for (const auto & c : set1) {

if (std::find(set2.begin (), set2.end(), c) != set2.end()) {

++ intersections;

}

}

return 1 - (intersections / (set1.size() + set2.size() - intersections));

}
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2.8 Dice’s Coefficient

// source: own implementation

float dicesCoefficient(const Word & w1 , const Word & w2 , const short & n)

{

const std::set <std::string > set1 = n == 1 ? w1.unigram_set :

n == 2 ? w1.bigram_set :

n == 3 ? w1.trigram_set : std::set <std::string >();

const std::set <std::string > set2 = n == 1 ? w2.unigram_set :

n == 2 ? w2.bigram_set :

n == 3 ? w2.trigram_set : std::set <std::string >();

if (set1.empty () || set2.empty ()) {

return -1; // abstention

}

float intersections = 0;

for (const auto & e : set1) {

if (set2.find(e) != set2.end()) {

++ intersections;

}

}

return 1 - ((2.f*intersections) / (set1.size() + set2.size()));

}
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2.9 Overlap Coefficient

// source: own implementation

float overlapCoefficient(const Word & w1 , const Word & w2 , const short & n)

{

const std::set <std::string > set1 = n == 1 ? w1.unigram_set :

n == 2 ? w1.bigram_set :

n == 3 ? w1.trigram_set : std::set <std::string >();

const std::set <std::string > set2 = n == 1 ? w2.unigram_set :

n == 2 ? w2.bigram_set :

n == 3 ? w2.trigram_set : std::set <std::string >();

if (set1.empty () || set2.empty ()) {

return -1; // abstention

}

float intersection = 0;

for (const auto & c : set1) {

if (std::find(set2.begin (), set2.end(), c) != set2.end()) {

++ intersection;

}

}

return 1 - (intersection / std::min(set1.size(), set2.size()));

}
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2.10 Euclidian Distance

// source: own implementation

float euclidianDistance(const Word & w1 , const Word & w2 , const short & n)

{

const std::map <std::string , int > & vec1 = n == 1 ? w1.unigram_vector :

n == 2 ? w1.bigram_vector :

n == 3 ? w1.trigram_vector : std::map <std::string , int >();

const std::map <std::string , int > & vec2 = n == 1 ? w2.unigram_vector :

n == 2 ? w2.bigram_vector :

n == 3 ? w2.trigram_vector : std::map <std::string , int >();

if (vec1.empty () || vec2.empty ()) {

return -1; // abstention

}

// build vectors

int sum1 = 0, sum2 = 0;

std::map <std::string , std::pair <int , int >> vectors;

for (const auto & c : vec1) {

vectors[c.first]. first = c.second;

sum1 += c.second;

}

for (const auto & c : vec2) {

vectors[c.first]. second = c.second;

sum2 += c.second;

}

// calculate distance

float result = 0;

for (const auto & e : vectors) {

result += pow(e.second.first - e.second.second , 2);

}

float max_distance = sqrt(pow(sum1 , 2) + pow(sum2 , 2));

return ScaleToRange(sqrt(result), { 0,max_distance }, { 0,1 });

}
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2.11 Manhattan Distance

// source: own implementation

float manhattanDistance(const Word & w1 , const Word & w2 , const short & n)

{

const std::map <std::string , int > & vec1 = n == 1 ? w1.unigram_vector :

n == 2 ? w1.bigram_vector :

n == 3 ? w1.trigram_vector : std::map <std::string , int >();

const std::map <std::string , int > & vec2 = n == 1 ? w2.unigram_vector :

n == 2 ? w2.bigram_vector :

n == 3 ? w2.trigram_vector : std::map <std::string , int >();

if (vec1.empty () || vec2.empty ()) {

return -1; // abstention

}

// build vectors

int sum1 = 0, sum2 = 0;

std::map <std::string , std::pair <int , int >> vectors;

for (const auto & c : vec1) {

vectors[c.first]. first = c.second;

sum1 += c.second;

}

for (const auto & c : vec2) {

vectors[c.first]. second = c.second;

sum2 += c.second;

}

// calculate distance

float result = 0;

for (const auto & e : vectors) {

result += abs(e.second.first - e.second.second);

}

return ScaleToRange(result , { 0,sum1+sum2 }, { 0,1 });

}
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2.12 Simple Matching Coefficient

// source: own implementation

float simpleMatchingCoefficient(const Word & w1 , const Word & w2 , const short

& n)

