
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Technology Comparison for

long-term Retention of Contract

Data

Luca Geiger

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Technology Comparison for

long-term Retention of Contract

Data

Luca Geiger

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Maximilian Höb
Peter Blenninger

Abgabetermin: 9. Januar 2020

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 9. Januar 2020

. .
(Unterschrift des Kandidaten)

Abstract

With the emergent development of blockchain technology, the number and variety of
applications increases. Businesses, such as life insurance companies, are considering using it
as their storage solution. It has potential benefits over the traditional option of relational
databases like immutable data. For life insurance companies a significant part of IT projects
is data migration. In the worst case, contract durations can be up to 120 years. This thesis
helps deciding if blockchain is a suitable candidate for long retention of contracts. Mandatory
technology features of data storage and native data migration will be collected. Based
on these, blockchain technology will be compared with relational databases management
systems. To select the most suitable blockchain system, several approaches are compared
regarding their data model. Hyperledger Fabric determined to be the best choice. Since the
comparison focused on the use case of this thesis relational databases show clear advantages
over the blockchain technology Hyperledger Fabric.

Technologievergleich zur Langzeitspeicherung von Vertragsdaten

Abstract

Mit der fortschreitenden Entwicklung der Blockchain-Technologie steigt die Anzahl und
Vielfalt der Anwendungen. Unternehmen, wie z.B. Lebensversicherungen, erwägen ihren
Einsatz als Speicherlösung. Diese Technologie hat potentielle Vorteile gegenüber der tra-
ditionellen Wahl von relationalen Datenbanken wie z.B. der Unveränderlichkeit von Daten.
Für Lebensversicherungsunternehmen ist ein wesentlicher Teil der IT-Projekte die Daten-
migration. Im schlimmsten Fall können die Vertragslaufzeiten bis zu 120 Jahre betragen.
Diese Arbeit hilft bei der Entscheidung, ob Blockchain ein geeigneter Kandidat als eine
Langzeitspeicherlösung ist. Es werden relevante Anforderungen an die Technologien anhand
der Fähigkeiten zur Datenspeicherung und der nativen Datenmigration erhoben. Darauf auf-
bauend wird Blockchain-Technologie mit relationalen Datenbankmanagementsystemen ver-
glichen. Zur Auswahl des am besten geeigneten Blockchain-Systems werden mehrere Ansätze
hinsichtlich ihres Datenmodells verglichen. Hyperledger Fabric ermittelt sich als die beste
Wahl. Da der Vergleich auf den Anwendungsfall dieser Arbeit fokussiert ist, zeigen rela-
tionale Datenbanken deutliche Vorteile gegenüber der Blockchain-Technologie Hyperledger
Fabric.

ix

Contents

1 Introduction 1

2 Related Work 3
2.1 Cross-Technology Comparison . 3

2.1.1 Comparison of MySQL and the Ethereum Blockchain 3

2.1.2 Comparison of Blockchain, Relational Databases, and Google Sheets . 3

2.1.3 Blockchain Relational Database . 4

2.2 Result . 4

3 Requirements Analysis 5
3.0.1 Use Case Description . 5

3.1 Contract Model . 5

3.1.1 Contract Life Cycle . 6

3.1.2 Accounting Transactions . 7

3.1.3 Input Data . 7

3.2 Legislation and Regulation . 8

3.3 Information Security . 9

3.4 Data Migration . 10

3.5 Resulting Requirements . 11

3.5.1 Contract: Input Data . 11

3.5.2 Contract: State Model . 12

3.5.3 Technological Changes . 12

3.5.4 Usability . 13

4 Technologies 15
4.1 Distributed Ledger Technology . 15

4.1.1 Blockchain . 16

4.1.2 Differentiation of Blockchain Systems 17

4.2 Evaluation of Blockchain Systems . 17

4.2.1 Desired Concept . 18

4.2.2 Transaction-based Blockchain Systems 18

4.2.3 Account-based Blockchain Systems . 19

4.2.4 Key-value-based Blockchain Systems 22

4.2.5 Summary . 23

4.3 Relational Databases . 24

4.3.1 Definition . 24

4.3.2 Abstraction of Data . 24

4.3.3 Logical Data Model . 24

4.3.4 SQL . 25

4.3.5 Data Migration Tools . 26

xi

Contents

5 Evaluation 27
5.1 Technology Comparison . 27

5.1.1 Data Storage Capabilities . 28
5.1.2 Data Migration Capabilities . 29

5.2 Result . 30

6 Conclusion and Outlook 31

List of Figures 33

Bibliography 35

xii

1 Introduction

More and more people develop an active interest in the topic of cryptocurrencies like Bit-
coin. Many speculate with it to make profit almost like speculating on the stock exchange.
The possession of cryptocurrencies is especially helpful for people living in countries with an
unstable national currency, due to its independence from it.

The increasing curiosity in cryptocurrencies has attracted the attention of enterprises to
its underlaying technology which is blockchain. Companies tend to use state-of-the-art tech-
nology to comply with highest information security standards. These want to find out
whether blockchain can be considered as one of these. Systems that use blockchain could
bring increased security over using other storage approaches. It is designed to perform in an
adversial environment. This means that the network contains potentially malicious partici-
pants. The data structure blockchain implies that it is tamper-evident as each block contains
a cryptographic hash generated about a subset of its payload and the hash of its predecessor
block in the chain. To generate the hash, mostly a computationally intensive problem has to
be solved. To make a change to a block, hence the data, every subsequent block needs to be
updated to make it unnoticeable. Everyone can check if the integrity of the blockchain has
been violated. Changes are noticeable as the hashes of the subsequent blocks would have to
be recalculated.

Another benefit of blockchain is that the data can be made immutable1 or tamper-proof.
The blockchain is distributed across a network of nodes. Every node has a copy of it.
A consensus algorithm controls concurrent changes and determines which changes to the
blockchain are valid.

Use cases build upon the utilization of the blockchain as an immutable transaction log.
Some applications have already been found, for example the tracking of physical or intangible
data like monetary transactions, votes, health data, patents etcetera.[ØUJ17] Although the
number of possible applications seems to be limited by the structure of the blockchain, as it
mainly serves a as ledger, companies as well as researchers are still investigating the viability
of the technology.

One research area investigates the viability of blockchain technology as a database. Com-
panies have great interest in finding out whether blockchain still is just a hype or brings
actual advantages over other storage technologies. Traditionally relational databases, or
sometimes NoSQL databases, are chosen for this purpose.

A reason why relational databases are used is because it is a mature technology and mostly
intuitive to use. It brings a lot of features amongst the creation, reading, updating and delet-
ing of data. It is made to store structured data in form of tables but also has the option to
store binary files or data formatted in XML. It also provides complex database queries and
performance. There exists a variety of relational database management systems to satisfy
many different needs e.g. sophisticated query mechanisms or high fault tolerance.

1Immutability in this context means that it may take several years for attackers to get access to the data.

1

1 Introduction

Within the scope of this work relational database management systems are compared to
blockchain technology by their data storing and data migration capabilities. One of the
many different blockchain systems has to be utilized for the comparison. For this, a concept
for storing data in a blockchain environment is developed. The outcome is that Hyperledger
Fabric is the most suitable one for this use case which is a burial insurance. Hence require-
ments are implied which are the basis of the technology comparison. The burial insurance
is a product of a use case life insurance company. One of the challenges of life insurance
companies in general is the long lifetime of contracts. Some contracts last up to 120 years.
Therefore one of the biggest part of IT projects is data migrations. These have to be per-
formed every 8-10 years according to the company. The reasons for migrations for example
are changes to business processes. This is also a consequence of legislative changes, e.g. the
EU GDPR in 2018.[EUd] Other reasons for data migrations are changes to the hardware or
operating system, major releases or even that the software vendor stops the support of its
products.

In this work it is presented that relational database management systems are better than
Hyperledger Fabric for this use case. The drawback of HLF is that it cannot entirely delete
data and that it does not provide native options to migrate data. Both of these are crucial
features in the context of long enduring contracts. RDBMS is more mature in contrast to
the relatively new blockchain systems like HLF. Since the environment running the storage
technology does not contain malicious users, the ability to operate on such is not an advan-
tage over RDBMS.

The structure of this thesis is as follows:
Chapter 2 compares similar technology comparisons. It shows that there is no published

work dealing with the objective as this work. In chapter 3 a requirements analysis is used to
collect features that each of the technologies shall and should have. The storage technologies
are presented in chapter 4. In chapter 5 the actual comparison will be conducted based on
the requirements and evaluated. By this, trade-offs of each technology in the scope of a
burial insurance contract will be presented. Chapter 6 presents a conclusion and gives an
outlook for the future.

2

2 Related Work

This chapter will evaluate published work dealing with the objective of comparing the storage
technologies of relational databases and blockchain. In section 2.1 three research papers will
be presented that involve this kind of technology comparison. In section 2.2 the related work
will be evaluated.

2.1 Cross-Technology Comparison

2.1.1 Comparison of MySQL and the Ethereum Blockchain

The authors in Data Management: Relational vs Blockchain Databases[CMC19] compare
the Ethereum blockchain1 with the relational database management system of MySQL. For
the technology comparison four aspects, which are evaluated by conducting an experiment
of an energy trading scenario, are investigated. The aspects are defining data structures to
represent buyers and sellers in the trading scenario, deploying these data structures for each
of the technologies, how the data storage works and how to traverse data. The authors iterate
over the aspects which are to be compared in the context of the energy trading scenario for
each of the technologies. For this, two backend databases are implemented.

