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Abstract

Direct numerical simulations of turbulent fluid simulations produce time dependent scalar
fields on grids of at least 10243 points, along with huge amounts of trajectories of tracer par-
ticles which are advected with the fluid flow. Being able to explore the produced volumetric
data in a three dimensional visualization might be a huge benefit over conventional two
dimensional projections. Therefore a way to interactively explore these peta-scale data sets
in virtual reality seemed to be a very appealing option for scientists researching turbulent
fluid dynamics.

The goal of this work is to visualize a specific large scale turbulent fluid simulation in
virtual reality. In order to do so, an already existing virtual reality application for the HTC
Vive was extended. To ensure the applicability of the work flow described in this thesis and
of the extended application itself, data of a real turbulent fluid simulation are used.

Due to the large size of the extracted isosurface graphic files, finding a way to visualize
them, without reducing them to a quality so low that they are no longer fit for scientific
visualization is the main challenge of this thesis. To accommodate for their size a multi
threaded loading approach is used, where a second asynchronous thread loads new graphic
files when needed. The thread communication is realized via the shared context functionality
of OpenGL.

The second aim is to provide users with new controller functionalities, displayed above
the controller, which enable them to explore the data efficiently and to adjust the amount of
information shown without restarting the application. To identify which kind of functions are
useful, a scientist tested an early version of the application and specified which functionalities
were missing or needed to be changed.

The resulting application, based on NOMAD VR, provides the means to visualize large
scale turbulent fluid simulations. Trajectories and various vectors of tracer particles are
automatically calculated and visualized by the application, different controller functionalities
allow to rescale the visualization, translate isosurfaces and to select single particles. The
implemented asynchronous multi threaded loading approach works theoretically as long as
the size of the few isosurface graphic files, which are loaded by the second thread, do not
exceed one quarter of the graphic card memory.
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1 Introduction

The goal of this thesis is to visualize a large scale turbulent fluid simulation, by using virtual
reality technology. The interactive exploration of peta-scale data sets is very appealing to
fluid dynamics scientists. Having volumetric data and being able to explore these in a three
dimensional visualization is a huge benefit over two dimensional projections.

A two dimensional visualization lacks the perception of depth and as it is usually rendered
with a fixed camera position it greatly restricts what the user is able to see. The application
created for this thesis gives scientists the ability to freely move in a three dimensional,
interactive visualization, without long waiting periods of rendering, which might lead to new
insights [BM07]. For this purpose an existing scientific visualization tool, NOMAD VR, for
molecular sciences was extended.

1.1 Motivation and Previous Work

Visualization is an important aspect of data science in general and plays a major part in
the analysis and research of fluid simulation data. Turbulent fluid simulations are three
dimensional direct numerical simulations producing time dependent scalar fields on grids
of at least 10243 points, along with huge amounts of, up to 108, tracer particles which are
advected with the fluid flow. The strength of the turbulence is represented by the scalar
vorticity field and visualized as translucent isosurfaces [Aya16, Chapter 5.11.2].

Commonly used tools for these visualizations are open-source, multi-platform data analysis
and visualization applications like ParaView [AJG+05] and VisIt [CBW+12]. In a previous
project two dimensional videos of a turbulent fluid visualization were created with VisIt.
The time dependent scalar vorticity field of the simulation data was visualized with a volume
plot. This plot allows to map scalar values to customizable opacity and colour values. The
strength of each vortex tube is indicated by its colouring and ranges from light blue to
red. One of the tracer particles was chosen to be followed and therefore its trajectory along
with various vectors were visualized. The first video used a conventional, static camera
perspective giving an overview over the whole simulation. This camera perspective was also
used for an overview map in second video. An example of this visualization is shown in
figure 1.1 (top). A limitation of a conventional visualization is that it uses a fixed camera
position placed outside of the visualized data, therefore details of the spatial correlations of
the particle and the vortex tubes cannot be seen clearly.

In order to allow scientists to explore the data further, new ways of navigating the simula-
tion volume were developed by co-moving the observer camera with a representative tracer
particle inside the fluid. The user’s viewpoint is set inside the simulation, following a chosen
tracer particle’s trajectory. To attenuate the resulting ’roller coaster’ experience to a tolera-
ble level for the observer and to avoid motion sickness a linear smoothing algorithm is used.
This approach allows a closer observation of a particle’s behaviour inside the fluid, especially
when its close to strong turbulences. An example of this visualization is shown in figure 1.1
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1 Introduction

(bottom). However, this new approach also presents new constraints. The co-moving cam-
era shows only part of the simulation and the selection of an interesting particle turned out
to be clumsy and inefficient, as it had to be chosen by hand. An interesting particle was
defined by having a sufficiently twisted trajectory and staying inside the visualized volume.
After finding interesting particles a time consuming procedure was necessary before the final
visualization of the dataset:

• First interesting particles had to be found and preselected.

• Afterwards a new trajectory dataset had to be created for each selected particle.

• Then a preview of the trajectories was created and the datasets were sent to the
scientists involved to select which particle is followed.

• Finally, once a particle was selected, the dataset was visualized.

The tool used does not support the visualization of time dependant trajectories based
on the particles spatial positions. Therefore it was necessary to create a time independent
line database for each particle, by extracting its location through time. The rendering of
each time step, to create a video following a particle inside the fluid, takes several days.
This motivated the use of virtual reality techniques which is the main subject of this thesis.
Based on an existing software framework that is used to explore molecular and chemical
simulations in the field of materials science a comprehensive virtual reality application for
the HTC Vive was developed in order to visualize turbulence data.

1.2 Goals

To reach the objective of this thesis, to visualize and efficiently explore turbulent fluid
simulation data on a desktop computer, certain goals needed to be achieved.

The first and foremost goal was to make a three dimensional visualization of the original
peta scale simulation data set, by extending an already existing virtual reality application.
As explained in the previous section 1.1, there are some problems with two dimensional
visualizations of three dimensional information. In order to be able to use spatial orientation
properly, the image must be dynamic. In other words, the camera needs to be rotated in order
to maintain the impression of a three dimensional perspective. This is needed to find and
isolate important information, like the particles’ corkscrewed trajectories and their spatial
positioning relative to vortex tubes. Through the inherent three dimensional properties of
virtual reality, it is possible to intuitively figure out where everything is, without the rotation
of the data. This allow users to explore the data without the need to learn to interpret a
two dimensional representation as three dimensional.

Another main goal is the efficient visualization of peta scale simulation data. The dynamic
exploration of peta sized simulation data with conventional visualization tools requires the
use of high performance computers. For the virtual reality application three dimensional
isosurfaces and the spatial position of the particles are extracted from the whole simulation.
The application then uses only the extracted information instead of the whole data set for
the visualization. Through the extraction the data size is reduced to gigabyte scale, thus
allowing the use of desktop computers, equipped with virtual reality technology, instead of
high performance computers.
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1.3 Structure

The extracted isosurfaces, even after compression, are still too big to be fully loaded by
the original application. Thus the source code of the original application to load isosurfaces
had to be rewritten. To accommodate for the large data size a multi threaded approach
to load isosurfaces was chosen. This allows the user to explore the current data, while new
data is simultaneously loaded. The main motivation for this approach was to keep the user
immersed in the virtual world.

The next goal was to visualize additional information, to make the exploration easier.
These are the automatic calculation and visualization of each particle’s trajectory and various
vectors. The trajectories help to understand the relative position of each particle to the
vortex tubes, while the vectors provide information about their spatial orientation, speed
and change thereof.

The last goal was to implement different interactive controller functionalities, that aid
scientists in the exploration of the visualized fluid simulation data. Some are more general,
to control the amount of information shown and to assist in the navigation through the
volume, while others are more specialized in order to accommodate for the theoretically
infinite structure of the isosurfaces.

This allows scientists to efficiently explore volumetric data sets in three dimensions with
a desktop computer.

1.3 Structure

The last part of the introduction gives an overview of the content of this thesis.

Chapter 2 is about the hardware and software used to visualize the fluid simulation in
virtual reality. Therefore the HTC Vive Virtual Reality Systems available are introduced and
an overview of their cost as well as some technical information, like its weight and resolution,
is given. The specifications of the computer used to test the virtual reality application can
also be found here. This chapter also introduces the multi platform NOMAD VR virtual
reality application, how it is used and details about the HTC Vive implementation. The last
part explains in detail all the steps necessary to visualize a fluid simulation in the extended
virtual reality application of NOMAD VR.