{

const std::map <std::string , int > & vec1 = n == 1 ? w1.unigram_vector :

n == 2 ? w1.bigram_vector :

n == 3 ? w1.trigram_vector : std::map <std::string , int >();

const std::map <std::string , int > & vec2 = n == 1 ? w2.unigram_vector :

n == 2 ? w2.bigram_vector :

n == 3 ? w2.trigram_vector : std::map <std::string , int >();

if (vec1.empty () || vec2.empty ()) {

return -1; // abstention

}

// build vectors

std::map <std::string , std::pair <float , float >> vectors;

for (const auto & c : vec1) {

vectors[c.first]. first = c.second;

}

for (const auto & c : vec2) {

vectors[c.first]. second = c.second;

}

float common_attributes = 0;

for (const auto & e : vectors) {

if (e.second.first == e.second.second) {

++ common_attributes;

}

}

return 1 - (common_attributes / vectors.size());

}
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2.13 Cosine Similarity

// source: own implementation

float cosineSimilarity(const Word & w1 , const Word & w2 , const short & n)

{

const std::map <std::string , int > & vec1 = n == 1 ? w1.unigram_vector :

n == 2 ? w1.bigram_vector :

n == 3 ? w1.trigram_vector : std::map <std::string , int >();

const std::map <std::string , int > & vec2 = n == 1 ? w2.unigram_vector :

n == 2 ? w2.bigram_vector :

n == 3 ? w2.trigram_vector : std::map <std::string , int >();

if (vec1.empty () || vec2.empty ()) {

return -1; // abstention

}

// build vectors

std::map <std::string , std::pair <float , float >> vectors;

for (const auto & c : vec1) {

vectors[c.first]. first = c.second;

}

for (const auto & c : vec2) {

vectors[c.first]. second = c.second;

}

float sum = 0, magn_s1_sq = 0, magn_s2_sq = 0;

for (const auto & e : vectors) {

sum += e.second.first * e.second.second;

magn_s1_sq += pow(e.second.first , 2);

magn_s2_sq += pow(e.second.second , 2);

}

return 1 - (sum / sqrt(magn_s1_sq * magn_s2_sq));

}
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3 Testset Generation

// source: own implementation

void Dictionary :: ReadWords(std:: string filename , size_t max_lines) {

words.clear();

stems.clear();

correct_ids.clear ();

//open the file

std:: ifstream is(filename);

std:: string line;

//store all words

std::vector <std::string > all_words;

while (std:: getline(is , line)) {

all_words.emplace_back(line);

}

// create a randomizer

std:: random_device rd;

std:: mt19937 g(rd());

// create a vector of randomized indices

std::vector <unsigned int > indices(all_words.size());

std::iota(indices.begin(), indices.end(), 0);

std:: shuffle(indices.begin(), indices.end(), g);

for (int i = 0; i < max_lines; ++i) {

Word w = Word(all_words[indices[i]], words.size());

Word b = Word(w.stem , stems.size());

words.emplace(w);

stems.emplace(b);

correct_ids[w.id] = b.id;

}

}
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4 String Distance Accuracy Test

// source: own implementation

void Dictionary :: IndividualAccuracyTest () {

float min_dist = std:: numeric_limits <float >::max();

float curr_dist = std:: numeric_limits <float >::max();

size_t correct = 0;

int result_id = -1;

J:: Duration duration;

for (const auto & f : functions) {

correct = 0;

duration.start ();

for (const auto & w : words) {

min_dist = std:: numeric_limits <float >::max();

curr_dist = std:: numeric_limits <float >::max();

result_id = -1;

for (const auto & s : stems) {

curr_dist = f.function(w, s);

if (curr_dist < min_dist) {

min_dist = curr_dist;

result_id = s.id;

}

}

if (correct_ids[w.id] == result_id) {

++ correct;

}

}

duration.stop();

saveResult(f.id , correct / words.size(), duration);

}

}
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5 Calculation of Preselection Parameters

// source: own implementation

void Dictionary :: CalculateWordPrecompareParams () {

// number of words with length

std::map <int , int > nowwl;

// strlen #chars #correct

std::map <int , std::map <int , int >> correct;

for (auto & w : words) {

++ nowwl[w.word.size()];

for (int i = 0; i < w.word.size() && i<w.stem.size(); ++i) {

if (w.word[i] == w.stem[i]) {

++ correct[w.word.size()][i];

