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Abstract

In the last decades computer-generated images have become indispensable. From product
design over the game and film industry until medical analysis - computer graphics plays a
significant role in all of these sectors. The photon mapping algorithm is a relevant method
used for generating especially photo realistic images. In this work the bias of photon map-
ping in combination with stratified sampling is examined. For this purpose three types of
scenes are considered: a one dimensional setup, surface illumination and volumetric e↵ects.
The theoretical study of all three setups detects an overestimation bias similar to the bias
described in ”Describing and Solution of an Unreported Intrinsic Bias in Photon Mapping
Density Estimation with Constant Kernel”. This overestimation bias is verified afterwards
with an experimental study of stratified photon mapping. With di↵erent estimates for cal-
culating the irradiance that were used in other theoretical studies of photon mapping it is
investigated how the detected overestimation bias for stratified photon mapping behaves.
The estimate proposed in [Gar12] leads to a small underestimation bias while the estimate
from [Jen02] reduces the absolute value of the bias, showing a mixture between over- and
underestimation. In the end it is presented scientific research that applies the theoretical
concept behind photon mapping and it is proposed a study of variance in combination with
stratified photon mapping for a future research area.
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1. Introduction

The purpose of this work is to extend the theoretical framework designed by Garćıa et al.
in the paper ”Description and Solution of an Unreported Intrinsic Bias in Photon Mapping
Density Estimation with Constant Kernel” by combining photon mapping with stratified
sampling and to show how stratification a↵ects the overestimation bias of the photon map-
ping algorithm.

Section 1 gives an introduction on computer graphics, photon mapping and related work,
including also mathematical and statistical basics that are important to understand the next
chapters. Section 2 shows the empirical study of photon mapping with stratified samples
and and the resulting bias. Afterwards, in section 3 this bias is verified experimentally. In
order to reduce the bias two di↵erent historical approaches are applied to stratified photon
mapping in section 4. Eventually, section 5 presents applications of the concept of photon
mapping and a proposal for future work.

1.1. Computer graphics

“A picture is worth a thousand words” - a single image can tell much more than a text.
This could be the reason why computer graphics has become an indispensable part of our
daily lives. Computer-generated images accompany us all day long: They entertain us while
we play games on computers. They inspire us when we come across an animated video on
our smartphones or tablets. They thrill us every time we watch films with special e↵ects
on television [Sal11]. Beyond that, computer graphics also plays an important role in areas
where we would not suspect it in first place. The design sector needs computer graphics
for generating models of the product before producing it. Simulations for architecture and
urbanism are generated by computers. Beyond that, in medical areas the visualization of
data in form of computer-generated images helps to detect diseases [Sal11].

The more realistic a computer-generated should be, the more resources for computation
are needed and the more preparation time is required. This is the so called speed - qual-
ity trade-o↵ which one inevitably comes across when using computer graphics. Basically,
computer graphics deals with creating a two-dimensional image from a three-dimensional ge-
ometric model. To make the outcome seem most realistic, there are several steps necessary:
After first arranging a scene with the geometric models, a camera perspective, shadows,
light sources and colour have to be added. This process is called rendering. In the end, the
scene has to be animated by adding motion e↵ects to the objects [Car15]. In photorealistic
rendering the image should be rendered as realistic as possible. This means that the ren-
dering process has to be optimized in order to make the final outcome look like a photography.
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1. Introduction

For simulating light in computer generated images there can be distinguished two kinds
of illumination techniques. Local illumination simulates only light coming directly from
the light source for illuminating an object. Global illumination instead simulates the light
transport along the scene. Thus for calculating the light intensity of a point x, additionally to
the light from a light source illuminating x directly, also indirect illuminations from reflected
light rays are included in the light value of x.

1.2. The photon mapping algorithm

The photon mapping algorithm has a significant meaning for photorealistic rendering. It
is capable of simulating global illumination e↵ects such as reflections and caustics [Dut06].
Photon mapping steps in already before rendering the scene. In a way, photon mapping
is similar to the corpuscular theory of light in physics: A light source emits small energy
packets, so called photons, with uniformly distributed power in random directions into the
scene. When the photons collide with objects on the scene, they behave according to the
material that the objects consist of – they are absorbed, reflected ore refracted. Reflected
and refracted photons are moving onwards in the scene until hitting a di↵use surface while
hits from absorbed photons are stored in a photon map. When afterwards rendering the
scene, the radiance of a surface point x can be estimated by looking up all k nearest photons
in the photon map that are within a certain radius rk and considering their energy [Gar12]
[Shi03]. This process is called nearest neighbour density estimation.

1.3. Mathematical and statistical prerequisites

For the theoretical study of the photon mapping algorithm later on it is necessary to be
familiar with a few mathematical concepts. We will need density estimation and order
statistics for the photon mapping algorithm, the expected value of a random variable to test
the calculation of the irradiance and of course stratified sampling.

1.3.1. Expected value of a random variable

Generally spoken, the expected value of a random variable X is the probability-weighted
average of all its possible values. In other words the expected value is calculated by multi-
plying each of the possible outcomes x1, x2, ... xn of X by the likelihood each outcome will
occur and then summing all of those values [Wei20].

E[X] =
nX

i=1

P (xi)xi (1.1)

One could expect that E[ 1X ] equals 1
E[X] . This is not true and can be disproved with a

simple example. We are looking at a coin flip with an ideal coin. In the sample space are
two outcome values, 1 and 2. As the coin is ideal, we expect both values to appear with the
same probability 1

2 , so their expected value is E[X] = 1+2
2 = 3

2 . The inverse of the expected
value is 1

E[X] =
2
3 .

2



1.4. One-dimensional photon mapping with random samples

Taking instead the inverse of the outcome values and then calculating the expected value of
the inverses, it results in a di↵erent value: E[ 1X ] = 1�1+2�1

2 = 3
4 . As

3
4 � 2

3 , also E[ 1
X] �

1
E[X] .

Overall it is valid that for every convex function ⇢, E[⇢(X)] � ⇢(E[X]) [Jen06].

1.3.2. Density estimation

Density estimation is the construction of an estimate of the probability density function for
given data points [Sil02]. The probability density function f gives a natural description for
the distribution of a random quantity X. With the following relation, other probabilities
associated with X can be found, for example the cumulative distribution [Sil02].

P (a < X < b) =

Z b

a
f(d)dx for all a < b (1.2)

1.3.3. Order statistics

Order statistics deals with the probability distribution of elements in ordered lists. The list
contains the ordered results of ñ random experiments: [x(1) . . . x(k̃) . . . x(ñ)]. As we use n and
k to indicate specific properties later on in the photon mapping algorithm, the variables in
the ordered list are denoted with ñ and k̃. ñ indicates the number of elements in the list
and k̃ the k̃th elements in the list whose probability distribution is to be calculated. F (x)
indicates the cumulative distribution function and f(x) the probability density function.
The distribution of the k̃th order statistic is [Dav70] [Gar12]:

fX(k̃)
(x) =

ñ!

(k̃ � 1)!(ñ� k̃)!
F k̃�1(x)(1� F (x))ñ�k̃f(x) (1.3)

1.3.4. Stratification

Stratification is used in statistics as a sampling technique. The objective of stratified sam-
pling is to ensure that all regions of the sample space are covered with samples. It is also
used to reduce the overall variance of an estimate by putting more samples in regions where
the values of the probability density functions are likely to vary a lot [Gen05]. This is how it
works: Stratified sampling is a combination of random and systematic sampling. To create
a stratified sample, the sampling frame has to be partitioned into several blocks, based on a
relevant variable. After that random samples are drawn within these blocks [Dad17].

1.4. One-dimensional photon mapping with random samples

This is a model of one-dimensional photon mapping density estimation according to [Gar12].
We take the interval [�1, 1] as our scene that should be illuminated. The light source dis-
tributes n photons randomly on this interval (Figure 1.1 (a)). The photon map query is
performed at the midpoint P = 0 and should consider its k nearest photons for calculating
the irradiance. For doing so, the photons first have to be ordered by their distance to P :
from the 1st, 2nd, 3rd ... kth until the nth nearest photon (Figure 1.1 (b)). The distance from
P to the kth nearest photon is rk (Figure 1.1 (c)). As we perform the query at the midpoint
of the interval, the value of rk lies in between [0, 1].

3



1. Introduction

Figure 1.1.: Example for n = 6 and k = 4.
(a): The interval [0, 1], query point P and the six randomly distributed photons;
(b): The photons ordered by their distance to P;
(c): The distance rk from P to the kth nearest photon relative to P

In order to simulate illumination in the model, there has to be a value that describes the
radiance of the light in the scene: The irradiance I() is defined as the value of the incoming
flux of radiation per interval unit. It is constant, so all points in the interval have the same
irradiance. I(P ) is the irradiance at the query point P [Gar12]. We denote the irradiance
with the symbol I(), like it was done in [Gar12], in order to avoid confusion with the ex-
pected value, denoted E[].

Every photon carries a certain amount of energy, the flux �. To calculate it, we multiply
the irradiance at one point P of the interval with the interval length, which is 2 for the
interval [�1, 1]. Dividing the flux among the photons it results in [Gar12]:

� =
2I(P )

n
(1.4)

The estimate of the irradiance Î on a distance rk to the photon map query point takes the
estimate of the incoming flux of all k nearest photons and divides it by the interval length
that covers all k nearest photons, which is twice the distance of the kth nearest photon, rk
[Gar12].

Î(rk) =
k�

2rk

with (1.4)
=

kI(P )

rkn
(1.5)

Now, we want to see how well this estimate works. Therefore, we calculate the expectation
of the estimate of the irradiance according to [Gar12]. In general, the expected value of a
random variable X whose cumulative distribution function admits a probability density
function f(x) is:

E[X] =

Z

R
xf(x)dx (1.6)

4



1.4. One-dimensional photon mapping with random samples

In our case, X is the estimate of the irradiance Î(rk). As the absolute distance from P
to the kth nearest photon in the interval [�1, 1] lies between 0 and 1, it is integrated from 0
to 1. As we order the photons by their distance to the query point, we need to take care of
something else: The probability distribution of ordered elements does not only depend on
their probability density function but also on their position in the sampling frame. That is
why we take fX(k)

(rk), the distribution of the k̃th order statistics, as our f(x) in equation
(1.6). The resulting equation is:

E[Î(rk)] =

Z 1

0
Î(rk)fX(k)

(rk)drk (1.7)

We have a look at the distribution of the k̃th order statistics from equation (1.3). For
photon mapping with random samples, n photons are thrown under the same conditions on
the interval. This means, ñ equals n. k̃ is equal to k as we are interested in the kth nearest
photon.