Chapter 3 presents the extended application and its capabilities. Therefore it introduces
the reader to the functionalities of the created application. Afterwards it explains what the
individual controller buttons do, their technical names and explains what a controller mode
and option is. It also provides examples for each of the interactive controller functionalities
implemented as part of this thesis. Therefore some important terminology, used for the rest
of this thesis, is explained. Namely the difference between the scene (everything that is
visualized), the simulation box (only the isosurfaces visualized) and the virtual world (the
space the user moves in). In the last part of this chapter the motivation of a multi threaded
approach to load isosurfaces is explained.

Chapter 4 provides technical details about the changes to the application and how they
were implemented. This includes information about the textures used to visualize the con-
troller display, how the display is changed and what changes internally, when each controller
option is used. An overview of the vector visualization is given, how they are calculated and
the motivation of using an adaptation of the Frenet-Serret formulas for their visualization.
Finally the interaction between the main and loading thread is explained with the aid of a
simplified diagram, which shows the thread interactions for loading the first 100 isosurface
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graphic files. A more detailed version of the diagram can be found in the appendix.
Chapter 5 begins with a summary of which goals of this thesis were reached. It com-

pares the virtual reality application with two dimensional visualizations and weighs up its
usefulness for the exploration of turbulent fluid simulations. It introduces ideas on how
to generalize and improve the application and concludes with a list of known issues of the
prototype.

The last chapter 6 of this thesis are acknowledgements to the scientists and supervisors
that were involved in this project.

In the Appendix detailed code examples, of how to prepare the data, can be found. It also
provides an example configuration file, which is needed to start the virtual reality application
and a more detailed version of the multi threading diagram used in chapter 4.
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1.3 Structure

Figure 1.1: Pictures of a turbulent fluid simulation showing the same particle (red), its tra-
jectory (red line), velocity (green arrow), acceleration (blue arrow) and their
crossproduct (orange arrow). The particle is surrounded by vortex tubes, called
isosurfaces. The camera is positioned outside the simulation (top) and behind
the particle (bottom). [The pictures were rendered with VisIt.]
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2 Architecture

This chapter gives an overview of HTC Vive Virtual Reality System, explains what NOMAD
VR is and the software used to prepare data to visualize large scale turbulence simulations
in NOMAD VR. Section 2.1 will explain what HTC Vive is and give an overview of its
hardware specifications as well as its current pricing. Section 2.2 shortly explains what the
virtual reality graphics tool NOMAD VR is and how it is used and section 2.3 presents the
steps necessary to visualize a turbulence simulation in NOMAD VR.

2.1 HTC Vive Virtual Reality System and the Computer Used

Figure 2.1: Picture of the HTC Vive Pro Virtual Reality System. Showing the head-
gear (middle), controllers (left) and the infrared trackers (right). (Picture pro-
vided by the HTC Team, c©HTC https://drive.google.com/drive/folders/

1lBT58yEtshY9VxPXOYgt2QEdcTYzIZ_B)

The HTC Vive is a Virtual Reality System consists of a headset, two controllers and two
trackers enabling room scale tracking. The headset’s field of view is approximately 110◦

through two displays with a resolution of 1080× 1200 pixels per eye, that are updated at 90
Hz and weights about 555g.

The two trackers are placed diagonally to each other and can cover an area of about
4 × 4 meters. It is possible to place the infrared laser emitter units further apart, without
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2 Architecture

visible loss of quality [NLL17]. The HTC Vive Pro has an upgraded headset with a display
resolution of 1440× 1600 pixels per eye, as well as new controllers and trackers that can be
placed further apart (6x6m).

The full HTC Vive Virtual Reality System costs about 599 Euro, the HTC Vive Pro
Virtual Reality System about 1399 Euro, both are purchasable from the official homepage
https://vive.com, where the aforementioned specifications can also be found. (Prices from
September 25, 2018)

The computer used to test the extension of the NOMAD VR application has an ’Intel R©

CoreTM i7-4790K CPU @ 4.00GHz 4.00 GHz’ processor and 32 gigabyte RAM. The disk
drive installed is a ’Samsung SSD 850 PRO 512 GB ATA Device’ and its graphic card is a
’GeForce GtX 980’. The operating system installed is a 64 bit version of Windows 7.

2.2 NOMAD VR

”The Novel Materials Discovery (NOMAD) Laboratory develops a Materials En-
cyclopedia and Big-Data Analytics and Advanced Graphics Tools for materials
science and engineering.” [NOM15]

NOMAD VR is part of the NOMAD project and one of the ’Advanced Graphics Tools’,
created to explore scientific simulations in the field of material science in virtual reality.
It’s a free multi platform, virtual reality, scientific visualization tool for OpenVR (HTC
Vive and Oculus Rift), CAVE-like installations, Google Cardboard (Android and iOs) and
GearVR. The source code is licensed under the Apache License, Version 2.0 and is available at
gitlab. NOMAD VR was developed by Dr. Rubén Jesús Garćıa-Hernández. The HTC Vive
application for SteamVR is compiled with Microsoft Visual Studio 2012 and is implemented
in C++ and OpenGL.

The NOMAD VR application, for any platform, basically consists of two files. An exe-
cutable file starting the virtual reality application and a configuration file, a plain text file
created by the user containing information about the dataset visualized, its location on the
hard disc drive and various visualization settings. The application is started by drag and
drop of the configuration file onto the executable.

As most users had at least slight problems creating a configuration file for the first time,
a fully commented example used to visualize the turbulence simulation data can be found
in the appendix. The # symbol in the configuration file is used for comments. A full list of
commands is available on the official NOMAD homepage https://nomad-coe.eu/.

The goal of this thesis is to extend the NOMAD VR for the HTC Vive Virtual Reality
System, which uses the OpenVR library version 0.9.19 , in order to enable it to visualize
large scale data sets of turbulence simulations for scientific exploration.

2.3 Data Preparation

This section aims to give an overview of the process, shown in figure 2.2, of extracting data
from the original turbulent fluid simulation data set and then transforming them into file
formats readable by NOMAD VR. The complete scripts used for the data preparation can
be found in the appendix. Each step and the software used will be explained in this chapter.
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2.3 Data Preparation

The preparation is split into two main segments: the data extraction on a high performance
computer node from the original data set using ParaView [AJG+05] and the data process-
ing on a desktop computer. The processing is done via MeshLab [CCC+08] to convert and
simplify the extracted files, Python [Ros95] utilizing Jupyter Notebook [KRKP+16] to final-
ize the particle file set and simple shell scripts to rename the initially extracted files. The
software used for the data preparation is, like all other visualization software used in this
thesis, open source.

Figure 2.2: Showing the steps to prepare data for NOMAD VR. From left to right: Step 1,
2, 3a & 4a (top branch), 3b (bottom branch) and 5. (Created with UMLet 14.2
www.umlet.com.)

To extract isosurfaces from the original data sets vorticity field within acceptable time, a
remote high performance computing node is used. This allows to extract approximately one
isosurface per minute. Visualizing the whole data set requires the extraction of at least 3600
isosurfaces and the spatial positions of all particles.

The simulation data set is viewed in ParaView to find meaningful isosurface values, which
can be extracted. An example script to extract isosurfaces is provided at the NOMAD VR
tutorial homepage. Paraview’s tracing mode [Aya16, Chapter 1.6.2, p. 18] is used to adjust
this script with the correct file reader, variable names and transformations for the vorticity
field and the particles. The extraction is then done for each time step, by utilizing one of
ParaView’s Python script interpreters. By extracting only a few isosurface values per time
step from the fluid simulation, the size of the dataset aimed to visualize is already reduced
from multiple petabyte to terabytes. The data is then downloaded for further processing on
a desktop computer. This concludes step 1 in figure 2.2.

ParaView exports Virtual Reality Modeling Language v2 (VRML v2) files as *.vrml,
MeshLab expects VRML v2 files named as *.wrl (this is also documented in the NOMAD VR
Tutorial 1). As both file endings are essentially the same file format, step 2 in figure 2.2 uses
shell scripts to rename the downloaded files into a format readable by MeshLab.

Converting particles in Step 3a from *.wrl to *.xyz with MeshLab removes the header and
unwanted columns from the files. The result are simple files, where each line only contains
three floats representing the x,y and z coordinates of a particle. A Python script, executed
with Jupyter Notebook, is used in Step 4a to merge and convert them into xyz files, a

9
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common file format used to save chemical structures and readable by NOMAD VR. The
particle extraction, conversion and merging takes less than an hour and the resulting file,
containing positions of 1.800.000 particles, has a size of ≈ 55 megabyte.

In Step 3b the VRML v2 files containing the isosurfaces are converted into a Polygon File
Format (ply), reducing their size to approximately 1/3 of their original size. Additionally a
simplification filter was applied to reduce the size of each isosurface to roughly 15 megabyte.
After manually applying the filter and saving it once for each isosurface value, the file
conversion is automated by shell scripts.