}

}

}

for (int i = 0; i < nowwl.size(); ++i) {

for (int j = 0; j < correct[i].size(); ++j) {

float percentage = 100 * static_cast <float >( correct[i][j]) / nowwl[i];

if (percentage < 95) {

word_precompare_params[i] = j;

break;

}

}

}

}
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6 Time Measurement

// source: own implementation

class Duration {

public:

void start () {

t_checkpoints.clear();

stopped = false;

t_start = std:: chrono :: high_resolution_clock ::now();

}

void checkpoint(std:: string comment = "") {

if (! stopped) {

t_checkpoints.emplace_back(std:: chrono :: high_resolution_clock ::now());

comments.emplace_back(comment);

}

}

void stop() {

if (! stopped) {

t_stop = std:: chrono :: high_resolution_clock ::now();

}

stopped = true;

}

double getTotalTime () {

return std:: chrono ::duration <double >( t_stop - t_start).count ();

}

private:

std:: chrono :: high_resolution_clock :: time_point t_start , t_stop;

std::vector <std:: chrono :: high_resolution_clock :: time_point > t_checkpoints;

std::vector <std::string > comments;

bool stopped = true;

};
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7 Individual Accuracies

7 Individual Accuracies

Summary of the accuracies of all individual distance metrics. String-based algorithms are
depicted in yellow, set-based algorithms in green and vector-based algorithms in blue.
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8 Correlation

Illustration of Pearsons correlation coefficient for every pair of distance metrics. Low
correlation is depicted by the color blue and high correlation with red.
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9 Individual Accuracy Test Results