The iteration for MySQL is straightforward as every of the four aspects is fully supported.
The energy trading scenario is modeled via the Entity-Relationship (ER) model and imple-
mented by using SQL commands. The described iteration is also applied to the Ethereum
blockchain. It is not straightforward because smart contracts are used as a data structure.
They need to be designed and deployed to the blockchain. For this purpose the authors
developed a single-page application. This application sends transactions to a test network
for Ethereum which replicates the main network. The execution of transaction of the ’real’
Ethereum network involves costs wherefore the test network is used because it provisions
free funds to accounts. The transactions are used to modify and add entries to the smart
contracts, which are similar to the tables in a relational database for this purpose. Querying
the blockchain is difficult because it does not provide a sophisticated query mechanism to
traverse data.

The authors then discuss technological limitations of relational databases and blockchains
which shows trade-offs for each of the technologies in this scenario.

2.1.2 Comparison of Blockchain, Relational Databases, and Google Sheets

The authors of Blockchain: business’ next new ”It” technology—a comparison of blockchain,
relational databases, and Google Sheets[MA19] investigate the applicability of blockchain,
relational databases and Google Sheets2 to meeting the business needs of an accounting
organization. The technologies are evaluated using a set of criteria which is essential to

1 https://www.ethereum.org/ (last access: 06.01.2020)
2https://www.google.com/intl/en/sheets/about/ (last access: 06.01.2020)

3

https://www.ethereum.org/
https://www.google.com/intl/en/sheets/about/

2 Related Work

most business operations. The comparison comprises performance, use cases, privacy and
security, access to use and more. Hence, capabilities and shortfalls of each technology are
identified.

2.1.3 Blockchain Relational Database

In the paper Blockchain Meets Database: Design and Implementation of a Blockchain Re-
lational Database[NGS+19] a decentralized replicated relational databases with blockchain
features (’target state’) is designed and implemented. The starting point is the identification
of similarities or similar concepts and features between relational database and blockchain.
Thereof a list of needed improvements to get to the target state is concluded. These en-
hancing features are implemented using PostgreSQL3. For this, the authors develop new
components or modify existing ones. In the evaluation the focus lays on performance, mea-
sured in terms of throughput and latency, and cost which is measured in terms of resource
utilization like CPU, memory, disk and network bandwidth.

2.2 Result

The paper described in subsection 2.1.2 compares different aspects of blockchain, relational
databases and Google Sheets but not explicitly the data models of the technologies. However,
the paper provides capabilities and shortcomings of relational databases and blockchain in
a business context. These are taking into consideration for the evaluation in this work.

Within the scope of the paper described in subsection 2.1.3 the focus on the design of a
relational database enhanced with blockchain features. The authors pursue the objective
to develop an implementation using PostgreSQL and evaluate it by analyzing performance
and cost metrics. Because the focus does not lay on an actual (data model) comparison, the
paper is not taken into consideration for the concept development in this thesis.

There is a similar comparison approach as used in this work which is described in 2.1.1.
The difference is that the authors of that paper develop an implementation. For that,
exclusively MySQL and Ethereum is used. The authors do not refer to or compare other
distributed ledger technologies. The data model of the technologies is a main focus of the
comparison. In contrast, in this thesis a differentiation between three blockchain systems is
made (see 4.2) based on the used data model.

In summary it can be said that at the time of this research there is no published work
dealing with the aim of investigating the viability of RDBMS and blockchain systems for the
use case of storing a long enduring (burial) insurance contract.

3https://www.postgresql.org/ (last access: 06.01.2020)

4

https://www.postgresql.org/

3 Requirements Analysis

The output of this chapter is a list of all relevant requirements (see 3.5). A requirement
describes an aspect which each of the introduced technology (see 4) needs to have or should
have in the scope of a burial insurance contract, depending on its importance. The impor-
tance is discussed in chapter 5. They are gathered from conducted expert interviews with
employees of the use case company. The use case is described in section 3.0.1. The analysis
in this chapter is non-exhaustive meaning that not all possible requirements are considered.

A method to classify requirements is to distinguish between functional and non-functional
requirements.[CNYM12, p. 6] However, it is not used because some requirements do not fit
the assignment or it is not clear. Another method is implied by the international standard
for software product quality ISO 25010 which presents eight different subdivisions for soft-
ware quality.[ISO11] Although it provides perspectives on how to structure the requirements,
the method of grouping them by the source they are taken from is used because it fits best
for this work. The sources are general terms and therefore allows a top-down view to the
requirements. The sources are the contract with the business model (see 3.1), information
technology security and data privacy objectives (see 3.3), legal requirements or restrictions
(see 3.2), the usability (see 3.5.4) and technological changes (see 3.4). The latter are changes
which occur during the long time a contract is ”alive” in the context of the infrastructure in
which the storage system is executed.

3.0.1 Use Case Description

The use case is a burial insurance. It is a type of of funeral expense life insurance policy
covering the cost of funeral or cremation expenses. These are several thousand euros. The
paid-in capital is paid into an insurance policy so that it cannot be misused. For example a
50 year old man takes out this insurance. His life expectancy is about 85 years. Therefore
the contract runs for 35 years. The policy holder, which for instance is the insured person
himself, pays in a premium every month until he dies or the contract is withdrawn/revoked.
When the insured person dies the contract terminates and the beneficiary receives the payout.

3.1 Contract Model

The reason for choosing a burial insurance is its relatively low complexity. The complexity of
an insurance contract mostly increases by the number of inputs, involved roles and amount
of involved business processes. The process after concluding a burial insurance contract
between the life insurance company and a person is mapped to the contract model. It is
presumed that the referred data already has been digitalized1.

1Note that, life insurance companies have to store the actual contracts for a certain amount of time due to,
for example, tax laws or insurance contract laws.

5

3 Requirements Analysis

"waiting period"

"withdrawn"

"grading"

[t>=6] (6 months passed)

"running"

[t>=12] (12 months passed)

[without health examination] [health examination]

[death]

<withdraw contract>

"dead"

<withdraw contract>

Figure 3.1: State model overview of the burial insurance contract model

3.1.1 Contract Life Cycle

To understand the next two subsections, the life cycle of the burial insurance contract is
explained. Therefore a state model is defined. The model is illustrated in figure 3.1. A
contract is within a state2 at any time. They are represented by the rounded rectangles.

Before a person can conclude this type of contract, he or she has the option to make a
health examination. If the examination is chosen, the contract will be in the running state.
If not, it is in the waiting period state. This distinction is made to take the risk of the person
to die shortly after concluding the insurance into account. If the insured person dies within
the waiting period, the paid-in capital minus a administrative fee is paid out. The waiting
period in this case lasts six months and the state after six months is the grading state. The
remaining in these states depends on the age of the insured person. The calculation in the
grading state works as follows: if the insured person dies after seven months, 6/12 of the
payout will be paid. If he dies in the eighth month, 7/12 of the payout will be paid etc. This
continues until one year after concluding the contract, or six month after leaving the waiting
period, because then the full payout (12/12) is paid. After twelve months the contract is in
the running state (without health examination). The next state would be the dead state if

2This is a (simplified) mapping of the real-world contract model.

6

3.1 Contract Model

the insured person dies. The contract can be withdrawn at any time3. If this happens, the
contract is canceled and a guaranteed amount (guarantee values), calculated according to
the already paid-in capital, is paid out to the policyholder. The withdrawn and dead states
are final states.

3.1.2 Accounting Transactions

During the lifetime of a contract accounting transactions (AT) occur. They are events de-
fined by their real-world trigger events. A distinction is made between scheduled and event
based accounting transactions. Scheduled AT mostly are triggered by a certain amount of
time which has passed. Event based AT mostly involve interaction of the insured person or
policy holder. An event could be that the insured person moves to another city. AT initiate
one or more business processes which indicate what actions or rather changes to data have
to be performed. Only a subset of all accounting transactions are considered in this use case.

The AT are state transitions in the state model (see 3.1) Scheduled AT are recognized
by arrows labeled with text inside angle brackets (”< ... >”). The labels refer to actions
performed by an human in the real world, like the withdrawal of the contract. Event based
AT are recognized by arrows labeled with conditions inside square brackets (”[...]”). The
black rectangle represents a mutual exclusive condition, meaning that only one outgoing
transition is possible at a time. The term t >= 6 is a temporal condition where t is the time
in months.

3.1.3 Input Data

The input data refers to the data needed to conclude contracts. Customers can choose the
type of insurance and additional options. Information about the insured person has to be
specified to and saved by the life insurance company. This includes personal data like the
date of birth, the address etcetera, information about the chosen insurance with selected
options, administrative data and data to help making the contract machine readable needs
to be stored. The input data is subdivided to contract and process data by the purpose of
the data4.

Process Data

The process data is needed for the verification of the contract a customer wants to conclude.
For example it includes information like whether the to be insured person is politically
exposed or the date of receipt/acknowledgment. This information does not change during
the lifetime of the contract.

Non-Technical Contract Data

In contrast, contract data may change over time. It is subdivided to non-technical and tech-
nical contract data. The non-technical contract data contains organizational/administrative

3To revoke or withdraw the contract has consequences like paying a administrative fee for example.
4Note that such input data is individual for each company. There can be added more data to the contract

depending on, for example, which business process is involved. Therefore, a very simplified version of the
contract is used.

7

3 Requirements Analysis

information, i.e. the insurance ID, tax information or the bank account reference of the
policy holder. This type of data is not used for calculations.

Technical Contract Data

The technical contract data is relevant for programs which process the data or use it for
calculations. The table 3.1.3 shows a listing of relevant data. These elements are also
referred to as ’keys’. They have values for example the key contract ID has the value 1234.