Table 2.1 shows the time needed to convert and reduce four different isosurface values
with MeshLab on a 1.7 GHz dual core laptop and a 3.4 GHz quad core desktop computer,
as well as their original size, amount of vertices and the percentage reduction. The times
measured in table 2.1 are approximations based on the time needed to convert and reduce
isosurface graphic files for the first 200 time steps.

The results of this process are a single particle file, containing the location of all particles
at all time steps and n isosurface files for each time step, where n is the amount of isosurface
values extracted at each time step from the original dataset. These files can be visualized
with NOMAD VR.

isosurface wrl size vertices vertex avg. time needed per file in min.
level in MB in thousands reduction to 1.7 GHz 3.4 GHz

80 901-861 5503 5.5% 14 6

95 410-385 2526 11% 5 3

110 193-179 1231 25% 2 1

125 97-88 614 50% 1 0.5

Table 2.1: Original data sizes, vertices, vertex reduction and processing times with Mashlab
to reduce the extracted world files to approximately 15MB and 300000 vertices
and to convert them to the Polygon File Format.
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3 The Virtual Reality Application to Visualize
Turbulence Simulations

This section explains what the application created in this thesis is capable of, thereafter gives
an overview of the controllers basic button mapping, shows their functionalities, as well as
explains how they are used and why interactive controller modes were implemented in order
to efficiently explore a turbulence visualization. The new controller modes and displays are
explained based on different challenges presented by visualizing a turbulent fluid simulation.
All technical details of the functionalities mentioned here are explained in the following
chapter 4.

3.1 Core Features of the Application

The prototype extension of NOMAD VR, for the HTC Vive Virtual Reality System, to
visualize turbulent fluid simulation data allows the user to explore the correlation between
visualized vortex tubes and the movement of the advected tracer particles in a three dimen-
sional environment.

The first part aiding scientists in the exploration of a data set is the creation of a cus-
tomizable configuration file. This file allows to adjust general information, like the location
of the data set a user wants to explore and how many time steps it consists of. It also enables
the user to customize more specific aspects of the visualization. These options include the
ability to change the scaling factor the application uses when it is started, or to define how
many particle trajectories and which trajectories are shown. Other parameters allow the
user to customize the size and colour of the particles, as well as colour and opacity of the
different isosurface values.

Additionally various vectors are automatically calculated. The calculation is based on the
particle file, which consists of the spacial location of all particles. These vectors include
each particle’s velocity, acceleration and the crossproduct of these two vectors. While the
application is running, a controller option is provided to disable the rendering of some or all
of these vectors.

To allow for an immersive experience various other controller functionalities were imple-
mented. These allow users to adjust different settings during the visualization. The functions
available were designed to increase the users comfort, spatial orientation and to allow them
to single out and observe any single particle. Therefore different functions, some inspired
by already existing applications, were implemented, one of which allows to manually change
the scaling of the simulation while the application is running. Rescaling the simulation at
any time, enables users to get an overview of the whole simulation and then to inspect parts
of the visualization close up, by increasing its size. An optional display, showing the second
controllers current coordinates, helps users to find their original position again, after they
rescale the simulation.
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3 The Virtual Reality Application to Visualize Turbulence Simulations

Another option moves all visualized vortex tubes along one of the three coordinate axes.
The axis is chosen based on the controller position and the distanced moved along the
axis equals the size of the visualized vorticity field. This ability, to translate isosurfaces,
accommodates for the theoretically infinite size of the vorticity field.

When a single particle is selected, it is marked by orange circles. Thereafter it is possible
to automatically follow the particle through space while time is advanced, which can be
useful if users don’t want to follow it manually with the first controller, while advancing
time with the second.

Other functions available while a particle is selected allow to hide the other particles,
their trajectories and vectors. Additionally it is possible to show only a single, specific
isosurface value, instead of all at once. These functions are intended to control the amount
of information shown and to help to deal with a possible information overflow.

By utilizing OpenGL’s shared context functionality the visualization of large scale data
sets is realized. This allows the exploration of the data set, while new graphic files are
seamlessly loaded by a second thread. Using this method enables users to explore large data
sets without seeing a loading screen while new data is loaded by the application.

3.2 Button Mapping

This section explains the basic button mapping of the controllers (figure 3.1) and the names
of these buttons. The specific button names used here, can be found in the official HTC
Vive user manual [Cor16]. Holding down the trigger of the first controller allows the user to

Figure 3.1: Picture of a HTC Vive controller, front (left) and side (right). Circled in different
colours are the trackpad (blue), the grip button (green) and the trigger (red).
(Pictures used are screenshots taken from the HTC Vive application.)

fly freely in the direction the controller is pointed, pressing its grip button advances to the
next time step. Holding down the second controller’s trigger advances time continuously. Its
grip button changes which isosurfaces are currently shown. The second controller’s trackpad
is used to select and interact with the different modes and their options. By pressing or
touching the trackpad in the upper or lower areas the user can change between the different
modes. The left and right corners of the trackpad are used to change between the options
available of a currently selected mode.

12



3.3 Using the Controller Modes

The application recognizes a controller once a mapped button is used. Therefore the first
and second controller are defined by the order in which the user chooses to interact with
them after the application is started.

3.3 Using the Controller Modes

The interactive controller modes allow a user to change different parameters during the visu-
alization, which would otherwise require restarting the application with changed parameters
in the configuration file, or require the user to create new datasets.

To efficiently explain them, the basic terminology used in this section needs to be ex-
plained. The space the user moves in will be called the world or virtual world. The vorticity
field visualized has a cubic structure. The isosurfaces are visualized inside this cube, which
will be called the simulation box. The scene includes isosurfaces, particles, their trajectories
and vectors and consists of the data visualized. Touching the trackpad in the upper or lower
area changes the current controller mode, touching the left or right corners of the trackpad
changes the current mode’s options.

Figure 3.2: Picture showing the nine available controller modes (left to right). Mode 1 (left)
additionally shows the controller coordinates. In the bottom left the controller
with the loading bar is shown. (Pictures used are screenshots taken from the
HTC Vive application.)

An overview of the nine default controller modes is shown in figure 3.2. A short summary
of the controller modes is provided here, before a detailed explanation.

1. Toggle Particles: Shows either all particles or a single one. Also displays the controller’s
current coordinates.

2. Toggle Trajectories: Shows either all or a single trajectory.

13
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3. Next/Previous Trajectory: Shows next or previous single trajectory.

4. Zoom: Changes scaling of the scene.

5. Pick Particle: Marks a particle with orange circles. Also used for modes 1, 2, 7 and 9.

6. Move Isos: Translates isos, short for isosurfaces, in the axis direction the controller is
facing.

7. Vectors: Shows different vectors of all or a single particle.

8. Speed: Changes the speed with which the user progresses through time when holding
down the trigger.

9. Camera: Offers a free mode or moves the user parallel to a selected particle as time is
advanced.

The scaling option is available before starting the application, as a configuration file option
and also as a controller option while it is running. The scaling parameter rescales the entire
scene by a fixed number. The controller option reduces or increases this number by 0.2 each
time the trackpad is pressed. The decrement cannot become smaller than 0.2.

Changing the scaling of the scene does not change the origin of the world or the user’s
current position, thus rescaling the scene changes the users relative position to the scene
(figure 3.3). To make spatial orientation easier an extended display on the second controller
shows its relative coordinates, while the first mode is selected. This way users can find
their relative position in the scene again, after they changed its scaling, or continue their
exploration from the same location after restarting the application. During the turbulence
simulation most particles leave the visualized simulation box. To be able to see the particles
movement inside the vorticity field again the user can translate the position of the isosurfaces
in the axis direction the controller is currently pointing, by touching the trackpad on the right
side, or reset their position back to default, by touching the left side (figure 3.4 (bottom)). In
Figure 3.4 (top left) the observer is floating inside the simulation box. Seeing all trajectories
at once might give a good impression of the particle flow, but obscures the trajectory of
individual particles. Different modes were designed to reduce the information overflow,
allowing users to choose which and how much information can be seen at once. Using the
pick option allows to manually select a particle with the controller, which is then highlighted
by three orange circles surrounding its surface. The controller’s haptic feedback is utilized to
indicate if a particle is selectable. After a particle is picked, it is possible to disable the other
trajectories and only a single trajectory is shown. The user can then toggle between the
trajectory modes at any time to compare it to surrounding trajectories (figure 3.4 (top)). As
all trajectories are internally saved in a list, controller mode 3 allows the user to go through
this list one by one. While only a single trajectory is shown, using this mode can show each
particles trajectory, one after the other, without the need of manually picking each particle.