Furthermore, we need the probability density function f and the cumulative distribution
function F . The probability of finding the kth nearest photon within the distance [0, 1] from
P is 1. With density estimation from equation (1.2) we know that the probability density
function f can be found with

R 1
0 f(rk)drk = 1 so it must be:

f(rk) = 1 (1.8)

The cumulative distribution is the integral of f over the whole scene interval:

F (rk) =

Z 1

�1
1 = rk (1.9)

Putting everything together, the distribution of the kth order statistics for photon mapping
with random samples results in:

fX(k)
(rk) =

n!

(k � 1)!(n� k)!
rk�1
k (1� rk)

n�k (1.10)

Now, we are ready to calculate the expectation of the estimate of the irradiance with
equation (1.7):

E[Î(rk)] =

Z 1

0
Î(rk)fX(k)

(rk)drk =

Z 1

0

kI(P )

rkn

n!

(k � 1)!(n� k)!
rk�1
k (1� rk)

n�kdrk

=
I(P )k�[k � 1]

�[k]
= I(P )

k

k � 1
(1.11)

5



1. Introduction

With the result I(P ) k
k�1 it is possible to calculate the relative error of the photon mapping

irradiance. We visualize it in figure 1.2 for k = 200. This empirical approach can be
compared with an experimental implementation of the photon mapping algorithm in a C
program. We set n to 100 000, chose k within the interval from 2 to 200 and repeated the
experiment ten thousand times. The relative errors from both approaches are fitting well
together (Figure 1.2). The graph shows the overestimation bias that was found in [Gar12].

Figure 1.2.: Plot of the relative error of the irradiance from simulating the photon mapping
algorithm in a C program compared to the relative error of the modelling of the
1D case with random samples according to [Gar12].

1.5. Photon mapping with stratified samples

Combining stratification with photon mapping can be realized as follows: Like before there
is a scene with an interval from [�1, 1] and a light source, illuminating the scene. The
lights source is divided in n subdivisions, emitting the same number of photons out of each
subdivision. This stratified emission creates a secondary stratification on the scene which
means that the scene interval is divided in n subdivisions with each subdivision containing
one photon. So one subdivision has the length 2

n . The query point P where radiance is
estimated is at the midpoint of the interval.

For this approximation we do not yet take into account the k nearest photons around
the query point. The radius within which photons are considered for the irradiance has a
fixed value r. From the query point P on, photons are searched within the length of the
radius. r can be divided into two parts on each side of query point P . The integer part i
contains the length of whole subdivisions that are covered by the radius. It is a multiple of 2

n .
In the fraction part f are rest parts that appear if r is not a multiple of the subdivision length.

6



1.5. Photon mapping with stratified samples

Figure 1.3.: Example for n = 6: The radius r is divided in a fraction part f and an integer
part i.

It is guaranteed that in each subdivision is situated one photon, so on the integer part we
expect as many photons as it covers numbers of subdivisions. That would be i· n2 photons. In
the fraction part instead, a photon is only present with a certain probability. f is a fraction
of one subdivision, so the probability of finding a photon within f is f · n

2 and 1� (f · n
2 ) of

not finding one.

For the entire interval [�1, 1] we expect k = 2 · (i · n2 + f · n2 ) photons. The fixed total area
that is covered by the search of photons has a length of 2 · (i+ f). So the expected number
of photons per unit area is:

E


k

2r

�
=

2 · (i · n
2 + f · n

2 )

2 · (i+ f)
=

n

2
(1.12)

The estimate of irradiance Î(P ) is the expected number of photons per unit area times �
(see equation (2.16):

Î(P ) =
n

2
� =

n

2

2I(P )

n
= I(P ) (1.13)

The last equation shows that the estimate of irradiance at P is equal to the real irradiance
at P . This implies that stratified sampling with a fixed value of the radius within photons
are considered for the irradiance is working. In the next chapter we will look at stratified
samples with normal photon mapping where the kth nearest photon of P determines the
radius.

7



1. Introduction

1.6. Previous work on photon mapping

In 1993 the photon mapping algorithm was developed in order to extend the concept of ray
tracing for e�ciently simulating all types of direct and indirect illumination. It has solved
the problem of noise when rendering small specular surfaces and reflections by mirrors and
glass. Photon mapping is still used in some of the most famous renderers [Jen03] [Shi03].

The pioneer of photon mapping is Henrik Wann Jensen. In his paper “A Practical Guide to
Global Illumination using Photon Mapping” he describes the functionality of the algorithm
in its several steps (emission, tracing, storage and rendering of photons) and is simulating
scenarios with di↵erent light sources. Apart from that he mentions noise that appears when
emitting only a small number of photons. His solution for reducing these artefacts is using
filters that increase the weight of the photons near the considered surface point. Examples
of filters in the paper are the Cone filter, the Gaussian filter and the specialized di↵erential
filter [Jen03].

Henrik Wann Jensen also made the first approach for testing photon mapping with an
estimate of irradiance in the year 1996. To compute the radiance at a surface point P , he
located the k photons with the shortest distance to P and divided their flux by the area
of a sphere centered at P that contains these k nearest photons and has radius r [Jen96].
However, this estimate has an overestimation bias, see [Gar12].

In [Gar12] it was discovered an overestimation bias in the photon mapping algorithm it-
self. Referring to the afore-mentioned functionality of photon mapping, usually there are
considered the k nearest photons around a surface point x to calculate its luminosity. It
was concluded that the bias could be removed by still including the area that contains that
contains the k nearest photons but at the same time adding only the flux of k � 1 photons
to the irradiance [Gar12].

After this detection, it was done further examinations on photon mapping with di↵erent
kernels. [Gar14] shows two biases for the Gaussian filter. Apart from that, the consistency
of the cone filter is refuted and it is proven that the epanechnikov kernel and the silverman
kernel are consistent.

Another approach for removing the photon mapping bias is to calculate only half of the
flux of the kth nearest photon. This approach was presented in “A Practical Guide to Global
Illumination using Photon Mapping” by Jensen in the year 2002. Only half of the power
of last photon is included in the photon mapping query. In that way, the irradiance is less
biased [Jen02].

8



2. Theoretical study of stratified photon

mapping

In the following sections scenes of di↵erent dimensions are tested with stratified photon
mapping. First the one-dimensional space, then surface illumination and in the end volu-
metric e↵ects. In every case it is investigated first a simple model before the case is modelled
according to [Gar12].

2.1. Stratified photon mapping in a one-dimensional space

We take the interval [�1, 1] as our scene. The light source has n subdivisions, each subdi-
vision emits one photon. This creates a secondary stratification on the interval. So interval
is divided in n subdivisions with one photon each. The position of the photon within the
subdivision is random (Figure 2.1). The photon map query is performed at the midpoint
P = 0 and should consider its k nearest photons for calculating the irradiance.

Figure 2.1.: Example for n = 6 and k = 4.
(a): The interval [0, 1], query point P and the six stratified distributed photons;
(b): The photons ordered by their distance to P;
(c): The distance rk from P to the kth nearest photon relative to P.

As there are no changes in the setup of the scene compared to the random case, only in
the way of distributing photons, we use the same estimate of irradiance as before with I(P )
as the irradiance at midpoint P :

Î(rk) =
kI(P )

rkn
(2.1)

2.1.1. A first approximation in one dimension

In the following approximation we use the characteristics of the expected value of two vari-
ables X and Y which randomly take on values from a range [A,B]. When the variable Y is
bigger than X, then X will vary from 0 to Y and vice-versa for when X is the bigger. The
expected value for the bigger value lies therefore at two thirds of the range and the one for
the smaller value at one third [Sta15]. For even and odd n this results in two di↵erent cases,
that is why we have a look at them separately.

9



2. Theoretical study of stratified photon mapping

One has to notice that this is only an approximation for photon mapping. As already
mentioned in the introduction, E[⇢(X)] � ⇢(E[X]) [Jen06]. In the first approximation it
is taken an expected value for rk and with this value it is calculated the estimate of the
irradiance, so Î(E[rk]). To get the significant expected value it is necessary to compute
E[Î(rk)], though. This will be done in the following chapter, according to [Gar12].

First approximation for even n

Let us begin with the case where n has an even value. We have a look at the example from
figure 2.1 for n = 6: There are six subdivisions. Every photon is in his own subdivision. The
expected value of the average position of each photon is in the middle of each subdivision
(Figure 2.2).

Figure 2.2.: Example for n = 6. The arrows indicate the expected value of the photons.

As the setting is symmetric, it can be simplified. We project the photons in the negative
area on the photons in the positive area of the interval. In that way, the photons are ordered
by the absolute value of their distance to the midpoint P . Now, there are three subdivisions
with two photons each. The expected value of the position of the photons changes: The
photon that is situated closer to the midpoint is expected at 1

3 of the subdivision, the one
farther away at 2

3 (Figure 2.3).

Figure 2.3.: Simplification the example for n = 6. The arrows indicate the expected value of
the photons.

10



2.1. Stratified photon mapping in a one-dimensional space

Photons with even k are situated in the k
2
th

subdivision counted from P . The subdivision
length is 2

n . When considering each subdivision as a small interval [A,B], the border A of

the kth nearest photon would be at (k2 � 1) 2n and the border B at k
2 ·

2
n . As the photon with

an even value of k is the photon in the subdivision with the larger distance to P , we expect
it at 2

3 of the interval. So its expected value of irradiance is (see Appendix B for details):

Î(rk) =
kI(P )

2
3 [A,B]n

=
kI(P )
3k�2
3n n

(2.2)

Photons with odd values of k instead are situated in the k+1
2

th
subdivision. The interval

[A,B] has the values A = (k+1
2 � 1) 2n and B = k+1

2 · 2
n . They are the ones in the subdivision

with the smaller distance to P , so we expect them at 1
3 of the interval. Their expected value

of irradiance is (see Appendix B for details):

Î(rk) =
kI(P )

1
3 [A,B]n

=
kI(P )
3k�1
3n n

(2.3)

First approximation for odd n

Now, let us look at the case in which n has an odd value. We have a look at an example for
n = 5:

Figure 2.4.: Example for n = 5. The arrows indicate the expected value of the photons.