Technical contract data

• fixed:
– Contract ID (unique identifier)
– Product (in this case the burial insurance)
– Start date
– Insured capital (payout)
– Date of birth (to calculate the age)

• temporal:
– Version (to distinguish between different stored version of the same contract)
– State (state model (see 3.1.2))

• calculated:
– Contributed capital (capital which has been paid up to a certain time)
– Guarantee values
– Premium (monthly rate)

Table 3.1: Contract data composition

Note: Fixed means that the value of the key does not change once it is created. In contrast,
calculated and temporal data changes over time. The latter refers to the contract model. It
is not contained in the real world contract. Machine readability is supported by temporal
data and the contract ID. Calculated means that the value depends on some other values,
for example date of birth.

3.2 Legislation and Regulation

In general, the applying laws for contracts, information technology and security depend
on the country in which a company is located. A distinction is made between guide-
lines/recommendations which are useful aspects to consider and restrictions which shall be
applied to stay in compliance with the law. If not, legal penalties follow by the government
or according institutions.

For the research of law requirements an expert interview was conducted. The issue of
how secure a system is is not as important as the issue of the kind of data stored within
a certain context. To show an example: Microsoft Azure Cloud or Amazon Web Services
are operated by multi-billion dollar companies. They have the resources to keep the IT
security level extremely high compared to small companies with their in-house IT. For smaller
organizations it is relatively expensive to be certified, for example to ISO 27001. To fulfill
requirements, the organizational overhead exceeds the value for the company.

8

3.3 Information Security

Table 3.2 contains noteworthy laws or rather paragraphs (the types of laws are within
the parentheses) for this work. They require that access to customer data is protected.
The expert also named the ”Versicherungsaufsichtliche Anforderungen an die IT (VAIT)”
which show special requirements for life insurance companies. These requirements are not
a law but should be explicitly considered in this context. They are provided by the Federal
Financial Supervisory Authority (BaFin)5 in Germany. Due to time reasons they are not
detailed further in the work.

European Union

• EU-GDPR (Data Protection Act)[EUd]
– the EU-GDPR is mainly aimed at the protection of natural persons regarding
to the processing of personal data
– Article 17 Right to erasure (’right to be forgotten’): ”The data subject
shall have the right to obtain from the controller the erasure of personal data
concerning him or her without undue delay and the controller shall have the
obligation to erase personal data without undue delay.”[EUd]

Germany

• Strafgesetzbuch StGB (Criminal Code)[Str]
– §203 Violation of private secrets: (excerpt of) (1) Anyone who unautho-
rizedly discloses a foreign secret, namely a secret belonging to the personal
sphere of life or an industrial or business secret, which has been entrusted
or otherwise become known to him as a member of a private life insurance
company, shall be punished with imprisonment for up to one year or with a
fine.

Table 3.2: Listing of relevant law paragraphs

3.3 Information Security

The aspects of information security are preservation of confidentiality, integrity and avail-
ability of information, authenticity, accountability, non-repudiation, and reliability.[ISO16]
The prior motivation of achieving a ’high’ or rather appropriate level of information security
is to be in compliance with the law because violations of the law may result in fines6 or
imprisonment.

The ISO/IEC 27000 (abbreviated as 27K) is an international standard for information
technology security and data privacy. The standard ”maintains an expert committee ded-
icated to the development of international management systems standards for information
security, otherwise known as the Information Security Management System (ISMS) family
of standards. [...] [It] is intended to assist organizations of all types and sizes to implement
and operate an ISMS”.[ISO16] The standard also provides a variety of security controls and

5https://www.bafin.de/DE/DieBaFin/diebafin_node.html (last access: 06.01.2020)
6EU-GDPR Article 83(6): ”Non-compliance with an order by the supervisory authority as referred to in

Article 58(2) shall, in accordance with paragraph 2 of this Article, be subject to administrative fines up
to 20 000 000 EUR, or in the case of an undertaking, up to 4% of the total worldwide annual turnover of
the preceding financial year, whichever is higher”[EUd]

9

https://www.bafin.de/DE/DieBaFin/diebafin_node.html

3 Requirements Analysis

measures. These should cover every facet of a company that has something to do with infor-
mation security including human resources, organizational processes, physical environment
security, local/wide area network with access restrictions etcetera.

In Germany, the Federal Office for Information Security (BSI) provides a national guideline
for information technology security and data privacy. Its objective is similar to ISO/IEC
27K: ”The aim of IT-Grundschutz is to achieve an appropriate security level for all types of
information of an organisation.”7 The BSI also provides hands-on examples to apply security
controls which is helpful besides ISO 27K’s rather theoretical descriptions of security controls.
They also published a table which maps the security controls from ISO 27001 and 27002 to
their ’IT-Grundschutz’.[Inf18]

Note that there exist more than the two mentioned standards. These are not detailed any
further, mainly because they affect infrastructure or management aspects more than data
storage technologies.

3.4 Data Migration

Due to the long contract durations, data migrations must be carried out approximately
every 8-10 years. Data migration means moving a subset of the data or all of it from the
’old’ (source) to a ’new’ or newer version of the same storage system (target). The data
needs to be migrated together with its change history. One of the ways of proceeding a
data migration is presented in the white paper by Bloor Research.[How07] The reasons for
migrations for example are changes to business processes which could also imply changes
to the contract model. These are invoked by regulatory changes, such as the EU-GDPR.
Another reason to do a data migration is the breaking of encryption algorithms or the keys
used for encryption, if such is applied to data. This could be possible within the next 35
years as a result of increasing computing power or new technologies. More possible changes
include modifications to the hardware or operating system, the consolidation of multiple
data preserving software systems, the lack of vendor support, major releases8 etc.[BXW19].

In this work, data migration refers to the exporting of data out of a storage system and
importing it to the a newer version of the same system. The migration quality is especially
important to the use case company meaning that the process needs to be lossless. The data
with its structure must be preserved implying the integrity of data is not corrupted. That
includes the change history/transaction log and (if existent) data types, constraints and
built in mechanisms like stored procedures. The reason why only migrations from the same
system to a newer version of that system (not vice versa) are considered is that cross-system
migrations mostly are not lossless. That is due to the fact that internal data structures
differ between systems although they use a similar storage technology (i.e. RDBMS). The
migration from a newer to an older version of the same system could result in losses to data
integrity as versions are not necessarily backwards compatible.

7https://www.bsi.bund.de/EN/Topics/ITGrundschutz/ITGrundschutzHome/itgrundschutzhome_node.

html (last access: 06.01.2020)
8”Major Release means a new version of Software that includes changes to the architecture and/or adds new

features and functionality in addition to the original functional characteristics of the preceding software
release.” https://www.lawinsider.com/dictionary/major-release (last access: 06.01.2020)

10

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/ITGrundschutzHome/itgrundschutzhome_node.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/ITGrundschutzHome/itgrundschutzhome_node.html
https://www.lawinsider.com/dictionary/major-release

3.5 Resulting Requirements

3.5 Resulting Requirements

In this section all relevant requirements are listed. They will be distinguished by where they
are taken from. Hence, the following subsections indicate the ’source’ of the requirements.
The titles of the subsections of the subsections are identifiers to enable the referencing in
chapter 5. The sections 3.5.1 and 3.5.2 are requirements for the ’pure’ data storage and the
ones from section 3.5.3 are requirements related to data migration. The last section (3.5.4)
is not considered in the comparison in section 5.1 but it will be annotated in section 5.2.

3.5.1 Contract: Input Data

In this part the requirements coming from the data (see 3.1.3) of contract model are listed.

RQ1-1 Store structured data

The storage technology needs to have the ability to store structured/machine readable data.
Structured data has a composition which is enforced on a atomic level. Unstructured data
does not have a conceptual definition, for example like a textual document.[Weg04] The
definition used for this work differs because the semantic does not necessarily need to be
defined by data types. Machine readable means that the data is formatted in a way that it
is possible to use it for programs. These formats, like XML (Extensible Markup Language)
or JSON (JavaScript Object Notation), are supported by a variety of parsers and libraries.
For example data formatted as a PDF (Portable Document Format) usually is not machine
readable.

RQ1-2 Queries

There needs to be an option query the stored data. Users need data wherefore a data
processing layer between the users and the database exists. Within this layers programs
query the data and preprocess it for a certain type of user.

Time variance9 of data is not included in the comparison.

RQ1-3 Unique identifiers

There needs to be a mechanism to ensure that some entries are unique.

RQ1-4 Modify (contract) keys

Sometimes keys need to be modified or deleted as the contract model evolves over time.
Keys refer to the contract elements (see 3.1.3).

RQ1-5 Data types

Values of keys have a data type like ’natural number’ or a generic string value.

9This is important when saving for example addresses of persons. Following scenario: a customer enters
into a insurance contract on day X. A few years later, on day Y, he moves to another town and changes
his address. Later, on day Z, he wants to know the status of his insurance for the date before he moved,
this means between day X and. If the life insurance company for example saved personal information
about the customer ’next to’/combined with information about his contract, the company would query
invalid information about the residence of the customer, namely the address he lived at before day Y.

11

3 Requirements Analysis

RQ1-6 Constraints

The technology has the option to add constraints to data. Constraints are like rules or
restrictions applied to data. An example is: a number may never be below a certain value (i.e
number >= threshold). Constraints that are necessary for maintaining integrity conditions10

are excluded from these.

3.5.2 Contract: State Model

These requirements directly result from the state model (see 3.1).

RQ2-1 Create contracts

There shall be the possibility to create a instance of a contract. The term ’instance’ refers
to the object instantiation of a class in the world of Object Oriented Programming.