By default each particle’s scaled velocity is shown, its acceleration and the crossproduct
of the latter is also shown after the first time step. While the velocity uses a representative
scaling, those of the acceleration and crossproduct currently use artificial scaling values.
The vector visualization intends to give information about the particle’s spacial orientation
and current speed. Controller mode 7 provides the ability to reduce the amount of vectors
shown, allowing to render only the velocity and acceleration, the velocity alone or no vectors
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Figure 3.3: Rescaling the scene does not move the user, thus changing what the user sees.
(Created with UMLet 14.2 www.umlet.com.)

at all. These options are also available for a single selected particle vectors. In case of
a selected particle being obscured by others, it is possible to hide all other particles with
the first controller mode. Combining the different options makes it possible to reduce the
information shown to a single particle, its trajectory and a single isosurface.

The eighth mode alters the video speed, allowing a user to double or triple the speed with
which the visualization is advanced through time while the trigger button is held. The ninth
and final mode allows to use an alternate camera option, which tethers the user to a picked
particle and automatically moves the user along with the particle movement. This removes
the need to manually follow a particle while advancing through time.

3.4 Data Pre-Loading

Smaller parts of the visualized data, like the particle data set, can be loaded completely to
the graphic card memory, when the application is started. The files containing the isosurface
structures are too big to be completely loaded while the application is started and reducing
them to a size where this would be possible removes too many details from the isosurface
graphic files, rendering them useless for scientific visualization and exploration.

Consequently they need to be partially loaded while the application is running. Loading
the data in the main thread would stop it from rendering while it is loaded, thus breaking
the user’s immersion. Therefore a second thread to pre load the next chunk of data when
needed was implemented, allowing the user to simultaneously explore and advance through
time of already loaded parts of the visualization while new data is loading in the second
thread. The loading progress of the isosurfaces graphic files is indicated by a small loading
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3 The Virtual Reality Application to Visualize Turbulence Simulations

Figure 3.4: Picture showing all trajectories (top left), a single picked particle’s trajetory (top
right) and the translation of isosurfacres (bottom). (Pictures used are screenshots
taken from the HTC Vive application.)

bar below the display shrinking over time, shown in figure 3.2 (bottom left). Technical
details are explained in section 4.4.
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4 Implementation on top of NOMAD VR

In order to visualize and explore the turbulent fluid simulation data efficiently, additional
functionalities for the HTC Vive application of NOMAD VR were implemented. This section
explains their implementation and provides technical details.

4.1 Controller Modes

This section introduces the textures used and their specifications, how the different controller
display modes and options are checked and how they were realised. The textures for all three
displays are loaded when the application is started and consist of three independent files.
The texture files need to be in the same folder as he data set visualized. These three files
are the selectable modes, the controller position and the loading bar textures. Each of them
are simplistic, hand drawn pixel graphics.

The digits to display the controller’s current location and the loading bar texture files each
consist of 64 × 7 pixels. A single digit consists of 4 × 7 pixels, a letter of up to 5x7 pixels.
The controller modes use a 672× 32 pixel texture, using 32× 32 pixels for each option. This
was done to see how OpenGL would render textures consisting of very few pixels.

To check which controller mode texture is shown, a one dimensional integer array and a
function, checking if the current value is viable and has a texture, are used. Changing the
current mode changes the current mode array’s index, changing an option changes the array’s
value, then the texture rendered is updated (section 3.3 explains the difference between mode
and option). A simplified example of how the current mode is changed is provided here.

Listing 4.1: Changing the current mode:

1 i f ( trackpad : Up/down){
2 i f ( 0 >= current Index < currentMode . l ength ( ) )
3 currentIndex−−/++;
4 currentTexture = currentMode [ current Index ] ;
5 }
6 // In render ing loop :
7 // glDrawElements o f currentTexture above c o n t r o l l e r

Each mode has a corresponding variable, changing different parameters of the visualiza-
tion. Interacting with a controller mode has usually two steps. Changing the current texture,
then updating all variables.

Listing 4.2: Interacting with a mode:

1 i f ( trackpad : Le f t / Right ){
2 // change curren t t e x t u r e
3 currentMode [ current Index ]++/−−;
4 currentMode [ current Index ] =
5 check I fV iab l e ( currentIndex , currentMode [ current Index ] ) ;
6 currentTexture = currentMode [ current Index ] ;

17



4 Implementation on top of NOMAD VR

7 // update v a r i a b l e s
8 t o g g l e P a r t i c l e s = currentMode [ 0 ] − s t a r t i n g Va l ue s [ 0 ] ;
9 t o g g l e T r a j e c t o r i e s = currentMode [ 1 ] − s t a r t i n g Va l ue s [ 1 ] ;

10 i f ( cur r entTra j ec to ry Index in range && currentMode==2)
11 currentTra jec toryIndex−−/++;
12 i f ( currentMode == 3)
13 s c a l i n g +/−=0.2;
14 i f ( s c a l i n g < 0 . 2 )
15 s c a l i n g = 0 . 2 ;
16 // Pick P a r t i c l e ( currentMode [ 4 ] ) −−> HapticFeedback
17 //Move Isos , r e s e t to o r i g i n
18 i f ( currentMode == 5)
19 moveIsos = get Min/Max o f c o n t r o l l e r a x i s o r i e n t a t i o n ;
20 t ogg l eVec to r s = currentMode [ 6 ] − s t a r t i n g Va l ue s [ 6 ] ;
21 videoSpeedModi f i e r = ( currentMode [ 7 ] + 1) − s t a r t i n g Va l ue s [ 7 ] ;
22 cameraMode = currentMode [ 8 ] − s t a r t i n g Va l ue s [ 8 ] ;
23 }
24 // In render ing loop :
25 // glDrawElements o f currentTexture above c o n t r o l l e r ;

The rest of this section gives an overview of each controller mode, which function is called
and which parameters are changed.

The toggleParticles uses a value of 0 to show all particles or 1 to show only a single one.
While the default option uses an array of all particle locations, the other option can only
show those particles, which trajectories were loaded during the start up. The application’s
original mode of operation selects the trajectories of the particles which are to be shown
from the configuration file, at dataset load time.

Listing 4.3: Controller Mode 1, toggle between all & single particles rendered:

1 i f ( t o g g l e P a r t i c l e s ==1){
2 //draw f o r a s i n g l e p a r t i c l e a t time s t e p 0
3 . . .
4 glDrawArrays (GL PATCHES,
5 p a r t i c l e t r a j e c t o r i e s [ c u r r e n t P a r t i c l e t r a j e c t o r y I n d e x ] ) ;
6 } else {
7 // d e f a u l t draw at time s t e p 0
8 . . .
9 glDrawArrays (GL PATCHES, 0 , numPart ic les [ 0 ] ) ; }

As mentioned in section 3.3 an additional display showing the controllers relative spatial
position is rendered while the first mode is selected. The coordinates displayed range from
(−9.99,−9.99,−9.99) to (+9.99,+9.99,+9.99) and will turn green if the controller leaves
this area. The particles maximum position is (6.10, 1.52, 9.98), thus satisfying the minimum
requirements for this visualization. A single digit consists of 4 × 7 pixels and it was found
that GL LINEAR and GL LINEAR MIPMAP LINEAR lead to unwanted border effects, if
the texture is too small. GL NEAREST and GL NEAREST MIPMAP NEAREST are used
to avoid these effects.

Satisfying only the minimal requirements and using textures with as few pixels as possible
was chosen out of performance issue concerns, as the coordinate display requires to render
16 additional textures per frame. As no performance issues arose, the next step for this
display is to generalize it for other datasets and change where the coordinates are shown.
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The second controller mode, toggling trajectories, works in a similar way to the first
one. Visualizing trajectories only works correctly if each time step has the same amount of
particles and each particle has the same position in the data file. For example, the tenth
particle needs to be the tenth particle at each time step in the data file and each time step
needs to consist of the same amount of particles.

The third mode increase or decreases the value of currentParticletrajectoryIndex, thereby
changing the particle and trajectory rendered.

The option to select a particle with the controller was added to the HapticFeedback
function. Haptic feedback makes the controller vibrate while it is held inside a particle.
Selecting a particle sets the selectedParticle variable, marking a particle with three orange
circles. The intensity with which the controller vibrates changes, while the trackpad is used
to indicate that the selection was successful. Then the currentParticletrajectoryIndex is
updated, thereby changing which single particle, trajectory and vector arrows are rendered.
The mark uses a different variable to allow switching to new trajectories with the third mode
while keeping the original particle marked.