We have now five subdivisions, one photon is situated within each subdivision. The ex-
pected value of the average position of the photon is again in the middle of the subdivision
(Figure 2.4). Also this setting can be simplified. When projecting the negative part of
the interval on the positive part, we get one half subdivision with one photon and two en-
tire subdivisions with two photons (Figure 2.5). In the subdivisions with two photons, the
expected value of the photons changes as in the other setting - the nearer to the midpoint sit-
uated photon is at 1

3 of the subdivision, the one farther away situated at 2
3 of the subdivision.

Photons with odd k are situated in the k
2
th

subdivision counted from P . The subdivision
length is 2

n . When considering each subdivision as a small interval [A,B], the border A of

the kth nearest photon would be at (k2 � 1) 2n and the border B at k
2 · 2

n . As the photon
with an odd value of k is for k > 1 the one of the two photons in the subdivision with the
larger distance to P , we expect it at 2

3 of the interval. Photons with odd values of k in an
environment with odd n are expected at the same place as photons with even values of k in
an environment with even n. This means that equation (2.2) is valid also for the expected
value of odd n and odd k.

11



2. Theoretical study of stratified photon mapping

Figure 2.5.: Simplification of the example for n = 5. The arrows indicate the expected value
of the photons.

Photons with even values of k instead are situated in the k+1
2

th
subdivision. The interval

[A,B] has the values A = (k+1
2 � 1) 2n and B = k+1

2 · 2
n . They are the ones in the subdivision

with the smaller distance to P , so we expect them at 1
3 of the interval. Their expected value

of irradiance is the same as for photons with an odd value of k in an environment with even
n, so equation (2.3) is valid here.

Results

We have gained two formulas in the first approximation, equation (2.2)) and equation (2.3)).
When plotting the results within the interval from 2 to 200, with n = 100 000 and with
I(P ) = 1, we get the graph in figure 2.6. It confirms that the cases for even n, even k and
odd n, odd k are the same and also the ones for even n, odd k and odd n, even k. This
means the parity of n and k is important for this model of one-dimensional stratified photon
mapping. The graph also shows that there is an overestimation bias for all n and k.

Figure 2.6.: The data points for even n and even k are on the same lines as the ones for odd
n and odd k. The data points for even n and odd k are on the same line as the
ones for odd n and even k.
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2.1. Stratified photon mapping in a one-dimensional space

2.1.2. One-dimensional stratified sampling with order statistics

Let us test the estimator of irradiance for stratified samples in a one-dimensional setting
according to [Gar12], in the same way as it was done in section 1.4 for random samples.

The estimator of irradiance is:

Î(rk) =
kI(P )

rkn
(2.4)

The expectation of the estimate of irradiance is:

E[Î(rk)] =

Z b

a
Î(rk)fX(k)

(rk)drk (2.5)

As the photons are stratified, for calculating the expectation of the irradiance we do not
have to integrate over the whole interval since the position of kth photon can be determined
more precisely: The kth nearest photon is situated within a certain subdivision of the in-
terval. In the following section, we model stratified photon mapping with the help of these
subdivisions. For this purpose we divide the modelling into two cases, like the first approxi-
mation is suggesting - one for even n / even k and odd n / odd k, and one for even n / odd k
and odd n / even k. For all models that follow we will deal with the simplified scene, where
photons from the negative side are projected on the positive side on the interval (Figure 2.7).

Figure 2.7.: Projection for even n with even k (orange) and odd k (blue); projection for odd
n with even k (blue) and odd k (orange).
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2. Theoretical study of stratified photon mapping

Modelling for even n / even k and odd n / odd k

When n is even, we are interested in photons with an even k, so the 2nd, 4th, 6th, ... most
distant photon to the midpoint P . Generalising the borders of the subdivision [a, b] for pho-
tons with even k leads to the result

⇥
k�2
n , kn

⇤
. We know for sure that the kth nearest photon

is in the subdivision
⇥
k�2
n , kn

⇤
(Figure 2.8).

Figure 2.8.: An even number of photons on the projected interval. We are interested in the
ones with an even number.

For odd n with k > 1 the 3rd, 5th, 7th, ... most distant photon to the midpoint P is
relevant. The subdivision for photons with k and k > 1 is

⇥
k�2
n , kn

⇤
(Figure 2.9). It is equal

to the subdivision for even n and even k. That is why the expected value of the estimate of
irradiance is calculated for both cases together. For k = 1 there is an exception which will
be treated separately later on in this chapter.

Figure 2.9.: An odd number of photons projected interval. We are interested in the ones
with an odd number.

The modelling according to [Gar12] needs the distribution of the k̃th order statistics (equa-
tion (1.3)). ñ is 2 in our case as we have two photons in the domain that we are integrating
over. k̃ is also 2 since we are interested in the photon situated farther away from the mid-
point. Equation (1.3) simplifies to:

fX(k)
(x) = 2F (x)f(x) (2.6)

The probability density function f for continuous uniform distributions is for a <= x <= b
with [a, b] as our domain [Mat20]:

f(rk) =
1

b� a
=

1
k
n � k�2

n

=
n

2
(2.7)
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2.1. Stratified photon mapping in a one-dimensional space

The cumulative distribution function F for uniform distributions for a <= x <= b is again
with [a, b] as our domain [Mat20]:

F (rk) =
rk � a

b� a
=

rk � k�2
n

k
n � k�2

n

= rk
n

2
� k � 2

2
(2.8)

With all this information it can be calculated the expectation of the estimator of irradiance
from equation (2.5) for even n / even k and odd n / odd k with k > 1):

E[Î(rk)] =

Z k
n

k�2
n

Î(rk)fX(k)
(rk)drk =

Z k
n

k�2
n

Î(rk)2F (rk)f(rk)drk (2.9)

=

Z k
n

k�2
n

kI(P )

rkn
2

✓
rk

n

2
� k � 2

2

◆
n

2
drk

=
1

2
I(P )k(2 + (k � 2)Log[k � 2]� (k � 2)Log[k])

The result shows that there is an overestimation of the irradiance. This bias will be
examined in more details later on in section 3.1.

Modelling for even n / odd k and odd n / even k

We have a look at the opposite cases where n and k have a di↵erent parity. When n is even,
we are interested respectively in photons with odd k, so the 1st, 3rd, 5th, ... most distant
photon to the midpoint P . Again, we generalize the borders of the subdivisions. The kth

nearest photon is situated in the subdivision
⇥
k�1
n , k+1

n

⇤
(Figure 2.10). For odd n and even

k the generalized borders for the subdivisions are the same as in the previous case: The kth

nearest photon is located in
⇥
k�1
n , k+1

n

⇤
(Figure 2.11).

Figure 2.10.: An even number of photons on the projected interval. We are interested in the
ones with an odd number.
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2. Theoretical study of stratified photon mapping

Figure 2.11.: An odd number of photons on the projected interval. We are interested in the
ones with an even number.

Next comes the distribution of the k̃th order statistics (see equation (1.3)). ñ is 2 in
our case as we have two photons in the domain that we are integrating over. k̃ is 1. This
represents always that photon in the domain with a smaller distance to the midpoint. For
odd k equation 1.3 simplifies to:

fX(k)
(x) = 2(1� F (x))f(x) (2.10)

The probability density function f for continuous uniform distributions is the same as
before for a <= x <= b, with [a, b] as our domain [Mat20]:

f(rk) =
1

b� a
=

1
k+1
n � k�1

n

=
n

2
(2.11)

The cumulative distribution function F for uniform distributions is for a <= x <= b,
again with [a, b] as our domain [Mat20]:

F (rk) =
rk � a

b� a
=

rk � k�1
n

k+1
n � k�1

n

= rk
n

2
� k � 1

2
(2.12)

With all this information it can be calculated the expectation of the estimator of irradiance
(equation (2.5)):

E[Î(rk)] =

Z k+1
n

k�1
n

Î(rk)fX(k)
(rk)drk =

Z k+1
n

k�1
n

Î(rk)2(1� F (rk))f(rk)drk (2.13)

=

Z k+1
n

k�1
n

kI(P )

rkn
2

✓
1�

✓
rk

n

2
� k � 1

2

◆◆
n

2
drk

= �1

2
I(P )k(2 + (k + 1)Log[k � 1]� (k + 1)Log[k + 1])

The bias from this result will also be investigated more closely in section 3.1.
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2.1. Stratified photon mapping in a one-dimensional space

Special case k = 1 and odd n

Let us have a look at figure 2.11. The domain for the first photon is [0, 1
n ]. As for k = 1

there is only one photon in the subdivision, ñ = 1 and k̃ = 1 when looking at the kth order
statistics (equation (1.3)).

The probability density function f for continuous uniform distributions is for a <= x <= b
[Mat20]:

f(r1) =
1

b� a
=

1
1
n � 0

= n (2.14)

The cummulative distribution function F in equation (1.3) cancels out as both ñ and k̃
are 1.

The expectation of the estimator of irradiance for k = 1 is therefore:

E[Î(r1)] =

Z 1
n

0
Î(r1)fX(1)

(r1)dr1 =

Z 1
n

0
Î(r1)f(rk)dr1 (2.15)

=

Z 1
n

0

1I(P )

r1n
ndr1 =

Z 1
n

0

I(P )

r1
dr1

This integral does not converge. Hence, photon mapping should only be used for k > 1.
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2. Theoretical study of stratified photon mapping

2.2. Surface illumination with stratified photon mapping

The scene for the one-dimensional setting was a line. In order to simulate surface illumina-
tion, we need to add a second dimension the scene to be able to simulate surfaces. Whereas
the one-dimensional setup was a simplification for introducing the concepts, surface illumi-
nation is the approach that is usually used for applications in computer graphics. In [Gar12]
photon mapping with random samples was already examined in 2D on a circle-shaped scene.
In the following sections we will also use a circle to simulate stratified surface illumination.