RQ2-2 Delete contracts

There shall be the possibility to delete the instance of a contract. There is a special interest
due to regulations (see 3.2). The LV1871 has a internal definition (status: October 2019)
of the term ’delete’. Deleting data means the (1) irreversible elimination of data or (2) the
permanent removal of the link or linkability of data or (3) irreversible anonymization of
data. Anonymization means changing personal data in such a way that this data can no
longer be assigned to a person or only with disproportionate effort. This means that any
identifying characteristics (e.g. address data, date of birth and other characteristics that
enable identification of the person) are removed without replacement.

RQ2-3 Modify (contract) values

This requirement represents a mapping of accounting transactions (see 3.1.2). The technol-
ogy shall offer the possibility to modify values of keys (see 3.1.3).

3.5.3 Technological Changes

RQ3-1 Data export

The storage technology natively has the option to export all of its data including the format
or rather scheme of the data. Natively means without the usage of third party programs.

RQ3-2 Data import

The storage technology natively has the option to import data which has a supported format.

RQ3-3 Lossless data structure migration

The exporting (see RQ3-1) and importing (see RQ3-2) of data needs to be lossless. This
means that the data and its structure must be preserved implying the integrity of data is
not corrupted. That includes (if existent) data types 3.5.1, constraints 3.5.1 and built in
mechanisms 3.5.1.

10This refers to referential integrity of data in RDBMS for example (see 4.3.4).

12

3.5 Resulting Requirements

RQ3-4 Lossless migration of transaction history

There needs to be an option to migrate the change history/transaction log without losing
the integrity of data.

3.5.4 Usability

This aspect is an individual consideration of the use case company. The term usability refers
to integrability and maintainability. As the users mainly are developers and the IT of the use
case company, it is beneficial for them to have a technology which is well known, standardized
and has an active community online11. The more members the technology use the more help
is available to solve occurring problems. What helps users a lot to understand and work
with a technology and is a well defined and documented API (Application Programming
Interface), especially if employees leave the company and other people with less experience
have to deal with the technology. Integrability includes the number of prerequisites, in
terms of knowledge and software development environments, which are necessary to run
the storage technology. This could also determine the degree of interoperability as software
environments are not supported by every operating system.

11For example how many users use this technology at Stack Overflow: https://stackoverflow.com/

13

https://stackoverflow.com/

4 Technologies

In this chapter the technologies for storing data are presented which are blockchain tech-
nology and relational databases. An output of this chapter will be information about their
specifications and characteristics to present the basic functionality. The main focus is on the
’pure’ data storage because business logic is outsourced to the data processing programs.
This includes creating, reading, updating and deleting data (CRUD). Data migration capa-
bilities will be mentioned briefly as they belong more to the database management system
than the database itself. Advanced features like stored procedures in RDBMS are not consid-
ered in the technology comparison (see 5.1) because they differ between RDBMS. In section
4.1 the technology ’blockchain’ with its components will be presented and defined. It will
be differentiated between three blockchain systems based on the used data model in section
4.1.2. The data models or rather the approach of storing data will be compared to each
other in 4.2. This determines which system is best suited to store contracts or rather con-
tract data. The definition of relational databases and the underlaying relational model is
presented in section 4.3. The data storage functionality for relational databases is detailed
in section 4.3.4 which is about SQL.

4.1 Distributed Ledger Technology

The concept of DLT has already existed before blockchain technology. The authors in
Distributed Ledger Technology Systems: A Conceptual Framework [RGG+18] show different
definitions of the term DLT selected from a range of papers or institutions which deal with
the subject blockchain or DLT. They propose a formal definition including only the essential
requirements1

As a type of distributed system, a ”DLT system is a system of electronic records that

i. enables a network of independent participants to establish a consensus around

ii. the authoritative2 ordering of cryptographically-validated (’signed’) transactions3. These
records are made

iii. persistent by replicating the data across multiple nodes4, and

iv. tamper-evident5 by linking them by cryptographic hashes.

v. The shared result of the reconciliation/consensus process - the ’ledger’ - serves as the
authoritative version for these records”[RGG+18].

1The definitions in the footnotes of the upcoming definitions are copied from the just mentioned paper.
2Is used to designate the set of records that all network participants agree upon, and which are not subject

to subsequent alteration without consensus.
3A change to the records in the system.
4A network participant communicating with peers over a shared communication channel.
5Refers to the the ability of participants to easily detect non-consensual changes to records.

15

4 Technologies

4.1.1 Blockchain

Blockchain technology is a subset of DLT technology that uses a data structure called
blockchain[RGG+18]. In this work only DLT systems that use blockchain technology are
considered. The terms DLT system and blockchain system are interchangeable.

The ’blockchain’ itself is a ledger. It contains signed transactions which are grouped to
blocks. These blocks are cryptographically linked. Every block comprises a block header
and block data (mostly transactions). The block header always has the following entries:
a timestamp, the hash generated over a subset of its block data6 (mostly the transactions)
and the hash of the previous block header in the blockchain. Depending on the protocol and
consensus method, the header can also contain additional entries. An example: the ’nonce’
entry which is needed if the consensus method Proof-of-Work (PoW) is used.[YMRS18]

The ledger is distributed to nodes in a network of nodes. Every node holds its own in-
dividual instance of the ledger. Because it is a network including multiple nodes which all
are holding their own version of the ledger, it may be that there is no ’final’ or correct ledger
at a given time. This imperfect state exists because, for example, clients like wallets7 want to
send or rather broadcast transactions (i.e. monetary transaction) to the blockchain network.
These transactions imply a modification of the ledger. The protocol rules indicate how valid
transactions and blocks shall look like. The set of actions to add transactions to the ledger is
called the consensus method. For example the consensus method PoW is used in the Bitcoin
blockchain8. There are specific nodes (in case of PoW called ’miners’) in the network whose
task is to collect proposed and yet unconfirmed transactions. The task of these nodes is to
check the validity of transactions. Transactions that are in compliance with the protocol are
valid and can be confirmed. The transactions are then signed and bundled to blocks which
are then added to the blockchain. If multiple transaction collecting nodes do their task
simultaneously they may have conflicting individual instances, called journals. For this the
protocol needs a rule for conflict resolution. For instance, the Bitcoin blockchain ”resolves a
temporary split caused by two competing valid blocks at equal height by choosing the block
on the branch that carries most cumulative PoW (longest-chain rule)”[RGG+18]. The goal
is to keep the journals in sync. This leads to ”a convergence towards a single accepted set
of authoritative records”[RGG+18] - the ledger.

It is tamper-evident meaning that everyone can check if the integrity of the blockchain
has been violated by checking the integrity of the hashes. Often the ledger is referred to
as immutable or tamper-proof due to the fact that it is distributed to multiple nodes. This
property can only be maintained as long as there is no entity that has a superior computing
power to produce records faster than the rest of the network. The ’51%’ attack is an example
for this. The records of ’honest’ nodes could be replaced by records of the entity having the
majority of computing power due to conflict resolution rules.[RGG+18] It is more accurate
to say that the blockchain is resistant and not immune to unwanted tampering of data.

6https://hackernoon.com/merkle-trees-181cb4bc30b4 (last access: 06.01.2020)
7A wallet is a device, program or service. It stores public and or private keys to track the ownership of

cryptocurrencies.
8https://bitcoin.org/en/how-it-works (last access: 06.01.2020)

16

https://hackernoon.com/merkle-trees-181cb4bc30b4
https://bitcoin.org/en/how-it-works

4.2 Evaluation of Blockchain Systems

4.1.2 Differentiation of Blockchain Systems

There is a variation of blockchain systems with different design decisions. This leads to the
choice of certain protocols and configurations. The authors of Distributed Ledger Technology
Systems: A Conceptual Framework [RGG+18] propose a framework to compare these systems
on hierarchical system levels. The top level categories are protocol, network and data layer.

The protocol layer refers to the governance of the system. This term for example covers
how collective decisions are made and who has permission to submit votes. The network
layer refers to the blockchain systems architecture. It includes how the network access is
regulated, which nodes are allowed to process transactions etc. The data layer refers to the
type of data stored in the blockchain. The authors distinguish between four types. Bitcoin
is a endogenous reference. This type only exists within the boundaries of the system. In
contrast exogenous data exclusively exists outside the boundaries. An example are assets
like real estate wherefore a connection to the real world is required. The type of data referred
in the context of this work is called hybrid. This type of data exclusively exists within the
boundary of the system (for example a key-value representation of a contract) but may has
references to real world entities (the burial insurance contracts). The fourth type of data is
called self-referential. The authors define it as pieces of code that do not have references to
endogenous nor exogenous variables. They may have internal or external variables.

Smart Contracts

Smart contracts belong to the category self-referential. These can be regarded as stored
procedures which are invoked by certain events like an incoming transaction or an occurred
condition. ”The inputs, outputs and states affected by the smart contract execution are
agreed on by every node.”[DLZ+18] There are built-in and user defined smart contracts.
The first ones implement parts of the blockchain protocol and define the processes like
transaction validation. User defined smart contracts can specify arbitrary computations.
Ethereum smart contracts are written in Solidity which is Turing complete code executed
on the virtual machine of Ethereum.[DLZ+18] Only this type of smart contracts is referred
to in this work.

4.2 Evaluation of Blockchain Systems

Because the comparison (see chapter 5) only considers the storage of data, the data model
is the most important component. The authors in Untangling blockchain: A data processing
view of blockchain systems[DLZ+18] compare blockchain systems, amongst other criteria,
by the used data model. It is differentiated between three different kinds of data models:
transaction-based (Bitcoin), account-based (Ethereum) and key-value (Hyperledger Fabric9

(HLF)). The terms inside the parentheses are DLT systems that implement the corresponding
data model. They are taken as explanatory examples for this work. All three of them are
open-source projects which use blockchain technology.