Listing 4.4: Controller Mode 4, selecting a particle:

1 i f ( c o n t r o l l e r i n s i d e p a r t i c l e i ){
2 i f ( ( t r a c k p a d i s u s e d ) && ( currentMode == 4) ){
3 s e l e c t e d P a r t i c l e = i ;
4 m pHMD−>TriggerHapt icPulse ( device , 0 , 1000 ) ;
5 c u r r e n t P a r t i c l e t r a j e c t o r y I n d e x = s e l e c t e d P a r t i c l e ;
6 } else {
7 m pHMD−>TriggerHapt icPulse ( device , 0 , 3000 ) ;
8 }
9 }

The toggleVectors variable ranges from 0 to 6 and is split into three main rendering options.
If it is smaller than 3, vector arrows for all particles are rendered; if it is bigger than 3, vector
arrows for a single particle are rendered and if it equals 3 no arrows are rendered. Inside
these rendering options, is a second layer checking which vector arrows are rendered.

To render the vector arrows correctly the particle data set needs to fulfil the same re-
quirements as for the trajectory visualization. How the different vectors are calculated is
explained in section 4.2.

Listing 4.5: Controller Mode 6, selecting which vector arrows are rendered:

1 i f ( togg l eVec to r s < 3){
2 // render v e l o c i t y o f a l l p a r t i c l e s
3 i f ( t ogg l eVec to r s < 2)
4 // render a c c e l e r a t i o n o f a l l
5 i f ( t ogg l eVec to r s < 1)
6 // render c r o s s p r o d u c t o f a l l
7 } // i f ( t o g g l e V e c t o r s == 3) render no arrows
8 i f ( togg l eVec to r s > 3){
9 // render v e l o c i t y o f a s i n g l e p a r t i c l e

10 i f ( t ogg l eVec to r s < 6 )
11 // render a c c e l e r a t i o n o f a s i n g l e p a r t i c l e
12 i f ( t ogg l eVec to r s < 5)
13 // render c r o s s p r o d u c t o f a s i n g l e p a r t i c l e
14 }
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To correctly render the scene, the particles and isosurfaces each use a transformation
matrix, containing information about the rendered textures orientation, spatial positioning
and scaling. The zoom option allows the user to modify the scaling of these transformation
matrices. By changing the particles scaling matrix, their trajectories and vector arrows
automatically rescale, as they are both dependant on the spatial position of the particles.

’Move Isos’ first option calls a function, that takes the controller’s directional vector, calcu-
lates the maximum of its absolute axis values and returns a one dimensional axis translation
vector, with a length equal to the edge length of the simulation box. The returned vector is
then used to translate the isosurfaces’ transformation matrix accordingly.

Using this option multiple times adds up the resulting translation vectors, allowing users
to move the isosurfaces where needed. The second option of this mode sets the translation
vector back to (0,0,0), resetting the rendering position of the isosurfaces back to their initial
location.

The video speed option changes a variable, which is multiplied with the animation speed,
which determines how fast time is advanced while the trigger is held.

While the camera is tethered to a particle, its unscaled velocity is added to the user
position whenever time is advanced.

4.2 Vector Visualization

”In classical differential geometry, the Frenet-Serret formulas describe the kine-
matic properties of a particle moving along a continuous, differentiable curve in
three-dimensional Euclidean space <3 , or the geometric properties of the curve
itself irrespective of any motion. More specifically, the formulas describe the
derivatives of the so-called tangent, normal, and binormal unit vectors in terms
of each other. The tangent, normal, and binormal unit vectors, often called T,
N, and B, or collectively the Frenet-Serret frame, together form an orthonormal
basis spanning <3 and are defined as follows: T is the unit vector tangent to
the curve, pointing in the direction of motion. N is the normal unit vector, the
derivative of T with respect to the arclength parameter of the curve, divided by
its length. B is the binormal unit vector, the cross product of T and N.” [Yan16]

The Frenet-Serret formula was adapted to visualize more information, about the particles
spatial orientation and movement. Figure 4.1 illustrates the process. The tangent T̂ , normal
N̂ , and binormal B̂ orthonormal vectors (figure 4.1 (bottom)) were, as a first step, replaced
by the particles velocity ~v, acceleration ~a and their crossproduct ~c. These vectors were
extremely small and either barely visible during the visualization, or even ended up inside a
particle.

The second step was to prevent the vectors ending up inside a particle. This was done by
adding twice the diameter of a particle to each vector (figure 4.1 (middle)).

As a last step a representative scaling factor for the velocity was introduced and used
instead of an arbitrary length (figure 4.1 (top)). This factor was calculated by one of the
creators of the turbulent fluid simulation.

This was done to give scientists more information about the dataset visualized. While
the normalized acceleration and crossproduct vectors visualize the spatial orientation of
all particles, the scaled velocity also reveals scientific information about the speed and its
change, while moving through the vorticity field. This is especially interesting when a
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particle moves close to a strong vortex tube, as their spatial orientation and speed can
change rapidly. All vectors are calculated by utilizing the spatial positions of the particles
through time, when the application is started.

velocity ~v′ti = (~xti+1 − ~xti)× scaling factor

acceleration ~ati = (~vti − ~vti−1) +
∣∣~vti − ~vti−1

∣∣× 2× particlediameter

crossproduct ~cti = (~vti × ~ati) + |~vti × ~ati | × 2× particlediameter

Figure 4.1: Adaptation of the Frenet-Serret formulas showing the orthonormal vectors

T̂ ,N̂ ,B̂ (bottom). The arbitrarily scaled velocity ~v, acceleration ~a and crossprod-
uct ~c (middle) and the final version, using scaled ~v′, ~a and ~c vectors (top).
(Graphic adapted from the wikipedia entry of the Frenet-Serret formula. https:
//en.wikipedia.org/wiki/Frenet-Serret_formulas last visited: 2018, Au-
gust, 22)

4.3 Camera Mode

The two dimensional rendered video made heavy use of a moving camera perspective, which
chased a particle. The camera orientation depended on the particle’s velocity and up-vector,
a vector perpendicular to its velocity and acceleration. By co-moving the user through the
fluid simulation, following a particle closely, its behaviour, especially near strong vortex
tubes, was easier to observe.

Therefore it was tried to recreate this experience in virtual reality, by moving the user
slightly behind and above a chosen particle and aligning their orientation to the particle’s
spatial orientation.

After presenting an early version of the application, which included different camera ro-
tations, to one of the creators of the turbulent fluid simulation visualized in this thesis, a
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4 Implementation on top of NOMAD VR

major issue with camera rotations was found. Each rotation lead to a loss of all reference
points the user had, leading to a loss of orientation after each time step and thereby made
it impossible to efficiently analyse the visualized data.

It was concluded that, even if camera smoothing algorithms were implemented, a static
spatial framework is preferred for scientific visualizations in virtual reality. Any information
gained by following a particle in the two dimensional video, can easily be obtained through
the user’s freedom movement inside virtual reality.

The only camera mode accepted was one not using any rotations, simply co-moving the
user with a selected particle. This allows them to advance through time and follow a selected
particle, without the need to simultaneously navigate manually through the visualization.

This was implemented by calculating the distance a particle moves between two time steps
and adding the resulting vector to the user’s current position, whenever time is advanced.

4.4 Changes to the Data Loading

To ensure a lag free and immersive virtual reality experience NOMAD VR loads the whole
data set to the graphic card memory, when the application is started. This approach works
excellent for data sets that are not bigger than the graphic card memory.

Even after reducing the isosurface files to the minimal resolution acceptable for the sci-
entists involved, a single file has about 15 MB and two isosurfaces are shown per time step.
The total data size for all 1800 time steps would amount to approximately 162 GB, thus the
data loading process needed to be changed. Any approximation in this section is based on
the first 200 time steps of the simulation, which were used to test the application.

To accommodate for the amount of data that needs to be loaded for the visualization and
to keep the program from breaking immersion while new data is loaded, a multi threaded
approach was chosen. This enables the application to render already loaded graphic files in
the main thread while new isosurface files are loaded by a second, loading thread.

The thread communication is realized through the shared context functionality, provided
by OpenGL [MS17, Chapter 5]. Therefore two different contexts are created, when the
application is started and the shared context attribute is set. Once the second thread is
initialized, its active context is set to the one not used by the main thread. The two threads
can now share various different data.

One characteristic of the shared context is, that only some graphic objects are shared
between the contexts. Container objects, such as the vertex buffer, cannot be shared and
need to be bound manually in each context. As long as the shared graphic objects are
attached to a container object, they can be attached to another container object in another
context. Additionally they cannot be deleted, even if explicitly deleted by commands like
glDelete, as long as they are attached to any container object in any context. Memory is
automatically reclaimed by the implementation, when all objects are deleted from all contexts
and are no longer attached to a container object [MS17, Chapter 5.1]. These attributes are
used to load isosurface graphic files in the loading thread, then make them available to the
main thread for rendering and later to free the allocated memory from the graphic card,
once they are no longer used by the main thread.