2.2.1. Two-dimensional basic stratification

For a fast and easy model of two-dimensional stratified photon mapping we take a circle-
shaped scene. The stratification of the light source creates a secondary stratification on the
surface that divides the scene in n equally sized areas. All areas have size ⇡, beginning from
one in the middle of the scene until the border (see Figure 2.12). In every area is situated
one photon. Its position within the area is random. The query point P is the midpoint of
the circle. We are interested in the k nearest photons around P within a distance rk.

Figure 2.12.: The scene with n photons, each in his own circular subdivision.

Likewise it was done for the one-dimensional models we simplify the scene by projecting
the photons on a line. This results in an interval [0,

p
n] with n subdivisions that contain

one photon each (see Figure 2.13).

The irradiance I is constant for all points of the scene. I(P ) is the irradiance at query
point P . To get the flux � of one photon, I(P ) is multiplied by the area of the scene, which
n times ⇡, and then divided among the n photons in the scene:

� =
n⇡I(P )

n
= ⇡I(P ) (2.16)

The estimate of irradiance Î(rk) at P is calculated by taking the flux of the k nearest
photons to P and dividing this flux by the area up to the kth nearest photon.

Î(rk) =
k�

⇡r2k

with (2.16)
=

k⇡I(P )

⇡r2k
=

kI(P )

r2k
(2.17)
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2.2. Surface illumination with stratified photon mapping

Figure 2.13.: Projecting all photons on a line. In this way, they are ordered by their distance
to P .

The expectation of the estimate of irradiance for an interval [a, b] with fX(k)
as the k̃th

order statistic is:

E[Î(rk)] =

Z b

a
Î(rk)fX(k)

(rk)drk (2.18)

Since the photons are stratified the position of each photon can be determined quite
precisely. As it can be seen in figure 2.13, the kth nearest photon is in the subdivision
[
p
k � 1,

p
k].

For the k̃th order statistic, ñ = 1 as in each section is only one photon. k̃ = 1 for the same
reason.

fX(k)
(rk) =

ñ!

(k̃ � 1)!(ñ� k̃)!
F k̃�1(rk)(1� F (rk))

ñ�k̃f(rk)

=
1!

(1� 1)!(1� 1)!
F 1�1(rk)(1� F (rk))

1�1f(rk)

= f(rk)

(2.19)

The probability of finding photon k in the interval [
p
k � 1,

p
k] is proportional to the

length of the circumference of a circle with radius rk, so 2⇡rk. Integrating this probability
between the interval borders gives the area of this circle, which is ⇡. The probability density
function is the probability of finding the kth photon by the area of the circle:

f(rk) =
2⇡rk
⇡

= 2rk (2.20)

The expectation of the estimate of irradiance with the probability function from equation
2.20 is:

E[Î(rk)] =

Z p
k

p
k�1

kI(P )

r2k
2rkdrk = kI(P )(�Log[k�1]+Log[k]) = kI(P )Log

✓
k

k � 1

◆
(2.21)

I(P ) is overestimated by kLog( k
k�1). In section 3.2 we will have a look at this bias.
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2. Theoretical study of stratified photon mapping

2.2.2. Two-dimensional stratified sampling with order statistics

In a second model for surface illumination we try to distribute the photons a bit more uni-
formly. Again, we have n pieces with area ⇡. The most inner circle is just one piece, the
second inner circle is divided in two pieces, the third inner circle in three and so on (Figure
2.14). n must be a triangular number. The radius of the scene is

p
n.

Figure 2.14.: The scene is a circle subdivided in smaller circle. Each circle is then subdivided
according to its position in the scene.

When projecting the photons on a line as it was done before, it results in subsections where
the first subsection contains one photon, the second subsection two, the third subsection three
and so on (Figure 2.15).

Figure 2.15.: Projection of the photons on a line.

The estimate of irradiance is same as in the first model:

Î(rk) =
kI(P )

r2k
(2.22)

The expectation of estimate of irradiance is:

E[Î(rk)] =

Z b

a
Î(rk)fX(k)

(rk)drk (2.23)
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2.2. Surface illumination with stratified photon mapping

The k̃th order statistics depend on the interval where the photon is situated and at which
position within the interval the photon is. For example when looking at the 4th nearest
photon, ñ is 3 as there are three photons in the interval and k̃ is 1 as the 4th nearest photon
is the first photon in this interval.

fX(k̃)
(rk) =

ñ!

(k̃ � 1)!(ñ� k̃)!
F k̃�1(rk)(1� F (rk))

ñ�k̃f(rk) (2.24)

The probability density function for uniform distributions is [Mat20]:

f(rk) =
1

b� a
(2.25)

And the cumulative distribution function for uniform distributions is [Mat20]:

f(rk) =
rk � a

b� a
(2.26)

All together, the expectation of the estimate of irradiance is:

E[Î(rk)] =

Z b

a

kI(P )

r2k

ñ!

(k̃ � 1)!(ñ� k̃)!

✓
rk � a

b� a

◆k̃�1✓
1� rk � a

b� a

◆ñ�k̃ 1

b� a
drk (2.27)

There is no empirical solution for this integral. In section 3.2 it will be shown graphically
that the integral converges and that there is an overestimation bias also for this case.
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2. Theoretical study of stratified photon mapping

2.3. Volumetric e↵ects with stratified photon mapping

In the previous section we saw surface illumination with a two-dimensional scene. Volumetric
e↵ects appear when light is not travelling in a vacuum. They make it possible for the viewer
to see beams of the light source shining through the scene. To simulate these volumetric
e↵ects it is needed a scene with three dimensions. In [Gar12] it was used a sphere to examine
these e↵ects for random photon mapping. In the following we will use two di↵erent methods
to subdivide the sphere in order to simulate stratification, like it was done also for two-
dimensional stratified photon mapping.

2.3.1. Three-dimensional basic stratification

This approach has a stratified light source that sends out photons on a sphere-shaped scene.
The resulting secondary stratification divides the sphere from the inside to the outside into
n equally sized, sphere-shaped pieces (Figure 2.16. All pieces have the volume 4

3⇡ and in
each piece is located one photon. The query point P is the midpoint of the sphere. The
photon mapping query considers the k nearest photons with respect to P .

Figure 2.16.: The scene is a sphere that is subdivided in smaller spheres. In each subdivision-
sphere is one photon.

In the same way as in the one-dimensional and the two-dimensional case the scene is
simplified by projecting the photons on a line and in this way ordering them by their distance
to the query point, see figure 2.17.

Figure 2.17.: The photons from the sphere are projected on a line.
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2.3. Volumetric e↵ects with stratified photon mapping

With a di↵erence to one- and two-dimensional photon mapping, for volumetric e↵ects we
are not interested in the irradiance but in the power density at the query point. The power
density PD is the power W divided by the volume V [Gar12].

PD =
W

V
(2.28)

The volume V of one subdivision is declared as 4
3⇡. To verify that this is also true for

the kth subdivision, we integrate the surface area of the sphere with radius rk between the
interval borders of the kth nearest photon, see figure 2.17.

V =

Z 3pk

3pk�1
4⇡rk

2drk =
4

3
⇡ (2.29)

The energy that one photon carries, its flux �, is the total power divided by the number
of photons. The total power can be substituted by combining equation (2.28) and (2.29.

� =
W

n
=

3PD

4⇡n
(2.30)

The power density estimate dPD takes the flux of the k nearest photons and divides it
until the volume until the kth nearest photon.

dPD(rk) =
k�

4
3⇡rk

3
=

kPD

rk3
(2.31)

The expectation of the power density estimate for an interval [a, b] with fX(k)
as the kth

order statistic is:

E[dPD(rk)] =

Z b

a
Î(rk)fX(k)

(rk)drk (2.32)

Since the photons are stratified the position of each photon can be determined quite
precisely. As it can be seen in figure 2.17, the kth nearest photon is in the subdivision
[ 3
p
k � 1, 3

p
k].

For the k̃th order statistic, ñ = 1 as in each section is only one photon. k̃ = 1 for the same
reason.

fX(k)
(rk) = f(rk) (2.33)

The probability of finding photon k in the interval [ 3
p
k � 1, 3

p
k] is proportional to the

length of the surface area of a sphere with radius rk, so 4⇡r2k. Integrating this probability
between the interval borders gives the volume of this sphere, which is 4

3⇡. The probability
density function is the probability of finding the kth photon divided by the area of this
sphere:

f(rk) =
4⇡rk2

4
3⇡

= 3rk
2 (2.34)

Now we can calculate the expectation of the power density estimate:

E[ ˆPD(rk)] =

Z 3pk

3pk�1

ˆPD(rk)fX(k)
(rk)drk =

Z 3pk

3pk�1

kPD

rk3
3rk

2drk (2.35)

= 3kPD

✓
Log(k)

3
� Log( 3

p
k � 1)

◆
= kPDLog

✓
k

k � 1

◆
(2.36)

Likewise it was already seen for the one-dimensional case and for surface illumination, also
this result shows an overestimation of the power density.
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2. Theoretical study of stratified photon mapping

2.3.2. Three-dimensional stratified sampling with order statistics

A di↵erent stratification of the light source area causes a di↵erent secondary stratification
on the scene. For a better photon distribution, all the spheres are subdivided. The most
inner sphere has no subdivision, the second inner sphere is divided in two parts, the third
inner in three and so on (Figure 2.18) All subdivisions have the size 4

3⇡ and contain one
photon each. The photon mapping query point P is the midpoint of the scene.

Figure 2.18.: The scene with the spheres that are subdivided in pieces. In each subdivision
is one photon

The photons are ordered by their distance to the query point P . This can again be seen
as a projection of the photons on a line. According to the subdivisions there is one photon
in the first part of the line, there are two in the second part of the line, three in the third
part and so on (Figure 2.19.

Figure 2.19.: Projecting all photon from the scene on a line.

The power density estimate ˆPD is the same as in the model before:

dPD(rk) =
k�

4
3⇡rk

3
=

kPD

rk3
(2.37)
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2.3. Volumetric e↵ects with stratified photon mapping

The k̃th order statistics depend on the subdivision where the photon is situated and at
which position within the subdivision the photon is. For example when looking at the 4th

nearest photon, ñ is 3 as there are three photons in the subdivision and k̃ is 1 as the 4th

nearest photon is the first photon in this subdivision.

fX(k)
(rk) =

ñ!