9https://hyperledger-fabric.readthedocs.io/en/latest/ (last access: 06.01.2020)

17

https://hyperledger-fabric.readthedocs.io/en/latest/

4 Technologies

time

...

...

● Contract ID =
● Version =
● State =
● …
● keyN+1 = value

Contract Scheme
● Contract ID =
● Version =
● State =
● …
● keyN = value

Contract Scheme

● Contract ID = 1
● Version = 1-1
● State = ‘Running’
● …
● keyN = value

Contract
● Contract ID = 1
● Version = 1-2
● State = ‘Running’
● …
● keyN = valueNew

Contract
● Contract ID = 1
● Version = 1-K
● State = ‘Dead’
● …
● keyN = valueNew

Contract

...

● Contract ID = 2
● Version = 1-1
● ...

Contract
● Contract ID = 2
● Version = 1-2
● ...

Contract
● Contract ID = 2
● Version = 2-2
● ...

Contract

Figure 4.1: Contract data represented as key-value pairs

4.2.1 Desired Concept

Because blockchain systems natively are not databases, a concept of how to store contracts
needs to be developed. Therefore the elements of the contract are transformed to a key-value
representation of the contract. It is illustrated in figure 4.1.

In order to establish the basis for the comparison the blockchain system data scheme
needs the following functionality. Contracts can be created and have a contract scheme.
The vertical blue line in figure 4.1 represents a contract scheme modification. This means
that keys of the contract are modified. Every contract after the scheme modification has
the updated scheme. Values of keys need to be modifiable. This is represented by the red
colored text. The version key is used to distinguish between different versions of the same
contract. It works as follows: the first digit refers to the contract scheme, the second refers to
the contract version. The version changes every time an element of the contract is modified.
The system must also be able to delete contracts. All these requirements come from chapter
3 (see 3.5.1 and 3.5.2). The deletion is a special challenge when using blockchain systems
because the transaction log is immutable.

In the following three subsections the three data models will be presented. It will be
decided whether it can be used for this purpose or not. If not the reason for that decision
will be presented.

4.2.2 Transaction-based Blockchain Systems

This model often is used to save transactions of tokens between addresses. A token could be
a cryptocurrency and addresses could be a public key of an entity like a person. Therefore
to get the current state of, for example, an ’account’ balance, the whole blockchain has to

18

4.2 Evaluation of Blockchain Systems

be traversed to gather only the transactions which have references to the address of that
’account’. Although the concept in 4.2.1 could be implemented, the transaction-based data
model is not recommended for the use case of storing contracts.

One of the reasons is that the protocol needs to be adapted to a key-value store or similar10.
When using the reference client Bitcoin Core, every change request needs to be proposed
to a Github repository11 as a so called Bitcoin Improvement Proposal. These work similar
to Request For Comments12. The enforcement of a change is virtually impossible in public
blockchains like the one from Bitcoin as the proposals require community consensus. An
option to bypass this is to use a different software client. Bitcoin has no formal protocol
specification as clients implement the rules. Bitcoin Core is the ’official’ client but there are
more competing clients users can choose from. Any of these clients could implement rule
changes which then would be enforced by users running that particular client.[RGG+18]

Another contra argument is that making changes is expensive or only partially possible
with limitations. By propagating blockchains as an immutable ledger it never was the
intention to modify the ledger. In the following argument a change does not mean an actual
change to the data but make it seem like a change was made. The effect of this is like using
views in RDBMS. An option to make changes is to create a new block and using version
tags. Figure 4.213 helps to understand the following. You cannot make changes to a block
when it is verified except rehashing every block after the modified block, which is expensive
in terms of computation power (for example if PoW is used). By using version tags, the
newest version of a contract can always be determined.[YMRS18] The problem here is that
multiple versions of contracts coexist. Therefore only the newest version of the contract is
valid. The newest one is the one which is located closest to the last appended block of the
blockchain. It needs to be ensured that only the last appended version to the blockchain can
be accessed to users.

Thereby another problem comes up. Natively blockchain systems do not provide a data
querying mechanism, or not as advanced as RDBMS do.[CMC19] To solve the problem that
only the newest version of a contract shall be accessible is to use asymmetric encryption
like RSA.[RSA78] The values of the keys inside a block are encrypted with a public key and
can be decrypted using the corresponding private key. So if a newer version of a contract
exists, a new block is created including the changed values. It will be encrypted using a new
created key pair. The key of the older version will be deleted or thrown away so that no one
can access it. However this needs a key management system to maintain which is additional
expensive overhead using it for this purpose.

4.2.3 Account-based Blockchain Systems

The account-based14 data model uses addresses as accounts. This model makes it possible
to save data without traversing the whole transaction log first.

10Another way to store data on the Bitcoin blockchain is to encode it as Bitcoin addresses. The authors of
Blockchain: business’ next new ”It” technology stated that someone stored an image of Nelson Mandela
using this method.[MA19] However, there is no source indicated for a proof in the paper.

11https://github.com/bitcoin/bips (last access: 2.1.20)
12https://www.rfc-editor.org/ (last access: 06.01.2020)
13This figure is taken from https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed

(last access: 06.01.2020)
14All of the information in the following is taken from Ethereum: A secure decentralised generalised transac-

tion ledger [W+14] unless another source is referenced.

19

https://github.com/bitcoin/bips
https://www.rfc-editor.org/
https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed

4 Technologies

Hash

ID
Version
Status
...

RSA

Contract c502Contract c500

Previous Hash

Previous Hash

... ...

Value Change

= 501
= 1
= …
...

Hash

ID
Version
Status
...

RSA

= 501
= 2
= …
...

Blockchain

Figure 4.2: Concept of saving data using the transaction based data model

Relevant technical details and part of the architecture of Ethereum is presented first. Their
explanations and relevance for this work will be shown in forthcoming paragraphs.

Figure 4.315 illustrates a subset of entries inside a Ethereum block header and corresponding
components. Every block header has the entries State Root and Transactions Root. They
are 256-bit Keccak16 hashes of the corresponding root node of a modified Merkle Patri-
cia tree17. The arrows in the figure represent the references to the state and transaction
trie. ”The root node of this structure is cryptographically dependent on all internal data”.
[W+14] The Merkle Patricia Tree stores data. The data is stored as key-value bindings. The
operations insert, lookup and delete can be executed in O(log n)18.

Every block has its own transaction trie. This is to keep track of executed changes to data as-
sociated within this block. In contrast, there is only one global state trie, the world state. It
is constantly updated. ”The state trie contains a key and value pair for every account which
exists on the Ethereum network”19. The key is a 160-bit identifier, an Ethereum account
address. The value is the corresponding account state, encoded by the Recursive-Length
Prefix (RLP)20 encoding method.

It is differentiated between two types of accounts: external and contract accounts. Ex-
ternal accounts are controlled by private keys. These can send transactions to contract
accounts (containing so called ’smart contracts’21). The contract accounts have code22 and
an internal storage for persistent smart contract data. By receiving messages, i.e. from
an external account, the code of the contract account will be executed with the submitted

15Based on https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed (last
access: 06.01.2020).

16 https://keccak.team/keccak.html (last access: 06.01.2020)
17It is interchangeable with the term ’trie’.
18https://github.com/ethereum/wiki/wiki/Patricia-Tree (last access: 06.01.2020)
19 https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed (last access:

06.01.2020)
20https://github.com/ethereum/wiki/wiki/RLP (last access: 06.01.2020)
21 https://pegasys.tech/ethereum-explained-merkle-trees-world-state-transactions-and-more/

(last access: 06.01.2020)
22 https://github.com/ethereum/wiki/wiki/White-Paper (last access: 06.01.2020)

20

https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://keccak.team/keccak.html
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://github.com/ethereum/wiki/wiki/RLP
https://pegasys.tech/ethereum-explained-merkle-trees-world-state-transactions-and-more/
https://github.com/ethereum/wiki/wiki/White-Paper

4.2 Evaluation of Blockchain Systems

Transaction Trie

State Trie

Ethereum Block

● Transactions Root
● ...

● State Root

● ...
● Storage Root
● Code Hash

Ethereum
Blockchain

...

● ...

Storage Trie
● ...

Figure 4.3: Ethereum block architecture

transaction parameters. Contract accounts then can also send messages to contracts. Every
performed action (i.e. sending of messages to other contract accounts) needs to be paid for
by the initiator of the transaction.

Every account in the state trie has its own storage trie. The storage trie is used for the
smart contract data18. Every account (state), which is in the state trie, has the entry
Storage Root which is a 256-bit Keccak hash of the root node of the storage trie. This is
illustrated in figure 4.3. Amongst other entries, every account state has the so called Code
Hash entry. This is a hash of the executable code of the account. This implies that the code
is immutable23.

In the following it is explained how to actually store data via smart contract. Smart con-
tracts have variables and functions, i.e. setter functions to change values of variables. A
mapping of real world contracts to smart contracts would be possible, like presented in 4.2.1
as keys (i.e. contract ID) represent variables of the smart contract.

However, there is a problem: smart contracts are immutable: it is not possible to change
functions or variables (names of the variables/the keys), also it is not possible to add or
remove these. But the values of variables can be changed, as mentioned before. And that
means to change code, also for example to fix bugs or for refractoring, a new contract account
has to be created21 while the old one coexists.