A simplified version of the thread interaction is illustrated as diagrams in figure 4.2 and
figure 4.3 and a more detailed illustration can be found in the appendix. The diagrams are
read top to bottom. On the left side activities in the main thread are shown, on the right
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side those of the second thread. In the middle different boxes are shown. The one named
’int buffer’ illustrates, which array index of the created objects is used to load and render the
isosurface graphic files. The ’GPU’ box shows which graphics are available to which context.
The first number indicates which array index is used in the main thread, if the number is
in brackets, it is not used by any thread. This number is followed by either ’currentBuffer’
indicating that the data is rendered in the main thread, or ’nextBuffer’ indicating that data is
loaded in the second thread. The next line shows which isosurface graphic files are visualized
or loaded, followed by which context the data is attached to.

Normal black arrows are labelled and show which array index is used by which thread,
when a thread is notified and which isosurfaces are currently rendered. A grey unlabelled
arrow means that these isosurfaces could still be rendered by the main thread. A filled,
black or green arrow is used, if all objects needed to render the corresponding isosurfaces
are available to one context. A blue, unfilled arrow is used when shared object pointers are
copied to the main thread and to indicate to which array index they are copied to. A black
or grey dashed line arrow means that some, but not all, objects attached to these graphics
were deleted. A grey dotted line is used to indicate, that the second thread is still in the
same loop.

When the application is started, the shared context attribute is set and two contexts are
created. The main thread then creates arrays of objects needed to visualize isosurfaces and
loads the first n isosurfaces to the first array index of the objects created, where n is the
amount of graphic files needed to visualize 20 time steps and the array index ranges from
0 to 2. Thereafter the second thread is initialized and the unused context is set to be its
current context. To ensure that the second thread wont terminate, the loading process is
inside a while loop.

At the beginning of each loop the objects needed to load the next n isosurfaces are created.
The graphic files are then loaded and the shared pointers are copied to the corresponding
objects in the main thread. To prevent unintentional side effects, while data is copied, a
mutually exclusive flag is used. Thereafter some of the objects are deleted and the thread
waits until the data loading to the graphic card is completed. A boolean flag ’threadReady’
is then set for the main thread and then the second thread waits until notified.

In the main thread’s rendering loop it is checked, if the second thread’s ready flag is true
and if another boolean flag, ’needsUpdate’, used by the main thread to signal that new
graphic files need to be loaded, is true. If this is the case, a container object is attached to
the loaded graphic files and both flags are set to false.

When time is advanced, it is also checked if new isosurface graphic files need to be loaded.
If this is the case, the ’needsUpdate’ bool is set true and the second thread is notified.
This bool also prevents the user from advancing too far in time, before new graphic files
are loaded. Upon notification, the second thread deletes the last of its objects, thereby
removing any attachments it had to the previously loaded graphic files and starts its loading
loop again.

By keeping a container object attached to the loaded graphics in one context, another
context can attach a container object to the same graphics. Deleting all objects created
in the second thread, allows to create new ones at the beginning of each loop, without
corrupting memory. Rebinding all objects, used to visualize isosurfaces, in the main thread
frees unused memory [MS17, Chapter 5.1].

Loading graphics during runtime in a second thread increases the application’s loading
time by approximately 10%, which is to be expected when using multi threading in OpenGL.
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The times shown in table 4.1 were measured with a stop watch. To average the loading time
5 of the 7 measurements were taken, the best and worst times were removed.

NOMAD VR’s single thread implementation averaged 12.81 seconds, the multi thread
implementation had an average loading time of 14.27 seconds for 60 time steps. Loading
times for the first 20 time steps were also taken and averaged to 4.25 seconds for the single
thread implementation, which suggests a linear correlation between loading time and the
data loaded. Assuming linear loading time a single time step would need approximately 0.21
seconds.

The size of the isosurface files and the resulting high loading time make a multi threaded
approach useful, even though the program loads slower than it would otherwise do, as it
allows users to continue to explore the currently loaded data set while new data is loaded,
instead of switching to a loading screen, breaking immersion.

Single Thread Multi Threading
1-20 21-40 41-60 Sum

13.02 4.52 5.44 4.04 14.00

12.96 4.46 5.64 4.13 14.23

12.91 4.57 5.39 4.13 14.09

12.43 4.66 5.64 4.19 14.49

12.58 4.47 5.67 4.43 14.57

12.59 4.46 5.54 4.12 14.12

13.69 4.68 5.50 4.24 14.42

Table 4.1: Time in seconds needed to load the first 60 time steps of the visualization from
a SSD with NOMAD VR and the multi threaded version of the application. The
multi threaded approach loads isosurface files for 20 time steps, their individual
loading times and their sum are listed.

4.5 Known Issues

To conclude this chapter, known issues of the prototype implementation are mentioned.
These issues are mostly minor and don’t affect the application, but should be mentioned
nonetheless.

The extension was implemented under the assumption, that the trajectories of all particles
are calculated at the beginning. If the user chooses not to calculate all trajectories and then
selects a particle, which trajectory was not pre-calculated, an error occurs. This might need
fixing, if the application is generalized for other visualizations.

When visualizing trajectories, it is recommended that the data set has the same amount
of entries for each time step and that the same order, in which they are listed, is kept. If
not, unwanted effects, like showing the wrong trajectories, can occur. This cannot be fixed,
without changing how trajectories are calculated.

When the isosurfaces were interactively translated and the visualization was rescaled af-
terwards, the isosurfaces were no longer shown in the correct place. This can easily be fixed
by resetting their position with the controller, at any time, and then translating them again,
after changing the scaling.
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After an update of SteamVR, the haptic feedback for particles worked incorrectly. After
the visualization was rotated, the haptic feedback still activated at the original positions of
the particles, instead of activating where they were visualized. This lead to the controller
vibrating, where no particles were visualized.

Terminating the application, while isosurface graphic files are still loaded by the second
thread, lead to a windows error message.

When the application is started for the first time and SteamVR was not started beforehand,
a colourless, greyish graphic model of the headgear is rendered. This is fixed by restarting
the application. In more current versions of NOMAD VR this bug is already fixed.

While testing the application the HTC Vive Pro system was installed and slight lags
occurred during the last second, when new isosurfaces were loaded by the second thread.
Reducing the amount of isosurfaces loaded by the second thread might solve this problem.
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Figure 4.2: Diagram (part 1 of 2) illustrating the interaction between the loading and the
main thread. Loading isosurface files for the first 60 time steps. (Created with
UMLet 14.2 www.umlet.com.)
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4.5 Known Issues

Figure 4.3: Diagram (part 2 of 2) illustrating the interaction between the loading and the
main thread. Loading isosurface files for time steps 61 to 100. (Created with
UMLet 14.2 www.umlet.com.)
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5 Conclusion and Future Work

The prototype application, based on NOMAD VR, implemented in this thesis provides the
means to visualize large scale turbulent fluid simulations. Trajectories and various vectors of
each tracer particle are automatically calculated and visualized by the application. Different
controller functionalities, displayed on top of the controller, allow to rescale the visualization,
translate isosurfaces and to select single particles. After a particle is selected the amount
of information shown can easily be adjusted, without restarting the application. To make
spatial orientation easier for users, the spatial coordinates of a controller can be displayed.
The way graphic files are loaded was also adjusted, to accommodate for the large size of the
isosurface graphic files.

Together this gives scientists the ability to freely move and explore a three dimensional,
interactive scientific turbulent fluid visualization, without long waiting periods while new
data is loaded, which might lead to new insights. The applicability of the work flow described
in this thesis and of the extended application itself was also confirmed, as data of a real
turbulent fluid simulation was used.

The size of the full dataset no longer defines if it can be visualized by the application. The
implemented asynchronous multi threaded loading approach works theoretically as long as
the size of the few isosurface graphic files, which are loaded by the second thread, do not
exceed one quarter of the graphic card memory. This allows the researcher to view large
scale data sets in virtual reality without breaking immersion, thereby fulfilling the main goal
of this thesis.

The time consuming procedure to visualize a particle’s trajectory and various vectors,
described in section 1.1, was already automatized in NOMAD VR. Ways to switch the ob-
servation between different single trajectories, without restarting the application and break-
ing immersion, were added. This allows for an easy exploration of the interaction of tracer
particles with the vortex tubes in the simulation.