(k̃ � 1)!(ñ� k̃)!
F k̃�1(rk)(1� F (rk))

ñ�k̃f(rk) (2.38)

The probability density function for uniform distributions is [Mat20]:

f(rk) =
1

b� a
(2.39)

And the cumulative distribution function for uniform distributions is [Mat20]:

f(rk) =
rk � a

b� a
(2.40)

All in all, the expectation of the power density estimate can be calculated with the fol-
lowing equation.

E[dPD(rk)] =

Z b

a

kI(P )

r2k

ñ!

(k̃ � 1)!(ñ� k̃)!

✓
rk � a

b� a

◆k̃�1✓
1� rk � a

b� a

◆ñ�k̃ 1

b� a
drk (2.41)

There is no empirical solution for this integral. In section 3.3 it will be shown graphically
that the integral converges and that there is an overestimation bias also for this case.
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3. Experimental study of stratified photon

mapping

The results from the previous sections are examined in a study of the graphs of the results.
For each dimension we implemented the setting in a C-program and calculated the exper-
imental results. The graphs compare the results from the empirical study with the results
from these experiments.

3.1. One-dimensional implementation

In the one-dimensional implementation we were di↵erentiating between even n / even k, odd
n / odd k and even n / odd k, odd n / even k. The result of the expected value of the
estimate of irradiance for n and k with the same parity was:

E[Î(rk)] =
1

2
I(P )k(2 + (k � 2)Log[k � 2]� (k � 2)Log[k]) (3.1)

Instead, for n and k with a di↵erent parity:

E[Î(rk)] = �1

2
I(P )k(2 + (k + 1)Log[k � 1]� (k + 1)Log[k + 1]) (3.2)

For a plot, we set the irradiance I(P ) to one and calculate the relative error by subtracting
1 from each data point.

When comparing the empirical modelling of the 1D case according to [Gar12] with the
calculation of the photon mapping irradiance by implementation of the scene in a C pro-
gram, choosing k again within the interval from 2 to 200, it can be seen that the resulting
graphs match. We made two experiments, one with even n (n = 100 000) and one with odd
n (n = 100 001).

Figure 3.1 shows a comparison of the empirical and experimental data points only for
even n and figure 3.2 shows the comparison only for odd n. In both cases the empirical and
experimental points match exactly, this means both models are correct. The relative error
shows a clear overestimation bias for all kinds of n and k.
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3. Experimental study of stratified photon mapping

Figure 3.1.: Plot of the relative error of the irradiance from simulating the photon mapping
algorithm with stratified samples in a C program with n = 100 000 (even)
compared to the relative error of the modelling of the 1D case with stratified
samples and even n.

Figure 3.2.: Plot of the relative error of the irradiance from simulating the photon mapping
algorithm with stratified samples in a C program with n = 100 001 (odd) com-
pared to the relative error of the modelling of the 1D case with stratified samples
and odd n.
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3.2. Surface illumination

3.2. Surface illumination

For surface illumination, we investigated the basic model and the model for stratified sam-
pling with order statistics. Let us first look at the result of basic stratification:

E[Î(rk)] = kI(P )Log

✓
k

k � 1

◆
(3.3)

For showing the relative error, I(P ) is set to one and it is subtracted 1 from each data
point. In figure 3.3, the empirical relative error is compared with the relative error calculated
in in a C-program implementation of the scene. We set n to 1000, chose k within the interval
from 2 to 200 and repeated the experiment a thousand times.

Also for two-dimensional stratified sampling the experimental relative error is compared
with the relative error calculated in in a C program implementation of the scene. As the
integral from equation 2.27 has no solution, we set n for both the C program and the integral
n to 1000s and chose k within the interval from 2 to 100. The C program was run with a
thousand iterations. The results of the data points of both the empirical and experimental
approach are shown in figure 3.4.

For both models of surface illumination, points of the empirical study and the experiment
are fitting quite well together. This means that the models should be correct. One has to
notice the overestimation bias of the irradiance in both models, though.

Figure 3.3.: Plot of the relative error for 2D stratified photon mapping, basic stratification.
Comparison of the empirical result with the experimental implementation.
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3. Experimental study of stratified photon mapping

Figure 3.4.: Plot of relative error for 2D stratified photon mapping, stratification with order
statistics. Comparison of the empirical result with the experimental implemen-
tation.

3.3. Volumetric e↵ects

The result for the expectation of the power density estimator with basic stratification was:

E[ ˆPD(rk)] = kPDLog

✓
k

k � 1

◆
(3.4)

One might notice that this result is the same as the one of surface illumination with basic
stratification. This is because the scenes that we used are structured in the same way.

As it was done for one-dimensional and two-dimensional stratified photon mapping, the
scene was implemented in a C program and the results are compared with the ones from the
empirical model (n = 1000, k = 200 and number of iterations = 1000) in figure 3.5.

The integral form equation (2.41) has no solution, this is why we computed the data points
of its solution for n = 1000 and k from 2 to 200. These results are compared with the result
of the experimental implementation with the same values in figure 3.6.

Also for the simulations of volumetric e↵ects an overestimation of the power density is
clearly visible. In the next chapter we will deal with two di↵erent approaches that try to
reduce this bias.
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3.3. Volumetric e↵ects

Figure 3.5.: Plot of the relative error for 3D stratified photon mapping, basic stratification.
Comparison of the empirical result with the experimental implementation.

Figure 3.6.: Plot of relative error for 3D stratified photon mapping, stratification with order
statistics.Comparison of the empirical result with the experimental implemen-
tation.
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4. Stratified photon mapping with di↵erent

estimates

As the previous chapter has shown, all dimensions of stratified photon mapping have an
overestimation bias. In history there were provided multiple approaches to remove the over-
estimation bias of the photon mapping algorithm. In this section we focus on two approaches
that have been presented in [Gar12] and [Jen02]. We will combine them with one-dimensional
stratified photon mapping, stratified surface illumination and stratified volumetric e↵ects.

4.1. Discarding one impact in the photon mapping query

Like it was already mentioned in the introduction, in [Gar12] the bias of classical photon
mapping was removed by changing the algorithm in the following way: Only the flux of the
k � 1 photons is added to calculate the irradiance but still the area rk until the kth nearest
photon is considered.

For one-dimensional photon mapping the estimate of irradiance changes in the following
way when discarding the kth nearest photon:

Î(rk) =
(k � 1)I(P )

rkn
(4.1)

Also for surface illumination we have a new estimate when considering only the kth � 1
nearest photons:

Î(rk) =
(k � 1)I(P )

r2k
(4.2)

For volumetric e↵ects the power density estimate when discarding one photon is:

dPD(rk) =
(k � 1)PD

rk3
(4.3)

With these new estimates the expected value of the irradiance can be calculated with
the same procedure as it was done in chapter 2. The relative errors for the data points
for k from 2 to 200 are compared with an experimental implementation of the algorithm
discarding the kth nearest photon, throwing 100 000 photons on the scene and repeating the
experiment ten thousand times. The results for the one dimensional implementation for even
n can be seen in figure 4.1a and the results for odd n in figure 4.1b. Both graphs show that
the estimate of [Gar12] produces a small underestimation bias for stratified photon mapping.
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4. Stratified photon mapping with di↵erent estimates

Also for surface illumination and volumetric e↵ects there is an underestimation bias visible.
The figures 4.1c and 4.1e show the results for basic stratification. The figures 4.1d and 4.1f
instead show the results for the second model with order statistics. For both models there
was done again a comparison graph with an experimental implementation of the scene where
the number n of the photons was set to 1000 and the experiment was repeated a thousand
times.

(a) The new estimate discards the kth photon:
even n, graphs of relative error.

(b) The new estimate discards the kth nearest
photon: odd n, graphs of relative error.

(c) Plot of relative error for 2D stratified photon
mapping discarding the kth nearest photon,
basic stratification.

(d) Plot of relative error for 2D stratified pho-
ton mapping discarding the kth nearest pho-
ton, stratification with order statistics.

(e) Plot of relative error for 3D stratified photon
mapping, basic stratification, discarding kth

nearest photon

(f) Plot of relative error for 3D stratified photon
mapping, stratification with order statistics,
discarding kth nearest photon

Table 4.1.: Graphs with relative error for an estimate that considers all photons up to the
k � 1 nearest.
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4.2. Discarding half impact in the photon mapping query

4.2. Discarding half impact in the photon mapping query

In [Jen02] it was proposed consider only the flux of the k� 1
2 nearest photons. This approach

was presented in “A Practical Guide to Global Illumination using Photon Mapping”. The
idea is to only add half of the power of the kth nearest photon to the irradiance but still
consider the whole area rk up to the kth nearest photon [Jen02].

For one-dimensional photon mapping when discarding half of the kth nearest photon the
estimate of irradiance is:

Î(rk) =
(k � 1

2)I(P )

rkn
(4.4)

Also for surface illumination the estimate of irradiance changes:

Î(rk) =
(k � 1

2)I(P )

r2k
(4.5)

And with volumetric e↵ects the power density estimate that discards half of the kth nearest
photon is:

dPD(rk) =
(k � 1

2)PD

rk3
(4.6)

Table 4.2 shows the relative error when discarding half of the kth nearest photon for all
setups. The results for the one dimensional implementation for even n can be seen in figure
4.2a and 4.2b. The estimate of [Jen02] reduces the relative error significantly. The figures
4.2c and 4.2d show what happens when discarding half of the kth photon for surface illumi-
nation. Also here is a reduction of the bias visible. The same results can be observed for
volumetric e↵ects in the figures 4.2e and 4.2f.

In table 4.3 it is presented a comparison of all estimates that we came across for the
di↵erent models. The graphs from the figures 4.3a, 4.3b, 4.3c, 4.3d, 4.3e and 4.3f show
homogeneous results: The original estimate produces an overestimation bias, the estimate
from [Gar12] an underestimation bias. The values that are from the study of the estimate
from [Jen02] lie between the values of normal stratified photon mapping and stratified pho-
ton mapping discarding one photon. Thus, discarding half of the kth nearest photon leads
to the smallest relative error and consequently to the smallest bias of all three methods.