The paper Data Management: Relational vs Blockchain Databases[CMC19] shows how to
save data to the Ethereum blockchain and proves that it is possible. The authors state a
problem that ”blockchains don’t have any sophisticated data query mechanism to interrogate
the data that is stored in them”.[CMC19] The Ethereum blockchain does not provide queries
like SQL does. Therefore the filtering of data needs to be done in data returning functions
of smart contracts. If there is a need for new queries either new smart contracts have to

23The entries Storage Root and Code Hash of external accounts are empty because they do not have any
code

21

4 Technologies

be created, because they are immutable. Another option is to transfer the filtering to the
data processing programs. In this case it may be unknown how much data is going to be
retrieved. This is because every event in which the address of the smart contract occurs will
be returned (the authors used the Web3 framework). Another problem related to querying
data would be: how to manage all the parallel existing smart contracts on the (Ethereum)
blockchain? It would need a key management system to keep track of the accounts that are
currently in the blockchain. There also shall be a way to mark smart contracts as deleted,
because once appended to the blockchain, it is nearly impossible to revert this action. The
authors mention more considerations when using Ethereum for example the lacking data
formats of Solidity24 and the costs (transaction fees).

4.2.4 Key-value-based Blockchain Systems

The last one of the three introduced data models is the key-value-based data model. As
an explanatory example, the enterprise blockchain solution Hyperledger Fabric (HLF) was
chosen. The following information is provided by the documentation of HLF9.

Architecture

HLF is to be considered separately and may not entirely match the given definition in section
4.1.1. The reason is that the system is modular. Parts of the architecture are interchangeable
for specific needs like algorithms for identities, encryption, consensus etc. There are different
types of nodes in the network. They fulfill certain roles for example transaction processing
with an endorsement policy. This policy defines the type of voting procedure for instance
a two-thirds majority could be implemented. A privacy feature of HLF is to allow groups
of participants to create separate ledgers of transactions in one network (channels). This is
achieved by using access restrictions with a Public Key Infrastructure.

Data Layer

The ledger is a combination of the world state and an immutable blockchain or rather
transaction log history. The world state is an actual database (levelDB25 or couchDB26) For
each channel of which a participant is member of, a copy of the ledger is maintained.

To store data in the ledger of a channel, user defined smart contracts (called chaincode) are
used. Chaincode is encoded logic27 invoked by specific transactions on the channel. These
transactions can be sent by an external application. The result of chaincode invocations are
key-value writes (changes to objects). These changes are broadcast to the network, processed
and applied to the ledger. Therefore objects can be defined as key-value representations or
modified. Values have an implicit data type like string or number. They always have an
unique identifier (ID). The structure of objects (data scheme) can also be modified, which
is the equivalent to modifying keys in the concept (see 4.2.1).

The ledger can contain different versions of the same object. Therefore modifications to
objects can be tracked because these are saved as transactions to the blockchain while the

24The programming language for smart contracts in Ethereum
25https://github.com/google/leveldb (last access: 06.01.2020)
26http://docs.couchdb.org/en/stable/intro/index.html (last access: 06.01.2020)
27Chaincode can be written in Go, node.js, or Java.

22

https://github.com/google/leveldb
http://docs.couchdb.org/en/stable/intro/index.html

4.2 Evaluation of Blockchain Systems

world state contains the latest version of each object. So there is no need to traverse the
whole blockchain to get the current state of the ledger.

In order to execute queries, transactions are sent by an application to the network which
invokes chaincode. It interacts with the database component of the ledger to receive current
data to send it back to the application. The ledger history can also be queried if older
versions of data objects are wanted. Most queries are key based, for example by addressing
the ID of objects. By using queries inside chaincode for example, restrictions to values of
keys can be made (like constraints in SQL).

4.2.5 Summary

The following refers to the explanatory examples: Bitcoin, Ethereum and Hyperledger Fab-
ric. Therefore the made statements are not general for all DLT system using the correspond-
ing data model:

As discussed, DLT systems using a transaction-based data model do not suit for the use
case of storing contracts. To generalize it, these systems should not be used as a database
like relational databases because you cannot make changes to data inside the blockchain. To
query data the whole blockchain has to be traversed which is too much overhead. Storing
data comes along with limitations or is not even possible.

DLT systems using the account-based data model are ’more viable’ for the use case of stor-
ing data than the transaction-based model but still have limitations or restrictions. Actual
(states of) data can be persistently saved using smart contracts. Data can be modified which
is a benefit over transaction-based DLT systems. But it is not possible to change a smart
contract, more precise the structure of it because it is immutable. Another disadvantage
is querying of data. There is no sophisticated query mechanism like RDBMS have. The
filtering of data is not flexible, in contrast to SQL. For using account-based DLT systems
a key management system is necessary to manage account addresses. An open question is:
how scalable is this approach with accounts as addresses.

Public blockchains should not be used as historical records, especially not for unencrypted
records. The problem mentioned in NISTIR 8202 Blockchain Technology Overview [YMRS18]
is called the ’Blockchain Death’. As well as traditional centralized systems, blockchain net-
works will be taken down one day. Due to its decentralized nature it could be that it never
shuts down entirely, meaning that there could always be remaining blockchain nodes. The
less publishing nodes are left the higher gets the chance for a malicious user to overpower
the few publishing nodes to modify the blockchain.

The technology of blockchain was designed as a transaction log performing in an adversial
environment enabling entities that do not necessarily trust each other to reach consensus
over a shared set of data without relying on a central authority.[RGG+18] However, for this
use case, its advantages do not outweigh its shortcomings related to the failure to comply
with the desired concept (see 4.2.1) and lacking query mechanisms.

Therefore for this use case the key-value approach is taken, more precise HLF. Every feature
of the desired concept can be achieved. Additionally the network access can be restricted

23

4 Technologies

to keep control over the users. Thus, HLF is not affected by the problem of potentially
dying public blockchains. This technology will be used for the comparison with a relational
database in chapter 5.

4.3 Relational Databases

In this section a general definition of relational database management systems (RDMBS) is
given. Most of the information is taken from the book Datenbanksysteme: Eine Einführung.[KE15]

4.3.1 Definition

Generally, a database system consists of the database management system and the database
itself. The DBMS consists of a set of data and the programs that are necessary for processing
data. DBMS base on a data model which provides the infrastructure to map parts of the
real world to the model. In the case of RDBMS the model is based on the relational
model according to Edgar F. Codd.[Cod70] The model describes data objects, called data
scheme. For this purpose the DBMS provides a Data Definition Language (DDL) and a Data
Manipulation Language (DML) to define operations on the data objects. The DML consists
of a Query Language and the actual data manipulation language to insert, modify or delete
data. The scheme doesn’t change very frequently over time unlike the saved data. There are
several RDBMS on the market. Some are open-source like MySQL28, some are proprietary
software like IBM DB229. They provide almost the same basic functionality because they all
use SQL (see 4.3.4). The feature differences are for example internal procedures like triggers,
or security features like different access control models. Another aspect in which they differ
is performance due to internal data structuring using indexing.

4.3.2 Abstraction of Data

A distinction is made between three levels of abstractions of a database system: the physical,
logical and views level. The physical level includes data structures and eventually index
structures. This level is mandatory for the performance of the database system. The logical
level is responsible for the data scheme. The function of the views level is to provide different,
tailored views for different users or applications. By this, only necessary data is shown and
also data privacy can be ensured. The benefit of having such a distinction is to have data
independence. Theoretically, if a modification on a certain level is made, the other levels
or rather the users should not be affected by the change. To achieve this, the interfaces
between the layers need to be well defined. Usually only physical data independence can be
ensured by today’s database systems because only little conceptual changes are feasible to
the database scheme. A change to the logical layer also impacts the views level because the
views rely on the data scheme.

The focus lays on the logical layer, especially on the data model.

28https://www.mysql.com/de/ (last access: 3.1.20)
29https://www.ibm.com/products/db2-database (last access: 3.1.20)

24

https://www.mysql.com/de/
https://www.ibm.com/products/db2-database

4.3 Relational Databases

4.3.3 Logical Data Model

More specific DBMS for example are relational DBMS (RDBMS). They are always referred
to in this work when speaking of DBMS. The data model is based on relations.

In general, there are formal models to operate on relations and to describe queries. Mostly
relational algebra and calculus are used. They serve as a theoretical basis for query languages
like SQL. The relevant parts of the mathematical algebra are operands (relations or rather
tables) and operations (on the tables).

The purpose of all this is to map real-world entities/objects and their relations to each
other to the data model of databases. In the case of RDBMS the method of achieving this
mostly is to use the Entity-Relation Model (ERM). In this case the objects are contracts. The
mapping of the data objects to the relations looks as follows: the rows of a table represent
objects and therefore the current database state. Tables represent the data scheme of the
database and serve as a container for objects. Columns of a specific table describe properties
of a data object30.

4.3.4 SQL

As mentioned the RDBMS has a DDL, DML and query language. In this work SQL (Struc-
tured Query Language) is used which is a combination of a these three languages. Most
RDBMS provide a set of SQL commands which are executed for example in a shell, some
provide web interfaces to manage the database. SQL can be embedded to a host language
like Java. That increases usability and maintenance because the data processing includ-
ing business logic can be separated from the database. In the following concepts of SQL
are specified. They serve as a proof that the requirements are fulfilled in the technology
comparison in section 5.1.

Definition of data schemes

SQL provides commands to create tables (data schemes) and to alter and delete them. When
adding columns to tables, the system fills the yet missing columns of objects (rows) with null
values. The specification of tables or rather their data scheme includes data types of columns
and constraints for them which describe details of objects. Supported are three fundamental
data types: numbers, strings and a type for data. The main purpose of RDBMS is to store
structured data. For other applications some SQL implementations provide additional types
for binary or XML files. To distinguish between objects in a table, every object has at least
one unique attribute, co called ’key’. By this objects can be referred to across tables (’foreign
key relationship’). The deletion of tables could lead to dangling references as some refer to
not existing tables then (’referential integrity’).