9 Individual Accuracy Test Results

10 50 100 250 500 1000 2000 4000 8000 16000

lev clg 86.6667 75.3333 69.3333 62.3333 55 46.6667 41 33.6667 26.6667 20

lev snd 100 82.6667 78.6667 68.3333 56 46 35.3333 26 17.6667 11

lev stm 100 99.3333 99.6667 98.6667 98.6667 97.3333 95 90.6667 82.6667 71.3333

lev wrd 100 94 94 89.6667 88.6667 85 79.3333 73 64.6667 54.3333

lcs clg 83.3333 60 30.6667 15.6667 9.33333 2.33333 0.666667 0 0 0

lcs snd 96.6667 80.6667 78.3333 67 54.3333 45 35.3333 26 17.6667 11

lcs stm 100 96.6667 92.3333 84.3333 74.6667 58.6667 38 23.3333 11.3333 4.3333

lcs wrd 100 97.3333 90 84.6667 72.6667 52.6667 32 20 9 3.3333

lss clg 93.3333 82.6667 44.3333 28.3333 25 9.33333 5 2.33333 0 0

lss snd 96.6667 82.6667 79.3333 69.3333 57 47.3333 35.6667 26 17.6667 11

lss stm 100 98.6667 99 94.3333 91.6667 84 71 55.6667 36.6667 19

lss wrd 100 99.3333 98.6667 95.6667 93 87 73.3333 58.6667 35 19.3333

jar clg 96.6667 88.6667 86.6667 78 70 60.3333 51.6667 42.3333 33.3333 25

jar snd 96.6667 80.6667 78.3333 66.6667 54.6667 44.6667 35.3333 26 17.6667 11

jar stm 100 99.3333 99.6667 98.6667 98.6667 97.3333 95 90.3333 82.6667 71.3333

jar wrd 100 98 99.3333 96.6667 96 94.6667 91 85.3333 76.3333 65

jwd clg 100 90.6667 88.6667 83.6667 77 68.3333 60 49.6667 39.6667 30

jwd snd 100 86 82.6667 73 60.3333 48.6667 37.3333 27 18 11

jwd stm 100 99.3333 99.6667 98.6667 98.6667 97.3333 95 90.3333 82.6667 71.3333

jwd wrd 100 97.3333 99 96.6667 96.3333 95.3333 92 86.3333 78 66.3333

ham clg 93.3333 83.3333 77.6667 71 65.6667 58.3333 51 42 34 25.6667

ham snd 100 82.6667 78.6667 68.3333 56 46 35.3333 26 17.6667 11

ham stm 100 98.6667 99.6667 98.3333 98.3333 97.3333 95 90.3333 82.6667 71.3333

ham wrd 100 92 92.3333 89.3333 90.3333 87 84 78 69.6667 60

jac 1gr 100 85.3333 86.3333 75.3333 69.3333 60.6667 52 41.6667 33.6667 25

jac 2gr 100 99.3333 99.6667 95.6667 96 94.6667 90.6667 85 76.6667 43.6667

jac 3gr 100 99.3333 99 97 97 95 61.3333 29 0 0

dic 1gr 100 85 86 75 69 60.333 51.666 41.333 33.333 24.666

dic 2gr 100 99 99.333 95.333 95.666 94.333 90.333 84.666 76.333 43.333

dic 3gr 100 99 98.666 96.666 96.666 94.666 61 28.666 0 0

ovr 1gr 93.3333 76 48.3333 30.3333 20 10 3.66667 1 0 0

ovr 2gr 100 99.3333 96.6667 94 90.6667 83 68 51.3333 29.6667 10

ovr 3gr 100 99.3333 98.6667 95.6667 93 86.6667 48 19.6667 0 0

euc 1gr 100 68.333 65.333 56.666 51.666 48 44 37.666 32 26.333

euc 2gr 100 91.3333 89.3333 86 85 81.3333 78 73 65.6667 37.6667

euc 3gr 100 88.6667 87.3333 86 85 80.6667 51.6667 23.3333 0 0

man 1gr 100 84.6667 84 75.3333 69.3333 64.6667 57.3333 48.3333 40.3333 31.6666

man 2gr 100 99.3333 99.3333 95.6667 95.6667 94 90.3333 85 76 43.6666

man 3gr 100 99.3333 99 97 97 95 61.3333 28.6667 0 0

smd 1gr 100 85.3333 89.6667 79 73.6667 66.6667 59.6667 49 40.3333 31.6667

smd 2gr 100 99.3333 99.3333 96.3333 96.6667 95.3333 91 85.3333 77 43.6667

smd 3gr 100 99.3333 99 97 97.3333 95 61.3333 29 0 0

cos 1gr 100 83.3333 79.6667 70.3333 66.3333 60.6667 56 48 40.3333 33.3333

cos 2gr 100 99.3333 98.3333 95.3333 95.6667 94 90.3333 84.3333 75.6667 43.3333

cos 3gr 100 99.3333 99.6667 97.6667 98 96.3333 62.3333 29.3333 0 0
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10 Preselection Parameters

Word size word - n cologne phonetics - n soundex - n

2 - 1 -

3 - 1 -

4 3 0 3

5 3 0 -

6 3 0 -

7 3 2 -

8 0 3 -

9 0 4 -

10 0 4 -

11 0 5 -

12 0 6 -

13 4 8 -

14 6 9 -

15 7 11 -

16 8 13 -

17 9 12 -

18 10 14 -

19 11 14 -

20 12 - -

21 2 - -

22 12 - -

23 0 - -

24 14 - -

25 0 - -

26 20 - -

27 0 - -

28 23 - -

29 24 - -

30 23 - -

31 24 - -
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11 Preselection Results

Algorithm and Preselection Method Accuracy Time

euc 2gr nopc 57.587498 1082.216064

euc 2gr wopc 60.512501 503.865051

euc 2gr stpc 72.324997 4.054456

euc 2gr sopc 60.799999 10.76867

euc 2gr copc 60.087502 430.779846

ham snd nopc 11.4625 11.807742

ham snd wopc 27.80625 9.341061

ham snd stpc 72.324997 4.002839

ham snd sopc 12.012501 3.754305

ham snd copc 14.974999 8.656034

lev stm nopc 72.368752 87.545044

lev stm wopc 71.181252 44.329468

lev stm stpc 72.324997 3.954727

lev stm sopc 64.037498 4.358475

lev stm copc 70.924995 38.080471

ovr 1gr nopc 0.625 441.137115

ovr 1gr wopc 23.5 221.559845

ovr 1gr stpc 72.324997 3.942868

ovr 1gr sopc 22.543751 6.064643

ovr 1gr copc 10.7375 187.13974
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12 Thresholds