For one-dimensional photon mapping with even n and for two-dimensional basic stratifi-
cation the relative error is below 8% (figure 4.2a and 4.2c). With two-dimensional and three
dimensional stratification with order statistics the relative error is below 20% (figure. For
three dimensional basic stratification the relative error goes even below 4% when discarding
half impact of the kth nearest photon. The method presented in [Jen02] is helpful when the
bias of the photon mapping algorithm should be preferably small. To entirely remove the
bias for stratified photon mapping there is no simple method as it was presented for orig-
inal photon mapping in [Gar12]. It is possible to multiply the estimate by an appropriate
constant to achieve a bias of zero, though.
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4. Stratified photon mapping with di↵erent estimates

(a) The new estimate discards half of the kth

nearest photon: even n, empirical and ex-
perimental graph of relative error.

(b) The new estimate discards half of the kth

nearest photon: odd n, empirical and ex-
perimental graph of relative error.

(c) Plot of experimental and empirical 2D strat-
ified photon mapping discarding half of the
kth nearest photon, basic stratification.

(d) Plot of experimental and empirical 2D
stratified photon mapping discarding half of
the kth nearest photon, stratification with
order statistics.

(e) Plot of relative error for 3D empirical and
experimental stratified photon mapping, ba-
sic stratification, discarding half of the kth

nearest photon

(f) Plot of relative error for 3D empirical
and experimental stratified photon map-
ping, stratification with order statistics, dis-
carding half of the kth nearest photon

Table 4.2.: Graphs with relative error for an estimate that considers all photons up to the
k � 1

2 nearest.
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4.2. Discarding half impact in the photon mapping query

(a) Relative error of all estimates together: one-
dimensional photon mapping with even n.

(b) Relative error of all estimates together: one-
dimensional photon mapping with odd n.

(c) Relative error of all estimates together: sur-
face illumination with basic stratification.

(d) Relative error of all estimates together: sur-
face illumination with stratification and or-
der statistics.

(e) Relative error of all estimates together: vol-
umetric e↵ects with basic stratification.

(f) Relative error of all estimates together: vol-
umetric e↵ects with stratification and order
statistics.

Table 4.3.: Graphs with relative error comparing the results of all estimates.
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5. Conclusion and Future Work

It is known that biased algorithms can bring to the table interesting properties such as sig-
nificantly reduced computational time, and they are used very often in practice when the
introduced bias is small enough. We analysed the bias introduced by stratified sampling. In
general situations stratified sampled is used to reduce bias when sampling a population.

Our results indicate that the overestimation bias is reduced by more than 50% with respect
to the original photon mapping. Figure 5.1 shows the significant reduction of the relative
error by using stratified sampling. Although this overestimation bias can be removed by
discarding the contribution of the kth nearest photon [Gar12], the other desirable properties
of stratified sampling may make the use of this algorithm desirable. The 50% remaining
bias can either be reduced by discarding half of the kth nearest photon as it was presented
in [Jen02] or entirely removed by multiplying with an appropriate constant if necessary; but
this step is not as intuitive as the solution for standard photon mapping.

Figure 5.1.: Comparison of relative error from original photon mapping and stratified photon
mapping.

5.1. Applications of photon mapping density estimation

The approach to investigate photon mapping that is shown in this work uses the concept
of nearest neighbour density estimation. This is an important concept which is also used in
many other areas. [FS20] for example shows a clinical research where nearest neighbourhood
density estimation is used to cluster patients by their syndrome for heart failures. In [YZ20]
on the other hand it is developed a remaining life estimation for lithium ion batteries with
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5. Conclusion and Future Work

the help a k-nearest neighbour regression. Eventually, [YL20] presents an approach for
product form design, using density estimation to find out the satisfaction of the customers.
This shows that even if photon mapping might not be the most up to date technique for
illumination in computer graphics at the moment, the concept behind the photon mapping
algorithm has many recent applications.

5.2. Study of variance for stratified photon mapping

As stratification in statistics is known as a method to reduce the variance [Gen05] it might
be of interest to study the variance of stratified photon mapping. In [Gan18] is presented the
variance of original photon mapping, also with di↵erent kernels. The study of variance for
stratified photon mapping would thus be a continuation of [Gan18] and of the work presented
in this thesis.
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A. Mathematica code
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even n , odd k / odd n, even k:

In[28]:= IrHat =

Integrate [(k * Ir) / (rk * n) * 2 * (1 - (rk * n / 2 - (k - 1) / 2)) * (n / 2), {rk, (k - 1) / n, (k + 1) / n}]

Out[28]= -
1

2
Ir k 1 - k + (1 + k) Log �

-1 + k

n
� +

1

2
Ir k (1 + k) -1 + Log �

1 + k

n
� if condition

In[29]:= Simplify [IrHat , n > k && k > 1]

Out[29]= -
1

2
Ir k (2 + (1 + k) Log [-1 + k] - (1 + k) Log [1 + k])

Discarding kth nearest impact

even n , even k / odd n, odd k:

In[30]:= IrHat = Integrate [((k - 1) * Ir) / (rk * n) * 2 * (rk * n / 2 - (k - 2) / 2) * (n / 2), {rk, (k - 2) / n, k / n}]

Out[30]= 

1

2
Ir (-1 + k) 2 + (-2 + k) Log �

-2 + k

n
� - (-2 + k) Log �

k

n
� if condition

In[31]:= Simplify [IrHat , n > k && k > 1]

Out[31]= 

1

2
Ir (-1 + k) (2 + (-2 + k) Log [-2 + k] - (-2 + k) Log [k]) if k > 2

even n , odd k / odd n, even k:

In[32]:= IrHat =

Integrate [((k - 1) * Ir) / (rk * n) * 2 * (1 - (rk * n / 2 - (k - 1) / 2)) * (n / 2), {rk, (k - 1) / n, (k + 1) / n}]

Out[32]= -
1

2
Ir (-1 + k) 1 - k + (1 + k) Log �

-1 + k

n
� +

1

2
Ir (-1 + k) (1 + k) -1 + Log �

1 + k

n
� if condition

In[33]:= Simplify [IrHat , n > k && k > 1]

Out[33]= -
1

2
Ir (-1 + k) (2 + (1 + k) Log [-1 + k] - (1 + k) Log [1 + k])
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Discarding half kth nearest impact

even n , even k / odd n, odd k:

In[36]:= IrHat =

Integrate [((k - (1 / 2)) * Ir) / (rk * n) * 2 * (rk * n / 2 - (k - 2) / 2) * (n / 2), {rk, (k - 2) / n, k / n}]

Out[36]= 

1

4
Ir (-1 + 2 k) 2 + (-2 + k) Log �

-2 + k

n
� - (-2 + k) Log �

k

n
� if condition

In[37]:= Simplify [IrHat , n > k && k > 1]

Out[37]= 

1

4
Ir (-1 + 2 k) (2 + (-2 + k) Log [-2 + k] - (-2 + k) Log [k]) if k > 2

even n , odd k / odd n, even k:

In[38]:= IrHat = Integrate [

((k - (1 / 2)) * Ir) / (rk * n) * 2 * (1 - (rk * n / 2 - (k - 1) / 2)) * (n / 2), {rk, (k - 1) / n, (k + 1) / n}]

Out[38]= -
1

4
Ir (-1 + 2 k) 2 + (1 + k) Log �

-1 + k

n
� - (1 + k) Log �

1 + k

n
� if condition

In[39]:= Simplify [IrHat , n > k && k > 1]

Out[39]= -
1

4
Ir (-1 + 2 k) (2 + (1 + k) Log [-1 + k] - (1 + k) Log [1 + k])
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2D stratified photon mapping

The variables:

� Ir: irradiance at query point

� IrHat: expected value of the estimate of irradiance

� n: total number of photons

� k: number of photons sought in the photon map query

� rk: distance from the query point to the kth nearest photon

First Model

In[45]:= IrHat = Integrate [(k * Ir) / (rk ^2) * 2 * rk , {rk, Sqrt [k - 1], Sqrt [k]}]

Out[45]= Ir k (-Log [-1 + k] + Log [k]) if condition

In[46]:= Simplify [IrHat , n > k && k > 1]

Out[46]= Ir k Log �
k

-1 + k
�

Discarding kth nearest impact

In[48]:= IrHat = Integrate [((k - 1) * Ir) / (rk ^2) * 2 * rk , {rk, Sqrt [k - 1], Sqrt [k]}]

Out[48]= Ir (-1 + k) (-Log [-1 + k] + Log [k]) if condition

In[49]:= Simplify [IrHat , n > k && k > 1]

Out[49]= Ir (-1 + k) Log �
k

-1 + k
�

Discarding half kth nearest impact

In[50]:= IrHat = Integrate [((k - (1 / 2)) * Ir) / (rk ^2) * 2 * rk , {rk, Sqrt [k - 1], Sqrt [k]}]

Out[50]= 

1

2
Ir (-1 + 2 k) (-Log [-1 + k] + Log [k]) if condition



In[51]:= Simplify [IrHat , n > k && k > 1]

Out[51]= 

1

2
Ir (-1 + 2 k) Log �

k

-1 + k
�

 Second Model

In[1]:= x = Ceiling [(Ceiling [Sqrt [1 + 8 * k]] - 1) / (2)]

Out[1]= Ceiling �
1

2
�-1 + Ceiling � 1 + 8 k ���

In[2]:= y1 = (x * (x + 1)) / 2

Out[2]= 

1

2
Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ��� 1 + Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ���

In[3]:= y2 = (x * (x - 1)) / 2

Out[3]= 

1

2
-1 + Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ��� Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ���

In[4]:= IrHat = Table [N[Integrate [(k * Ir) / (rk ^2) *

((x) ! / (((k - y2) - 1) ! * (x - (k - y2)) !)) * ((rk - Sqrt [y2]) / (Sqrt [y1] - Sqrt [y2]))^ ((k - y2) - 1) *

(1 - ((rk - Sqrt [y2]) / (Sqrt [y1] - Sqrt [y2])))^ (x - (k - y2)) *

(1 / (Sqrt [y1] - Sqrt [y2])), {rk, Sqrt [y2], Sqrt [y1]}], 5], {k, 2, 100 }]