Elementary Data Manipulation

Elementary data manipulation refers to the adding, modifying and deletion of rows or rather
objects in tables. When having foreign key relationships the deletion of objects could lead
to dangling references as some refer to the void then.

30It should be noted that the meta information, or data scheme, which describes the structure of the data is
not the same as the database state containing the current valid saved data itself.

25

4 Technologies

Queries

SQL provides a sophisticated query mechanism to traverse data from the database. This
enables it to return whole tables or only one specific row of a table. The query mechanism
includes for example aggregation functions like sums or averages and conditional queries. To
increase usability for users and information security SQL provides views. They are virtual
tailored tables which only consist of certain parts of tables. These views can be used as a
pre-query/macros to make complex database queries more comprehensible.

4.3.5 Data Migration Tools

Usually the option of exporting data to import it to a newer version of the same product is
available. For example the RDBMS Oracle additionally provides an option to migrate data
from a third-party RDBMS31. The number of data migration tools and the quality of the
migration (see 3.5.3) depends on the used RDBMS.

31https://docs.oracle.com/en/database/oracle/sql-developer/19.2/rptug/

migrating-third-party-databases.html (last access: 3.1.20)

26

https://docs.oracle.com/en/database/oracle/sql-developer/19.2/rptug/migrating-third-party-databases.html
https://docs.oracle.com/en/database/oracle/sql-developer/19.2/rptug/migrating-third-party-databases.html

5 Evaluation

To determine the best candidate for the use case, the technologies RDBMS and HLF are
compared with each other. The basis for this are the requirements from chapter 3. In
section 5.1 it is iterated through the list of requirements (see 3.5) to check whether each
of the technologies is capable of meeting them. For this purpose, the requirements have
weightings which reflect their importance. The result of the comparison is a numeric score
which will be evaluated in section 5.2.

5.1 Technology Comparison

In table 5.2 a decision matrix is presented. In that table features about creating, reading,
updating and deleting data (CRUD) are listed. Table 5.3 also presents a decision matrix
with features about data migration. The outcome of these tables is a numeric score. The
higher the score, the better the technology fits the use case. Hence weightings (’importance’)
are assigned to requirements/features for this use case. What they mean is explained in table
5.1.

Weighting Explanation

10 A must-have feature which is especially crucial to the use case company.

7
This is basic functionality of what the technology shall have and/or manda-
tory for the use case company.

6
The functionality may be outsourced to, for instance, a migration project
because it is not needed frequently. Due to the fact that migration projects
should be minimized, the feature still is mandatory.

1
These are should-haves or nice-to-haves because functionality could be out-
sourced to data processing programs.

Table 5.1: Explanation of weightings for the technology comparison

The score is the sum of the products of the weightings and multipliers (0, 0.5 or 1). If a
requirement is fulfilled, the multiplier is 1. This is indicated by the checkmarks in tables 5.2
and 5.3. How the technologies fulfill these requirements will not be explained again because
it already was explained in section 4.2.4 and 4.3. If the requirement is not fulfilled, the
multiplier is 0. The following are motives which sets the multiplier to 0.5: the fulfillment is
only a proof-of-concept1 or possible under certain conditions. Bringing the requirements in
a decision matrix gives an overview of how well each of the technology fits the use case.

1This refers to a (adapted) definition given here https://nvd.nist.gov/vuln-metrics/cvss/

v3-calculator (last access: 3.1.20)

27

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

5 Evaluation

The requirements are separated into two tables. Table 5.2 contains CRUD requirements
and table 5.3 contains the ones depending on the database management system. The output
of each table is a score. The overall score is the sum of each table score.

Table 5.2 will be evaluated in section 5.1.1 and table 5.3 in 5.1.2.

Reference Requirement Weighting RDBMS HLF (DLT)

3.5.1

RQ1-1 Store structured data 7 X X
RQ1-2 Queries 7 X X
RQ1-3 Unique identifiers 7 X X
RQ1-4 Modify (contract) keys 6 Conditional X
RQ1-5 Data types 1 X X
RQ1-6 Constraints 1 X X

3.5.2
RQ2-1 Create contracts 7 X X
RQ2-2 Delete contracts 10 Conditional No
RQ2-3 Modify (contract) values 7 X X

Score: 45/53 43/53

Table 5.2: Technology comparison based on CRUD features

Reference Requirement Weighting RDBMS HLF (DLT)

3.5.3

RQ3-1 Data export 7 X Proof-of-concept
RQ3-2 Data import 7 X Proof-of-concept

RQ3-3
Lossless data

structure migration
10 Conditional Proof-of-concept

RQ3-4
Lossless migration

of transaction
history

10 Conditional Proof-of-concept

Score: 24/34 17/34

Table 5.3: Technology comparison based on migration capabilities

5.1.1 Data Storage Capabilities

The resulting score in table 5.2 for RDBMS is 45/53 and for HLF 43/53. Both scores will
be evaluated in the following.

The upcoming explains, why the RDBMS fulfills the requirements of modifying contract
keys (RQ1-4) and deletion of contracts (RQ2-2) only under certain conditions. The RDBMS
has a specific disadvantage in contrast to HLF in terms of deleting entries in tables or entire
tables. The aspect also includes modifying names of entries and tables. This is the result
of foreign key relationships. If an entry has a reference to another entry of another table
and would be deleted, dangling references occur (see 4.3.4). To address this problem, SQL
provides multiple constraints (i.e. ’ON DELETE’ and ’ON UPDATE’) which will reject
the deletion or modification of keys which have foreign key relationships and return a error
message. Another way to react to potential violations of referential integrity is to add con-

28

5.1 Technology Comparison

straints (’SET DEFAULT’ and ’SET NULL’) which set the key to its default value or a null
value.[KE15]

HLF does not fulfill the delete contracts requirement (RQ2-2). It depends on the defini-
tion of deleting data given in section 3.5.2. Transactions in the blockchain cannot be deleted
after applying them. As HLF has a world state database which consists of the current state
of the transaction log, the illusion of deleting (and also modifying) data can be created
(see 4.2.4). Objects have multiple versions. Therefore deleted objects do not appear in the
database but still exist in the transaction log. The solution could be to encrypt affected
values with encryption keys or anonymize the data. However, the encryption requires key
management for encryption keys and anonymization is difficult to achieve as contracts need
to be assignable to a natural person for administrative reasons. The requirement of deleting
contracts could be accomplished, under the condition of allowing the existence of data in the
transaction log and restricting access to it. Nonetheless, this does not meet the definition of
permanently removing the link or linkability of data.

To sum it up, RDBMS is better than HLF in the CRUD based comparison. Its short-
coming of modifying and deleting can be fixed by using SQL constraints. HLF is not able
to delete data according to the definition given in 3.5.2 wherefore it has a lower score.

5.1.2 Data Migration Capabilities

In this subsection table 5.3 is evaluated which refers to the definition given in 3.4. The score
for RDBMS is 24/34 and for DLT 17/34.

RDBMS usually have the option of exporting data to import it to a newer version of the same
product. For this purpose natively a migration assistant guides users through this process.
The quality of data migration is different from system to system. It might also differ from
version to version of the same system. It is not possible make a general statement saying that
every RDBMS has the option to execute a lossless (see 3.4) data migration. Nevertheless
there are systems which meet the given definition of data migration.2

HLF was published in 2015. As it is relatively new, its maturity is not as advanced as
from RDBMS. Therefore HLF does not have native options to perform a data migration.
The paper Patterns for Blockchain Migration[BXW19] deals with data migration patterns for
blockchain. The authors present multiple methods to export data from a source blockchain
system and import it to a target system. One of the export methods is Snapshotting. This
gets a snapshot of the global state on the source system including smart contracts. A method
to export and import data is Transaction Replay which replays a selected number of trans-
actions or all of them on the target system to recreate the state and the transaction history.
For this use case, a combination of both methods is needed. The whole state including the
smart contracts and the transaction history must be preserved. Because the paper only
presents a proof-of-concept and not a implementation, it cannot be guaranteed that it will
be working for HLF, especially without third party tools. However this could change in the
future.

2The use case company stated DB2 (at least the currently used version) is able to perform data migrations
according to the here given definition.

29

5 Evaluation

The better candidate in this category is RDBMS because it has native options to perform a
data migration.

5.2 Result

In section 5.1.1 and 5.1.2 it was detailed why HLF is not as capable for this use case as
RDBMS. One of the main reasons is that HLF cannot delete data according to the given
definition in 3.5.2 as the transaction log is immutable. In contrast, the RDBMS can delete
data, but care must be taken that the referential integrity is not violated. The other reason
is that HLF is not as mature as RDBMS. One of the consequences is that there is no native
option to migrate data. That is a crucial feature for the use case company as contracts
endure up to 120 years in the worst case. However, if HLF gets the native option in the
future to perform data migrations it then depends on the involved effort which technology
is better. It is connected with the question of how often a migration must be carried out.
The following trade-off must be assessed: For example one system has to be migrated every
10 years with a relatively small effort and in contrast the other system has to be migrated
only every 30 years but with a relatively large effort. The monetary and human resources
required (and available), which obviously differs between companies as well as use cases,
would play a decisive role. At the moment HLF is inferior to the RDBMS in terms of native
data migration options.

In section 3.5.4 the aspect of usability was presented. It was not taken into comparison
between RDBMS and HLF. The reason for this is that usability has to be defined precisely
to measure and evaluate it. It may also be subjective in some sub-aspects. That would
have gone beyond the scope of this work. Nonetheless one comparable, measurable point
should be annotated. It is, as mentioned already, that HLF or blockchain technology is
not as mature as RDBMS. This means that blockchain technology is not standardized in op-
position to SQL.[KE15] Experimenting is still needed to learn the technology better.[ØUJ17]

The final and overall score for RDBMS is 69/87 and for HLF 60/87. This makes RDBMS
the best candidate for this use case.