To aid scientists in the exploration, different interactive controller functionalities, indi-
cated on a display hovering above the second controller, were added. Showing thousands of
particles, vectors and trajectories at once is sometimes confusing. In order to directly con-
trol the amount of information shown during the visualization, additional controller options
were implemented. Enabling users to change the scaling, or to translate isosurfaces with the
controller, while the application is running, also helps to uphold immersion. To make spatial
orientation easier an additional alpha version display was added, showing the controller’s
current coordinates. This additional display only shows when the first controller mode is
selected.

The emphasis on and assumption, that greater immersion will help with a better under-
standing of the visualized data is based on [BM07] as,

”It should not be surprising, then, that a higher level of immersion can lead to
greater spatial understanding, which can result in greater effectiveness for many
applications such as scientific visualization, design review, and virtual prototyp-
ing.”
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5 Conclusion and Future Work

All display textures use graphic files with very few pixels. This was done to test if low
quality graphics are a viable option to use for a display. It was found that the performance
saving, low pixel digits and letters are very well readable, when rendered in the HTC Vive.

The large size of the isosurface graphic files motivated to try out loading them in a sepa-
rate second thread. This enables the application to render already loaded data, while new
data is simultaneously loaded. By doing so a slight increase of the loading time occurs, as
was expected. The time increase is approximately 10%, the expected increase was between
10% and 30%.

The work’s starting point was to reproduce the roller coaster experience of the two di-
mensional visualization. Through a moving camera perspective, closely following a selected
particle, it was possible to see its interaction with the surrounding vortex tubes. During
an early visit of one of the scientists it was found, that the inherent three dimensionality of
virtual reality and the ability to move freely in the visualization make camera rotations not
only obsolete, but a hindrance to the exploration. The two dimensional visualization showed
four different isosurface values per time step. This was also tried out in the virtual reality
application and it was found that the visualization of more than two isosurface values per
time step lead to confusion and interfered with the exploration.

When comparing the images of the two dimensional visualization (figure 1.1) with those
of the virtual reality application (figure 3.4), it might seem as if the latter has a much lower
quality. This is only true for static images, where a rendering time of more than 20 minutes
can be acceptable. When exploring the dataset dynamically in ParaView or VisIt, users
need to use the same visualization plot as is used in the virtual reality application.

The application’s advantages over a two dimensional visualization were already explained,
but if the effort to prepare data for the virtual reality application is too great, it wont be
used.

The process to visualize a few hundred particle trajectories in VisIt or ParaView takes
multiple days of work, while creating a database for the virtual reality application, capable
of showing thousands of trajectories, takes only a few hours and adjusting the scripts used
to extract and convert the isosurface files can also be done within a few hours. Even if the
process for the trajectory visualization was optimized, the virtual reality application still has
the advantage of being three dimensional. Therefore it can be concluded that the data prepa-
ration for the virtual reality application is at least as fast as creating a two dimensional video.

The main goal of this thesis was to test if a turbulent fluid simulation can be visualized
in virtual reality, which changes need to be made to the existing application and which
additional functionalities are useful or needed when doing so.

Because of that different functionalities currently use fixed values, instead of being ad-
justable in the configuration file, before the application is started. To increase the general
applicability of the application in the future the following options can be added as parameters
changeable in the configuration file:

• Translation distance. A parameter that changes how far the isosurfaces are moved,
when they are shifted with the controller.

• Velocity scaling. An option to adjust the scaling factor, by which the visualized velocity
vector is multiplied with.
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• Isosurfaces loaded. Changing how many isosurface are loaded by the second thread
and when the application is started, giving the user more control over the maximum
size of the isosurface graphic files.

To make the display, hovering above the second controller, visually more appealing, a
rotation according to the controller’s spacial orientation can be added, as well as how, where
and when its coordinates are shown.

While the application can load new data and simultaneously be interacted with, the rel-
ative high loading time for the isosurfaces seems far from optimized. Three different ideas
to optimize this came to mind. The first and most obvious is to try out a better graphic
card. If the loading time isn’t reduced, the hard drive might cause the high loading time.
Therefore the second approach, to create a RAM drive and copy the data files onto it, might
speed up the loading process. The third option is to create an additional loading thread and
see what happens.

With the development of new virtual reality technology with higher resolutions, like the
HTC Vive Pro, performance issues might arise. As each eye renders a slightly different pic-
ture, the application can utilize a second graphic card. By doing so one graphic card would
render the left eye’s screen and the other one the screen of the right eye.
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Appendix

Listing 1: Example configuration file used to start the extended version of NOMAD VR

1 #General Options
2 t imes teps 200 #number o f t i m e s t e p s
3 userpos 0 0 0 #s t a r t i n g p o s i t i o n
4 background 0 0 0 #b l a c k ; r , g , b
5 s c a l i n g 1 #i n i t i a l world s c a l i n g
6 hapt i c f eedback #c o n t r o l l e r s v i b r a t e i f h e l d i n s i d e a p a r t i c l e
7 s h o w c o n t r o l l e r s #remove t h i s l i n e to h ide c o n t r o l l e r s
8 animationspeed 0 .45 #changes the maximum speed , the user can
9 #advance to the next t i m e s t e p .

10

11 path ”C:\ path\ to \data \”
12 #This d i r e c t o r y conta in s a l l i s o s u r f a c e f i l e s and the p a r t i c l e f i l e
13

14 #I s o s u r f a c e s
15 i s o s 2 #number o f i s o s u r f a c e s shown per t imestep
16 t r an spa r encyqua l i t y 3 #amount o f t ransparency l a y e r s f o r i s o s u r f a c e s .
17 va lue s ”110n” ”125n” #name o f ∗ . p ly f i l e s in ’ path ’ .
18 # ”110n” i f your i s o s u r f a c e s are named : 1−110n . ply , 2−110n . ply . . .
19 c o l o u r s 0 .35 0 .63 0 .95 0 .6 0 .9 0 .2 0 .2 0 . 8 #r g b opac i ty
20 #each i s o s u r f a c e has i t s own co lour and opac i ty s e t t i n g .
21

22 #p a r t i c l e s
23 newatom C 0 .5 0 .5 0 .5 0 .006865
24 #c r e a t e s a new or ove rwr i t e s an e x i s t i n g atom ’ s co l our and rad iu s
25

26 x y z f i l e ” f u l l P a r t i c l e s 1 0 0 0 . xyz” #name o f p a r t i c l e f i l e in ’ path ’
27 atomsca l ing 0 .5 #changes the s c a l i n g o f a l l p a r t i c l e s .
28 showtra j e c to ry 0 #i n t <= 0 shows t r a j e c t o r i e s o f a l l p a r t i c l e s

Listing 2: Python script to export isosurface graphic files with ParaView.

1 #### import the s imple module from the paraview
2 from paraview . s imple import ∗
3

4 BaseInputFilename=’ /path/ to / f i l e s / input / f i l e n a m e %04d . xmf ’
5 BaseOutputFilename=’ path/ to / f i l e s / output / ’
6

7

8 t imes teps= 1800
9 i s o v a l u e s = [ 8 0 . 0 , 9 5 . 0 , 1 1 0 . 0 , 1 2 5 . 0 ]

10 i sovaluesNames =[”80n” , ”95n” , ”110n” , ”125n” ]
11

12
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13 for iter in range ( len ( i s o v a l u e s ) ) :
14

15 myi=i s o v a l u e s [ i ter ]
16 myir=isovaluesNames [ i ter ]
17

18

19 for time in range (0 , t imes teps +1):
20

21 #### d i s a b l e automatic camera r e s e t on ’ Show ’
22 paraview . s imple . DisableFirstRenderCameraReset ( )
23

24 myf i l e=BaseInputFilename % time
25

26 #c r e a t e a new VisItBovReader
27 #a 1 t o t a l d e n s i t y c u b e = OpenDataFile ( m y f i l e )
28 a 1 t o t a l d e n s i t y c u b e = XDMFReader( FileNames=[ myf i l e ] )
29 #a 1 t o t a l d e n s i t y c u b e = Xdmf3ReaderS ( FileName=[ m y f i l e ] )
30

31 #s e t Mesh and V o r i t c i t y
32

33 #a 1 t o t a l d e n s i t y c u b e . MeshStatus = [ ’ Eu ler ian g r i d ’ ]
34 a 1 t o t a l d e n s i t y c u b e . Ce l lArrayStatus = [ ’ vo r t i c i t y magn i tude ’ ]
35 a 1 t o t a l d e n s i t y c u b e . GridStatus = [ ’ Eu le r ian g r id ’ ]
36

37 # s e t a c t i v e source
38 SetAct iveSource ( a 1 t o t a l d e n s i t y c u b e )
39