Out[4]= {1.3640 Ir, 1.4181 Ir, 1.1112 Ir, 1.1645 Ir, 1.1786 Ir, 1.0478 Ir, 1.0784 Ir, 1.0955 Ir,

1.1018 Ir, 1.0247 Ir, 1.0428 Ir, 1.0552 Ir, 1.0629 Ir, 1.0665 Ir, 1.0144 Ir,

1.0257 Ir, 1.0344 Ir, 1.0406 Ir, 1.0447 Ir, 1.0470 Ir, 1.0091 Ir, 1.0166 Ir,

1.0227 Ir, 1.0274 Ir, 1.0310 Ir, 1.0335 Ir, 1.0351 Ir, 1.0061 Ir, 1.0113 Ir,

1.0157 Ir, 1.0193 Ir, 1.0222 Ir, 1.0245 Ir, 1.0261 Ir, 1.0272 Ir, 1.0043 Ir,

1.0080 Ir, 1.0112 Ir, 1.0140 Ir, 1.0164 Ir, 1.0183 Ir, 1.0198 Ir, 1.0209 Ir,

1.0217 Ir, 1.0031 Ir, 1.0059 Ir, 1.0083 Ir, 1.0105 Ir, 1.0123 Ir, 1.0139 Ir,

1.0153 Ir, 1.0163 Ir, 1.0172 Ir, 1.0178 Ir, 1.0023 Ir, 1.0044 Ir, 1.0063 Ir,

1.0080 Ir, 1.0095 Ir, 1.0108 Ir, 1.0120 Ir, 1.0129 Ir, 1.0137 Ir, 1.0143 Ir,

1.0148 Ir, 1.0018 Ir, 1.0034 Ir, 1.0049 Ir, 1.0063 Ir, 1.0075 Ir, 1.0086 Ir,

1.0095 Ir, 1.0104 Ir, 1.0111 Ir, 1.0117 Ir, 1.0122 Ir, 1.0125 Ir, 1.0014 Ir,

1.0027 Ir, 1.0039 Ir, 1.0050 Ir, 1.0060 Ir, 1.0069 Ir, 1.0077 Ir, 1.0084 Ir,

1.0091 Ir, 1.0096 Ir, 1.0101 Ir, 1.0105 Ir, 1.0108 Ir, 1.0011 Ir, 1.0022 Ir,

1.0031 Ir, 1.0040 Ir, 1.0049 Ir, 1.0056 Ir, 1.0063 Ir, 1.0069 Ir, 1.0075 Ir}

2     



Discarding kth nearest impact

In[5]:= IrHat = Table [N[Integrate [((k - 1) * Ir) / (rk ^2) *

((x) ! / (((k - y2) - 1) ! * (x - (k - y2)) !)) * ((rk - Sqrt [y2]) / (Sqrt [y1] - Sqrt [y2]))^ ((k - y2) - 1) *

(1 - ((rk - Sqrt [y2]) / (Sqrt [y1] - Sqrt [y2])))^ (x - (k - y2)) *

(1 / (Sqrt [y1] - Sqrt [y2])), {rk, Sqrt [y2], Sqrt [y1]}], 5], {k, 2, 100 }]

Out[5]= {0.68201 Ir, 0.94538 Ir, 0.83337 Ir, 0.93157 Ir, 0.98213 Ir, 0.89815 Ir, 0.94363 Ir,

0.97373 Ir, 0.99166 Ir, 0.93158 Ir, 0.95591 Ir, 0.97406 Ir, 0.98695 Ir, 0.99537 Ir,

0.95098 Ir, 0.96538 Ir, 0.97689 Ir, 0.98583 Ir, 0.99250 Ir, 0.99715 Ir, 0.96320 Ir,

0.97238 Ir, 0.98005 Ir, 0.98634 Ir, 0.99137 Ir, 0.99526 Ir, 0.99811 Ir, 0.97139 Ir,

0.97757 Ir, 0.98290 Ir, 0.98743 Ir, 0.99123 Ir, 0.99434 Ir, 0.99680 Ir, 0.99868 Ir,

0.97712 Ir, 0.98148 Ir, 0.98532 Ir, 0.98867 Ir, 0.99156 Ir, 0.99402 Ir, 0.99607 Ir,

0.99774 Ir, 0.99904 Ir, 0.98130 Ir, 0.98448 Ir, 0.98733 Ir, 0.98986 Ir, 0.99210 Ir,

0.99405 Ir, 0.99573 Ir, 0.99716 Ir, 0.99834 Ir, 0.99928 Ir, 0.98443 Ir, 0.98682 Ir,

0.98899 Ir, 0.99095 Ir, 0.99271 Ir, 0.99427 Ir, 0.99565 Ir, 0.99685 Ir,

0.99787 Ir, 0.99874 Ir, 0.99944 Ir, 0.98684 Ir, 0.98868 Ir, 0.99037 Ir,

0.99191 Ir, 0.99331 Ir, 0.99457 Ir, 0.99571 Ir, 0.99672 Ir, 0.99760 Ir,

0.99837 Ir, 0.99902 Ir, 0.99956 Ir, 0.98873 Ir, 0.99018 Ir, 0.99151 Ir,

0.99275 Ir, 0.99388 Ir, 0.99491 Ir, 0.99585 Ir, 0.99670 Ir, 0.99746 Ir,

0.99813 Ir, 0.99872 Ir, 0.99922 Ir, 0.99965 Ir, 0.99025 Ir, 0.99140 Ir,

0.99248 Ir, 0.99348 Ir, 0.99440 Ir, 0.99526 Ir, 0.99604 Ir, 0.99676 Ir, 0.99741 Ir}

Discarding half kth nearest impact

In[6]:= IrHat = Table [N[Integrate [((k - (1 / 2)) * Ir) / (rk ^2) *

((x) ! / (((k - y2) - 1) ! * (x - (k - y2)) !)) * ((rk - Sqrt [y2]) / (Sqrt [y1] - Sqrt [y2]))^ ((k - y2) - 1) *

(1 - ((rk - Sqrt [y2]) / (Sqrt [y1] - Sqrt [y2])))^ (x - (k - y2)) *

(1 / (Sqrt [y1] - Sqrt [y2])), {rk, Sqrt [y2], Sqrt [y1]}], 5], {k, 2, 100 }]

Out[6]= {1.0230 Ir, 1.1817 Ir, 0.97226 Ir, 1.0480 Ir, 1.0803 Ir, 0.97300 Ir, 1.0110 Ir, 1.0346 Ir,

1.0468 Ir, 0.97816 Ir, 0.99936 Ir, 1.0146 Ir, 1.0249 Ir, 1.0309 Ir, 0.98268 Ir,

0.99555 Ir, 1.0056 Ir, 1.0132 Ir, 1.0186 Ir, 1.0221 Ir, 0.98614 Ir, 0.99448 Ir,

1.0014 Ir, 1.0069 Ir, 1.0112 Ir, 1.0144 Ir, 1.0166 Ir, 0.98873 Ir, 0.99442 Ir,

0.99928 Ir, 1.0034 Ir, 1.0067 Ir, 1.0094 Ir, 1.0115 Ir, 1.0129 Ir, 0.99070 Ir,

0.99474 Ir, 0.99828 Ir, 1.0013 Ir, 1.0040 Ir, 1.0061 Ir, 1.0079 Ir, 1.0093 Ir,

1.0104 Ir, 0.99220 Ir, 0.99518 Ir, 0.99783 Ir, 1.0002 Ir, 1.0022 Ir, 1.0040 Ir,

1.0055 Ir, 1.0067 Ir, 1.0078 Ir, 1.0085 Ir, 0.99338 Ir, 0.99563 Ir, 0.99767 Ir,

0.99949 Ir, 1.0011 Ir, 1.0026 Ir, 1.0038 Ir, 1.0049 Ir, 1.0058 Ir, 1.0065 Ir,

1.0071 Ir, 0.99432 Ir, 0.99606 Ir, 0.99765 Ir, 0.99910 Ir, 1.0004 Ir, 1.0016 Ir,

1.0026 Ir, 1.0035 Ir, 1.0043 Ir, 1.0050 Ir, 1.0056 Ir, 1.0061 Ir, 0.99507 Ir,

0.99644 Ir, 0.99771 Ir, 0.99888 Ir, 0.99994 Ir, 1.0009 Ir, 1.0018 Ir, 1.0026 Ir,

1.0033 Ir, 1.0039 Ir, 1.0044 Ir, 1.0048 Ir, 1.0052 Ir, 0.99569 Ir, 0.99679 Ir,

0.99781 Ir, 0.99876 Ir, 0.99964 Ir, 1.0004 Ir, 1.0012 Ir, 1.0018 Ir, 1.0024 Ir}
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3D stratified photon mapping

The variables:

� PD: power density at query point

� PDHat: expected value of the power density estimate

� n: total number of photons

� k: number of photons sought in the photon map query

� rk: distance from the query point to the kth nearest photon

First Model

In[59]:= PDHat = Integrate [(k * PD) / (rk ^3) * 3 * rk ^2 , {rk, CubeRoot [k - 1], CubeRoot [k]}]

Out[59]= 3 k PD
Log [k]

3
- Log � -1 + k

3 � if k � 1

In[60]:= Simplify [PDHat , n > k && k > 1]

Out[60]= k PD Log �
k

-1 + k
�

Discarding kth nearest impact

In[61]:= PDHat = Integrate [((k - 1) * PD) / (rk ^3) * 3 * rk ^2 , {rk, CubeRoot [k - 1], CubeRoot [k]}]

Out[61]= 3 (-1 + k) PD
Log [k]

3
- Log � -1 + k

3 � if k � 1

In[62]:= Simplify [PDHat , n > k && k > 1]

Out[62]= (-1 + k) PD Log �
k

-1 + k
�

Discarding half kth nearest impact

In[63]:= PDHat = Integrate [((k - (1 / 2)) * PD) / (rk ^3) * 3 * rk ^2 , {rk, CubeRoot [k - 1], CubeRoot [k]}]

Out[63]= 

3

2
(-1 + 2 k) PD

Log [k]

3
- Log � -1 + k

3 � if k � 1



In[64]:= Simplify [PDHat , n > k && k > 1]