30

6 Conclusion and Outlook

The use case life insurance company wanted to know if relational database management sys-
tems (RDBMS), which they are currently using, could be replaced by blockchain technology
for the use case of a burial insurance. This work has shown that it is not replaceable by this
relatively new technology. At least not at the moment of writing this thesis.

The method to prove that it is not as viable as RDBMS is to gather necessary features
to run the services of the company (in scope of the use case). As the use case is a burial
insurance a contract model including a state was developed. In this context, especially
laws had to be considered. The contract models and regulations implied requirements and
therefore necessary features. The blockchain technology needs to fulfill these requirements
so that all necessary services, which are supported by the currently used technology, can be
delivered on an adequate level.

As there exist multiple blockchain systems for a variety of use cases, it had to be determined
which blockchain system would come into consideration for storing data of contracts with a
lifetime up to 120 years.

Hence, blockchain systems were evaluated by their data model. There are transaction-
based, account-based and key-value-based blockchain systems. For that purpose explanatory
implementations for each of the data models were chosen to make it more comprehensible.
The key-value-based data model, which is implemented in Hyperledger Fabric (HLF), is
most suitable for this use case. HLF does not have a public blockchain, as it turned out to
be problematic when dealing with personal data, especially due to data privacy laws. The
main reason for choosing HLF is that it is able to track states of contracts within a world
state database as it is main component of its architecture. An advantage over the other two
data models, or rather their implementations, is the advanced and native query mechanism
of HLF. This one is a mandatory feature for the use case company as the business processes
rely on database queries.

The chosen blockchain system then was compared to RDBMS based on the requirements
gathered beforehand and evaluated. The reasons of why blockchain systems are not the
best candidate for saving long enduring contracts were presented. For HLF it was shown
that data cannot be deleted. Although this works within the scope of its database, the
data still exists in its transaction log (blockchain). Another reason the blockchain system
is inferior to RDBMS is that it does not provide native options to migrate data. This is a
crucial feature because the data might be saved for up to 120 years. There are strong doubts
that a technology, or that version of it, lasts this long wherefore data needs to be migrated
to newer systems and technologies. In this work it was also discovered that the ability of
blockchain to perform in an adversial environment is not a benefit over RDBMS as in this
case participants are trusted.

The search for native options of data migration when using HLF showed that not much
research has been done in this area. There are concepts and patterns for migration in the
scope of blockchain technology but there are no implementations including proofs. RDBMS is
more mature than the relatively new blockchain systems like HLF. Therefore, the technology

31

6 Conclusion and Outlook

needs more research and experimentation to serve as a storage system for (life insurance)
companies on an adequate level like RDBMS.

Thus, a future research project could be the development of a prototype. This could
present a proof, e.g. for HLF, of how to migrate data in a similar quality as RDBMS does.
The quality obviously has to be defined. Another work in the future could be about the
’layer above’ the data storage (database management systems). This is most responsible for
the preservation of information security including confidentiality and integrity. It also offers
the possibility to extend the database with programmatic logic. For RDBMS this refers to
stored procedures and for the blockchain systems it refers to smart contracts. For this use
case the database management systems were not investigated, because there was no need
to use them as the business logic is outsourced to the data processing programs. However,
smart contracts seem to be a powerful tool compared to the limited possibilities stored pro-
cedures in RDBMS provide.

As more research is invested in this technology, it could become more viable as a storage
option in the future. Even if the work has come to the conclusion that blockchain technology
is currently not suitable for storing contracts, the findings are still valuable to companies
with similar use cases that have considered using the technology. These results may support
their decision process.

32

List of Figures

3.1 State model overview of the burial insurance contract model 6

4.1 Contract data represented as key-value pairs 18
4.2 Concept of saving data using the transaction based data model 20
4.3 Ethereum block architecture . 21

33

Bibliography

[BXW19] Bandara, HMN ; Xu, Xiwei ; Weber, Ingo: Patterns for Blockchain Migration.
In: arXiv preprint arXiv:1906.00239 (2019)

[CMC19] Chitti, Phani ; Murkin, Jordan ; Chitchyan, Ruzanna: Data Management:
Relational vs Blockchain Databases. In: International Conference on Advanced
Information Systems Engineering Springer, 2019, S. 189–200

[CNYM12] Chung, Lawrence ; Nixon, Brian A. ; Yu, Eric ; Mylopoulos, John: Non-
functional requirements in software engineering. Bd. 5. Springer Science & Busi-
ness Media, 2012

[Cod70] Codd, Edgar F.: A relational model of data for large shared data banks. In:
Communications of the ACM 13 (1970), Nr. 6, S. 377–387

[DLZ+18] Dinh, Tien Tuan A. ; Liu, Rui ; Zhang, Meihui ; Chen, Gang ; Ooi, Beng C. ;
Wang, Ji: Untangling blockchain: A data processing view of blockchain systems.
In: IEEE Transactions on Knowledge and Data Engineering 30 (2018), Nr. 7,
S. 1366–1385

[EUd] European Commission: EU General Data Protection Regulation.
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1575809341428&

uri=CELEX:32016R0679

[How07] Howard, Philip: Data Migration. In: A White Paper by Bloor Research (2007),
S. 1–15

[Inf18] Informationstechnik, Bundesamt für Sicherheit in d.: Zuordnungsta-
belle Zuordnung ISO/IEC27001 sowie ISO/IEC27002 zum modernisierten IT-
Grundschutz. Apr 2018

[ISO11] ISO/IEC: ISO/IEC 25010 System and Software Quality Models. ISO/IEC,
2011. – Forschungsbericht

[ISO16] International Organization for Standardization: Information tech-
nology – Security techniques – Information security management systems –
Overview and vocabulary. Geneva, CH, Februar 2016. – Standard

[KE15] Kemper, Alfons ; Eickler, André: Datenbanksysteme: Eine Einführung. 10.
Berlin : De Gruyter Oldenbourg, 2015 (De Gruyter Studium). – ISBN 978–3–
11–044375–2

[MA19] McAliney, Peter J. ; Ang, Ban: Blockchain: business’ next new ”It”
technology—a comparison of blockchain, relational databases, and Google
Sheets. In: International Journal of Disclosure and Governance (2019), Aug.

35

https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1575809341428&uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1575809341428&uri=CELEX:32016R0679

Bibliography

http://dx.doi.org/10.1057/s41310-019-00064-y. – DOI 10.1057/s41310–
019–00064–y. – ISSN 1746–6539

[NGS+19] Nathan, Senthil ; Govindarajan, Chander ; Saraf, Adarsh ; Sethi, Manish
; Jayachandran, Praveen: Blockchain Meets Database: Design and Implemen-
tation of a Blockchain Relational Database. In: arXiv preprint arXiv:1903.01919
(2019)

[ØUJ17] Ølnes, Svein ; Ubacht, Jolien ; Janssen, Marijn: Blockchain in government:
Benefits and implications of distributed ledger technology for information shar-
ing. 2017

[RGG+18] Rauchs, Michel ; Glidden, Andrew ; Gordon, Brian ; Pieters, Gina C.
; Recanatini, Martino ; Rostand, Francois ; Vagneur, Kathryn ; Zhang,
Bryan Z.: Distributed ledger technology systems: a conceptual framework.
(2018)

[RSA78] Rivest, Ronald L. ; Shamir, Adi ; Adleman, Leonard: A method for obtaining
digital signatures and public-key cryptosystems. In: Communications of the
ACM 21 (1978), Nr. 2, S. 120–126

[Str] Strafgesetzbuch (StGB). https://www.gesetze-im-internet.de/stgb/

index.html

[W+14] Wood, Gavin u. a.: Ethereum: A secure decentralised generalised transaction
ledger. In: Ethereum project yellow paper 151 (2014), Nr. 2014, S. 1–32

[Weg04] Weglarz, Geoffrey: Two Worlds Data-Unstructured and Structured. In: DM
REVIEW 14 (2004), S. 19–23

[YMRS18] Yaga, Dylan ; Mell, P ; Roby, N ; Scarfone, K: NISTIR 8202 Blockchain
Technology Overview. In: Retrieved from National Institute of Standards and
Technology, US Department of Commerce (2018)

36

http://dx.doi.org/10.1057/s41310-019-00064-y
https://www.gesetze-im-internet.de/stgb/index.html
https://www.gesetze-im-internet.de/stgb/index.html

	Introduction
	Related Work
	Cross-Technology Comparison
	Comparison of MySQL and the Ethereum Blockchain
	Comparison of Blockchain, Relational Databases, and Google Sheets
	Blockchain Relational Database

	Result

	Requirements Analysis
	Use Case Description
	Contract Model
	Contract Life Cycle
	Accounting Transactions
	Input Data

	Legislation and Regulation
	Information Security
	Data Migration
	Resulting Requirements
	Contract: Input Data
	Contract: State Model
	Technological Changes
	Usability

	Technologies
	Distributed Ledger Technology
	Blockchain
	Differentiation of Blockchain Systems

	Evaluation of Blockchain Systems
	Desired Concept
	Transaction-based Blockchain Systems
	Account-based Blockchain Systems
	Key-value-based Blockchain Systems
	Summary

	Relational Databases
	Definition
	Abstraction of Data
	Logical Data Model
	SQL
	Data Migration Tools

	Evaluation
	Technology Comparison
	Data Storage Capabilities
	Data Migration Capabilities

	Result

	Conclusion and Outlook
	List of Figures
	Bibliography