12 Thresholds

Algorithm Threshold

lev wrd 0.29

lev snd 0.24

lev clg 0.19

lev stm 0.14

lss wrd 0.14

lss snd 0.24

lss clg 0.16

lss stm 0.14

lcs wrd 0.12

lcs snd 0.24

lcs clg 0.14

lcs stm 0.11

jar wrd 0.12

jar snd 0.08

jar clg 0.06

jar stm 0.06

jwd wrd 0.07

jwd snd 0.06

jwd clg 0.04

jwd stm 0.03

ham wrd 0.33

ham snd 0.24

ham clg 0.19

ham stm 0.16

jac 1gr 0.11

jac 2gr 0.41

jac 3gr 0.5

dic 1gr 0.05

dic 2gr 0.26

dic 3gr 0.5

ovr 1gr 0.11

ovr 2gr 0.14

ovr 3gr 0.5

euc 1gr 0.1

euc 2gr 0.15

euc 3gr 0.5

man 1gr 0.13

man 2gr 0.27

man 3gr 0.5

smd 1gr 0.24

smd 2gr 0.43

smd 3gr 0.5

cos 1gr 0.05

cos 2gr 0.23

cos 3gr 0.5
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13 Europa Park Testset

Variables in sentences are marked by a leading dash.
Category Question
showtime wann ist die naechste -show
showtime wann faengt die -show an
showtime wann beginnt -show
showtime wann beginnen die -show

weg wo ist -poi
weg wo befindet sich -poi
weg wie weit ist es zu -poi
weg wie komm ich zu -poi
weg wie kommt man -poi
weg zeig mir den weg zu -poi
weg wo gehts zu -poi
weg was ist der schnellste weg zu -poi
weg zeig mir den schnellsten weg zu -poi

waitingtimes wie lange ist die wartezeit bei -poi
waitingtimes wie lang ist die schlange bei -poi
waitingtimes wie lange steht man bei -poi an
waitingtimes wieviel ist bei -poi los

shopping wo kann ich -product kaufen
shopping wo bekomm ich -product
shopping ich brauche -product

detail wie gross muss man fuer -poi sein
detail wie alt muss man fuer -poi sein
detail was ist die mindestgroesse fuer -poi
detail was ist das mindestalter fuer -poi
faq1 sind eintrittskarten im uebernachtungspreis enthalten
faq2 wo erhalte ich die eintrittskarten fuer den europa-park
faq3 ist es guenstiger die eintrittskarten im voraus zu buchen
faq4 was ist der sogenannte vip-eintritt
faq5 darf ich schon vor 15:30 uhr anreisen
faq6 ist es moeglich, das zimmer auch erst am abend nach schliessung des europa-park zu

beziehen
faq7 darf ich als hotelgast alle wellness- und poolbereiche der fuenf 4-sterne erlebnishotels

nutzen
faq8 ist in den restaurants und bars der europa-park hotels eine tischreservierung erforder-

lich
faq9 gibt es in den europa-park hotels eine lademoeglichkeit fuer elektrofahrzeuge
faq10 wird es vom hotel kronasar aus eine verbindung zu den anderen erlebnishotels sowie

dem europa-park geben
faq11 warum wird es einen expeditionspreis zur sommersaison 2019 geben

74



14 Europa Park Variables

14 Europa Park Variables

Type Values
PoI haupteingang, silverstar, euromir, poseidon, wildwasserbahn, eisstadion, arena,

waffelbaeckerei, taverna mykonos, shoppingpassage, geisterschloss, geisterbahn,
schlittenfahrt, dschungelflossfahrt, piraten in batavia, eurosat, abenteuer atlantis,
abenteuerspielplatz, african queen, alpenexpress, atlantica supersplash, ballpool,
berliner mauer, bluefire, piccolo mondo, crazy taxi, flug des ikarus, elfenfahrt,
euro-tower, fjord-rafting, fluch der kassandra, jungfrau-gletscherflieger, koffiekop-
jes, kolumbusjolle, lada autodrom, london bus, volo da vinci, magic cinema,
marionetten-bootsfahrt, matterhorn-blitz, mini-scooter, jim knopf-reise durch lum-
merland, oldtimer-fahrt, pegasus, fliegender hollaender, raumstation mir, roter baron,
russisches dorf, santa marian, schloss balthasar, schweizer bobbahn, silverstone-
piste, wiener wellenflieger, the british carousel, vindjammer, schaukelschiff, wasser-
spielplatz, wichtelhausen, zaubergarten, kaffi hus, colonial food station, crocodile-
bar, flammkuchenstand, strandgoed, candy-kopje, friethuys, foodloop, casa dei dolci,
pizzeria venezia

Show eisshow, variete show, ritterspiele
Product pizza, burger, hotdog, getraenke, was zu trinken, was zu essen
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