40 # g e t a c t i v e view
41 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )
42 # uncomment f o l l o w i n g to s e t a s p e c i f i c view s i z e
43 # renderView1 . ViewSize = [1229 , 934]
44

45

46 # show data in view
47 a 1 t o ta l d en s i t y c u be D i s p l a y = Show( a1 to ta l den s i ty cube , renderView1 )
48

49 # r e s e t view to f i t data
50 renderView1 . ResetCamera ( )
51 renderView1 . Update ( )
52

53

54 #cel lDataToPoint
55 ce l lDatatoPointData1 =
56 CellDatatoPointData ( Input=a 1 t o t a l d e n s i t y c u b e )
57 SetAct iveSource ( ce l lDatatoPointData1 )
58

59 # c r e a t e a new ’ Contour ’
60 contour1 = Contour ( Input=ce l lDatatoPointData1 )
61 contour1 . ContourBy = [ ’POINTS ’ , ’ vo r t i c i t y magn i tude ’ ]
62 contour1 . I s o s u r f a c e s = [ myi ]
63 contour1 . PointMergeMethod = ’ Uniform Binning ’
64

65 # show data in view
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66 contour1Disp lay = Show( contour1 , renderView1 )
67 renderView1 . Update ( )
68

69 # r e s e t view to f i t data
70 renderView1 . ResetCamera ( )
71 print ( ” time ” , time )
72 i = time +1
73 #p r i n t (” i ” , i )
74 myoutput f i l e=BaseOutputFilename+ str ( i )+”−”+myir+” . vrml”
75

76 # e x p o r t view
77 ExportView ( myoutputf i l e , view=renderView1 )
78

79 Delete ( contour1 )
80 del contour1
81 Delete ( contour1Disp lay )
82 del contour1Disp lay
83

84 Delete ( ce l lDatatoPointData1 )
85 del ce l lDatatoPointData1
86

87 Delete ( renderView1 )
88 del renderView1
89 del myoutput f i l e
90 Delete ( a1 to t a l d en s i t y c u be D i s p l a y )
91 del a 1 t o t a l d en s i t y c u be D i s p l a y
92 Delete ( a 1 t o t a l d e n s i t y c u b e )
93 del a 1 t o t a l d e n s i t y c u b e

Listing 3: Python script to export particle graphic files with ParaView.

1 ExportPart i c l e s nbdps . py
2 #### import the s imple module from the paraview
3 from paraview . s imple import ∗
4

5 # \\ i n s t e a d o f / when us ing a windows o p e r t i n g system .
6 BaseInputFilename=’C:\\ path\\ to \\ f i l e \\ input \\ p a r t i c l e s−s t e p %04d . xmf ’
7 BaseOutputFilename=’C:\\ path\\ to \\ f i l e \\ output \\ ’
8

9

10 t imes teps =1801
11 #i s o v a l u e = 50
12 isovaluesName = ” p a r t i c l e s ”
13

14

15 #myi=i s o v a l u e
16 myir=isovaluesName
17

18 for time in range (0 , t imesteps , 1 ) :
19

20 #### d i s a b l e automatic camera r e s e t on ’ Show ’
21 paraview . s imple . DisableFirstRenderCameraReset ( )
22
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23

24 myf i l e=BaseInputFilename % time
25

26 # c r e a t e a new VisItBovReader
27 a 1 t o t a l d e n s i t y c u b e = XDMFReader( FileNames=[ my f i l e ] )
28

29 # s e t Array and Grid S t a t u s
30 a 1 t o t a l d e n s i t y c u b e . Ce l lArrayStatus = [ ]
31 a 1 t o t a l d e n s i t y c u b e . GridStatus = [ ’ p a r t i c l e s ’ ]
32

33 # s e t a c t i v e source
34 SetAct iveSource ( a 1 t o t a l d e n s i t y c u b e )
35

36 # g e t a c t i v e view
37 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )
38 # uncomment f o l l o w i n g to s e t a s p e c i f i c view s i z e
39 # renderView1 . ViewSize = [1229 , 934]
40

41

42 # show data in view
43 a 1 t o t a l d en s i t y c u be D i s p l a y = Show( a1 to ta l den s i ty cube , renderView1 )
44

45 # r e s e t view to f i t data
46 renderView1 . ResetCamera ( )
47 renderView1 . Update ( )
48

49

50 i = time + 1
51 print ( ” i ” , i )
52

53 myoutput f i l e=BaseOutputFilename+ str ( i )+”−”+myir+” . vrml”
54

55 # e x p o r t view
56 ExportView ( myoutputf i l e , view=renderView1 )
57

58

59 Delete ( renderView1 )
60 del renderView1
61 del myoutput f i l e
62 Delete ( a 1 to t a l d en s i t y c u be D i s p l a y )
63 del a 1 t o ta l d en s i t y c u be D i s p l a y
64 Delete ( a 1 t o t a l d e n s i t y c u b e )
65 del a 1 t o t a l d e n s i t y c u b e

Listing 4: Shell script for windows used to process isosurfaces and to apply a filter with
MeshLab

1 for / l %%x in ( s t a r t , step , end ) do (
2 echo %%x
3 ”C:\Program F i l e s \VCG\MeshLab\meshlabserver ”
4 − i %%x−80n . wrl −o %%x−80n . ply −m vn −s f i l t e r . mlx
5 )
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Listing 5: Shell script for windows used to convert the particle files from *.wrl to *.xyz with
MeshLab

1 for / l %%x in (1 , 1 , 1801) do (
2 echo %%x
3 ”C:\Program F i l e s \VCG\MeshLab\meshlabserver ”
4 − i %%x−p a r t i c l e s . wrl −o %%x−p a r t i c l e s . xyz
5 )

Listing 6: Python script to merge and convert particle graphic files.

1 #c r e a t e new f i l e
2 f i = open(\ ” f u l l P a r t i c l e s . xyz \” ,\”w+\”)
3 pr in t (\” S ta r t i ng \”)
4 #Loop f o r a l l subse t s
5 f o r n in range ( 1 , 1 8 0 1 ) :
6 f i l ename = \”%d−p a r t i c l e s . xyz\” %n
7 f o = open ( f i l ename ,\” r \”)
8

9 #Amount o f p a r t i c l e s \\n t imestep \\n
10 # t o t a l 1000
11 wr i t e In toF i = \”1000\\ ni = %d\\n\” %(n−1)
12 f i . wr i t e ( wr i t e In toF i )
13

14 pr in t (\” Filename \” , f o . name)
15 #read i ’ th l i n e from fo
16 f o r i , l i n e in enumerate ( f o ) :
17 wr i t e In toF i = \”C \”+ l i n e
18 #wri t e to f i
19 f i . wr i t e ( wr i t e In toF i )
20 #c l o s e o ld f i l e
21 f o . c l o s e ( )
22

23 f i . c l o s e ( )
24 pr in t (\” done \”)
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Figure 1: More detailed diagram showing the thread interaction (part 1 of 4). (Created with
UMLet 14.2 www.umlet.com.)
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Figure 2: More detailed diagram showing the thread interaction (part 2 of 4). (Created with
UMLet 14.2 www.umlet.com.)
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Appendix

Figure 3: More detailed diagram showing the thread interaction (part 3 of 4). (Created with
UMLet 14.2 www.umlet.com.)

Figure 4: More detailed diagram showing the thread interaction (part 4 of 4). (Created with
UMLet 14.2 www.umlet.com.)
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Figure 5: Dr. Cristian Lalescu (left), one of the creators of the turbulent fluid simulation
used in this thesis, testing an early version of the virtual reality application at the
LRZ.
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Rübel, Oliver ; Durant, Marc ; Favre, Jean M. ; Navrátil, Paul: VisIt:
An End-User Tool For Visualizing and Analyzing Very Large Data. In: High
Performance Visualization–Enabling Extreme-Scale Scientific Insight. 2012, S.
357–372

[CCC+08] Cignoni, Paolo ; Callieri, Marco ; Corsini, Massimiliano ; Dellepiane,
Matteo ; Ganovelli, Fabio ; Ranzuglia, Guido: MeshLab: an Open-Source
Mesh Processing Tool. In: Scarano, Vittorio (Hrsg.) ; Chiara, Rosario D.
(Hrsg.) ; Erra, Ugo (Hrsg.): Eurographics Italian Chapter Conference, The
Eurographics Association, January 2008. – ISBN 978–3–905673–68–5

[Cor16] Corporation, Valve: Vive PRE User Guide. 2016. – https://www.htc.com/

managed-assets/shared/desktop/vive/Vive_PRE_User_Guide.pdf

[KRKP+16] Kluyver, Thomas ; Ragan-Kelley, Benjamin ; Pérez, Fernando ;
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