Out[64]= 

1

2
(-1 + 2 k) PD Log �

k

-1 + k
�

Second Model

In[3]:= x = Ceiling [(Ceiling [Sqrt [1 + 8 * k]] - 1) / (2)]

Out[3]= Ceiling �
1

2
�-1 + Ceiling � 1 + 8 k ���

In[4]:= y1 = (x * (x + 1)) / 2

Out[4]= 

1

2
Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ��� 1 + Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ���

In[67]:= y2 = (x * (x - 1)) / 2

Out[67]= 

1

2
-1 + Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ��� Ceiling �

1

2
�-1 + Ceiling � 1 + 8 k ���

In[68]:= PDHat = Table [N[Integrate [(k * PD) / (rk ^3) * ((x) ! / (((k - y2) - 1) ! * (x - (k - y2)) !)) *

((rk - CubeRoot [y2]) / (CubeRoot [y1] - CubeRoot [y2]))^ ((k - y2) - 1) *

(1 - ((rk - CubeRoot [y2]) / (CubeRoot [y1] - CubeRoot [y2])))^ (x - (k - y2)) *

(1 / (CubeRoot [y1] - CubeRoot [y2])), {rk, CubeRoot [y2], CubeRoot [y1]}], 5], {k, 2, 100 }]

Out[68]= {1.3867 PD, 1.4422 PD, 1.1179 PD, 1.1738 PD, 1.1856 PD, 1.0509 PD, 1.0832 PD, 1.1002 PD,

1.1050 PD, 1.0264 PD, 1.0456 PD, 1.0583 PD, 1.0656 PD, 1.0682 PD, 1.0154 PD,

1.0275 PD, 1.0365 PD, 1.0427 PD, 1.0465 PD, 1.0480 PD, 1.0098 PD, 1.0178 PD,

1.0241 PD, 1.0290 PD, 1.0325 PD, 1.0347 PD, 1.0358 PD, 1.0066 PD, 1.0121 PD,

1.0167 PD, 1.0205 PD, 1.0234 PD, 1.0255 PD, 1.0269 PD, 1.0277 PD, 1.0046 PD,

1.0086 PD, 1.0121 PD, 1.0149 PD, 1.0173 PD, 1.0192 PD, 1.0206 PD, 1.0215 PD,

1.0221 PD, 1.0034 PD, 1.0064 PD, 1.0090 PD, 1.0112 PD, 1.0131 PD, 1.0147 PD,

1.0160 PD, 1.0169 PD, 1.0176 PD, 1.0180 PD, 1.0025 PD, 1.0048 PD, 1.0068 PD,

1.0086 PD, 1.0102 PD, 1.0115 PD, 1.0126 PD, 1.0135 PD, 1.0142 PD, 1.0147 PD,

1.0150 PD, 1.0020 PD, 1.0037 PD, 1.0053 PD, 1.0068 PD, 1.0080 PD, 1.0091 PD,

1.0101 PD, 1.0109 PD, 1.0115 PD, 1.0121 PD, 1.0124 PD, 1.0127 PD, 1.0015 PD,

1.0029 PD, 1.0042 PD, 1.0054 PD, 1.0064 PD, 1.0074 PD, 1.0082 PD, 1.0089 PD,

1.0095 PD, 1.0100 PD, 1.0104 PD, 1.0107 PD, 1.0109 PD, 1.0012 PD, 1.0024 PD,

1.0034 PD, 1.0044 PD, 1.0052 PD, 1.0060 PD, 1.0067 PD, 1.0073 PD, 1.0079 PD}

2     



Discarding kth nearest impact

In[69]:= PDHat = Table [N[Integrate [((k - 1) * PD) / (rk ^3) * ((x) ! / (((k - y2) - 1) ! * (x - (k - y2)) !)) *

((rk - CubeRoot [y2]) / (CubeRoot [y1] - CubeRoot [y2]))^ ((k - y2) - 1) *

(1 - ((rk - CubeRoot [y2]) / (CubeRoot [y1] - CubeRoot [y2])))^ (x - (k - y2)) *

(1 / (CubeRoot [y1] - CubeRoot [y2])), {rk, CubeRoot [y2], CubeRoot [y1]}], 5], {k, 2, 100 }]

Out[70]= {0.69336 PD, 0.96150 PD, 0.83841 PD, 0.93904 PD, 0.98800 PD, 0.90080 PD, 0.94776 PD,

0.97795 PD, 0.99449 PD, 0.93313 PD, 0.95843 PD, 0.97692 PD, 0.98950 PD, 0.99696 PD,

0.95197 PD, 0.96703 PD, 0.97888 PD, 0.98782 PD, 0.99415 PD, 0.99813 PD, 0.96387 PD,

0.97352 PD, 0.98147 PD, 0.98785 PD, 0.99279 PD, 0.99639 PD, 0.99876 PD, 0.97185 PD,

0.97838 PD, 0.98394 PD, 0.98859 PD, 0.99238 PD, 0.99537 PD, 0.99761 PD, 0.99913 PD,

0.97747 PD, 0.98208 PD, 0.98611 PD, 0.98957 PD, 0.99250 PD, 0.99491 PD, 0.99685 PD,

0.99833 PD, 0.99937 PD, 0.98156 PD, 0.98494 PD, 0.98794 PD, 0.99057 PD, 0.99286 PD,

0.99481 PD, 0.99644 PD, 0.99776 PD, 0.99878 PD, 0.99953 PD, 0.98463 PD, 0.98718 PD,

0.98947 PD, 0.99152 PD, 0.99333 PD, 0.99490 PD, 0.99626 PD, 0.99741 PD,

0.99835 PD, 0.99909 PD, 0.99964 PD, 0.98700 PD, 0.98896 PD, 0.99075 PD,

0.99237 PD, 0.99382 PD, 0.99511 PD, 0.99624 PD, 0.99722 PD, 0.99805 PD,

0.99874 PD, 0.99930 PD, 0.99971 PD, 0.98886 PD, 0.99041 PD, 0.99183 PD,

0.99313 PD, 0.99430 PD, 0.99537 PD, 0.99631 PD, 0.99715 PD, 0.99788 PD,

0.99850 PD, 0.99902 PD, 0.99945 PD, 0.99977 PD, 0.99035 PD, 0.99159 PD,

0.99273 PD, 0.99379 PD, 0.99476 PD, 0.99564 PD, 0.99644 PD, 0.99715 PD, 0.99779 PD}

    3



Discarding half kth nearest impact

In[71]:= PDHat = Table [N[Integrate [((k - (1 / 2)) * PD) / (rk ^3) * ((x) ! / (((k - y2) - 1) ! * (x - (k - y2)) !)) *

((rk - CubeRoot [y2]) / (CubeRoot [y1] - CubeRoot [y2]))^ ((k - y2) - 1) *

(1 - ((rk - CubeRoot [y2]) / (CubeRoot [y1] - CubeRoot [y2])))^ (x - (k - y2)) *

(1 / (CubeRoot [y1] - CubeRoot [y2])), {rk, CubeRoot [y2], CubeRoot [y1]}], 5], {k, 2, 100 }]

Out[71]= {1.0400 PD, 1.2019 PD, 0.97814 PD, 1.0564 PD, 1.0868 PD, 0.97587 PD, 1.0155 PD, 1.0391 PD,

1.0497 PD, 0.97979 PD, 1.0020 PD, 1.0176 PD, 1.0276 PD, 1.0326 PD, 0.98370 PD,

0.99725 PD, 1.0077 PD, 1.0153 PD, 1.0203 PD, 1.0231 PD, 0.98682 PD, 0.99564 PD,

1.0028 PD, 1.0084 PD, 1.0126 PD, 1.0155 PD, 1.0173 PD, 0.98921 PD, 0.99525 PD,

1.0003 PD, 1.0045 PD, 1.0079 PD, 1.0105 PD, 1.0123 PD, 1.0134 PD, 0.99104 PD,

0.99536 PD, 0.99908 PD, 1.0023 PD, 1.0049 PD, 1.0070 PD, 1.0087 PD, 1.0099 PD,

1.0107 PD, 0.99246 PD, 0.99564 PD, 0.99845 PD, 1.0009 PD, 1.0030 PD, 1.0048 PD,

1.0062 PD, 1.0074 PD, 1.0082 PD, 1.0088 PD, 0.99358 PD, 0.99599 PD, 0.99815 PD,

1.0001 PD, 1.0017 PD, 1.0032 PD, 1.0044 PD, 1.0055 PD, 1.0063 PD, 1.0069 PD,

1.0073 PD, 0.99447 PD, 0.99634 PD, 0.99804 PD, 0.99956 PD, 1.0009 PD, 1.0021 PD,

1.0032 PD, 1.0041 PD, 1.0048 PD, 1.0054 PD, 1.0059 PD, 1.0062 PD, 0.99520 PD,

0.99667 PD, 0.99803 PD, 0.99926 PD, 1.0004 PD, 1.0014 PD, 1.0022 PD, 1.0030 PD,

1.0037 PD, 1.0042 PD, 1.0047 PD, 1.0051 PD, 1.0053 PD, 0.99579 PD, 0.99698 PD,

0.99807 PD, 0.99908 PD, 1.0000 PD, 1.0008 PD, 1.0016 PD, 1.0022 PD, 1.0028 PD}
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B. Proof for the estimate of irradiance (first

approximation)

The estimate of irradiance is:

Î(rk) =
kI(P )

rkn

We want to find out the radius rk. The photons are stratified, so each photon is situated
in one subdivision. After projecting all photons on the positive side of the interval, two
photons are in each subdivision. A and B indicate the borders of one subdivision inside the
scene. [A,B] is length of one subdivision inside the scene.

For even n / even k, odd n / odd k:

Î(rk) =
kI(P )

2
3 [A,B]n

=
kI(P )

(A+ (B �A)23)n

=
kI(P )

((k2 � 1) 2n + (k2
2
n � (k2 � 1) 2n)

2
3)n

=
kI(P )
3k�2
3n n

For even n / odd k, odd n / even k:

Î(rk) =
kI(P )

1
3 [A,B]n

=
kI(P )

(A+ (B �A)13)n

=
kI(P )

((k+1
2 � 1) 2n + (k+1

2
2
n � (k+1

2 � 1) 2n)
1
3)n

=
kI(P )
3k�1
3n n
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