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Abstract: We report on our experiences with the implementation of a parallel al-
gorithm to compute the cycle structure of a permutation given as an oracle. As a
sub-problem, the cycle structure of a modified permutation given as a table that is par-
titioned overN hard disks has to be computed. While a minor point during algorithm
design and analysis, we spent most time to implement and tune this particular piece
of code. We present the decisions taken during implementation and give preliminary
performance figures.

1 Introduction

We consider the problem of computing the cycle structure of a permutation. Given is a set
S of sizen and a bijective functionf on S, which defines a permutation onS. For every
cycle of that permutation, we want to know its length and one element on the cycle. The
functionf is not given by a table of its values, but as an oracle, e.g. as a piece of code that
we cannot inspect. If the code is executed supplied with an argumentx, we getf(x) in
return.

This problem is of interest in cryptology, wheref may be the state-transition function
of a pseudo-random number generator, of which we want to guarantee a long period, but
cannot do so analytically. State-transition functions in use are e.g. symmetric block-cipher
encryption algorithms1 such as the Data Encryption Algorithm (DEA), better known as the
DES [Sc95]. Also, such algorithms are a worthwhile target in themselves. An encryption
algorithm (given a certain key) serves to randomize the data it encrypts. Therefore, its
cycle structure (possibly averaged over several keys) should be similar to the structure of
a randomly chosen permutation, of which many results are known (expected number of
cycles, expected length of the longest cycle, and so on, see e.g. [FO90] for details). If for
several keys its cycle structure deviates substantially from the expected values, then this

1The key is fixed to some value.



may be a hint to some weakness or hidden trapdoor.

For the functionsf we have in mind,n is quite large:232 to2128. Therefore, a construction
of the directed graph(S, {(x, f(x)) : x ∈ S} and the computation of the cycle structure
by methods from graph algorithms, such as pointer doubling or list-ranking, is out of
scope. Also, as the problem’s complexity is at least linear inn, we search for parallel
solutions. We have presented a parallel algorithm for a PC-cluster in [KS01], which as a
sub-problem needs to solve the cycle structure problem at a much smaller size, but with
a modified permutation where the function values are stored on disk. An algorithm for
this sub-problem will be an external-memory algorithm [Vi99], as the sub-problem is still
too large to load all function tables into main memory. During the implementation of the
algorithm, we found that this sub-problem incurred most work and needed most tuning to
achieve acceptable performance. We report in this paper on the algorithm used to solve
this sub-problem.

The remainder of this paper is organized as follows. In Section 2 we briefly summarize the
necessary knowledge about algorithms that compute the cycle structure of a permutation.
In Section 3 we present the algorithm used to solve this problem in parallel with external-
memory data. In Section 4 we report on the experiments we conducted, where we used
as functionf a DES-variant reduced to 32 bits (originally, DES is a 64-bit algorithm). In
Section 5 we conclude.

2 Cycle Structure Algorithms

Consider the setS = {0, . . . , n − 1} and a bijective functionf : S → S. The function
f defines a permutation on the setS. Such a permutation is well-known to consist of a
number of cycles. The element with the smallest index on a cycle will be called acycle
leaderin the following.

Algorithms to compute the cycle structure of permutations typically follow a cycle from
a starting pointx until they either reach their starting pointx again or they find that they
are on a cycle which is already detected (see [KS01] and the references therein). The
targeted size ofn prevents us from storing a bit vector where elements are marked that
have already been visited, which would render the problem trivial. Still, Knuth already in
1971 suggested an algorithm that solves our problem2 [Kn72]: for x = 0, 1, 2, . . . do the
following: starting fromx follow the cycle until you either reachx again or your reach an
element smaller thanx. In the former case you have detected a cycle, and your starting
pointx is the leader of this cycle. In the latter case, you started from an element that is not
the leader of the cycle it is on. Hence the leader is smaller and has already been visited.
Thus the cycle already had been detected. This simple algorithm ensures that each cycle
is detected and that it is reported only once. If all bijective functionsf are equally likely
to occur, the average runtime of this algorithm is shown to beO(n log n).

While a straight-forward parallelization of this (or any other known) sequential algorithm

2Knuth actually solved the problem of permuting an array. In order to do so, he first identified the cycles, and
permuted the array contents cycle by cycle.



is easy by distributing the iterations of the outer loop, the speedup that can be achieved
is low for a reason which stems from the structural properties of random permutations.
When the leader of the longest cycle is the starting point, then the longest cycle is tracked
completely. As the expected length of the longest cycle is about0.624 ·n [SF96], the aver-
age runtime of the parallel algorithm isΩ(n) and thus the maximum speedup is bounded
by O(log n), with a small constant.

Therefore we devised a parallel algorithm which avoids the situation that one cycle has
to be tracked completely by one processor [KS01]. We consider a parallel machine with
P processors, each equipped with local memory of sizeM and a hard disk of sizeN .
The processors communicate via message passing, i.e. the machine is a PC-cluster. The
algorithm consists of four phases: In phase 1, each processor choosesN starting points,
and all starting points are known to all processors3. For each of its starting pointsx, each
processor follows the permutation until it meets another starting pointx′. If x′ = x, then
a cycle (with exactly one starting point) has been detected. Otherwise, the triple (starting
point, next starting point, distance to next starting point) is stored on the hard disk. The
following pseudo-code4 illustrates phase 1:

/* code for processor p, where p=0,...,P-1 */
for(i = 0;i < N;i++) {

dist = 0; xx = x = startingpoint(i,p);
do{ x = f(x); dist++; }while(IsNotStartingpoint(x));
if(x == xx) DetectCycle(xx,dist); else WriteToDisk(xx,x,dist);

}

/* assume n, N, P are powers of two */
/* starting points are those with only log N + log P lower
bits used, and pi applied afterwards */
#define startingpoint(i,p) (i*P+p)
/* if any bit above log N + log P is used after undoing pi,
then x is not a starting point */

#define IsNotStartingpoint(x) (x/(P*N))

For the cycles that contain at least one starting point, the problem is now reduced to a size
at mostN ·P . In phase 2, this reduced problem is solved, see next section. Phase 3 serves to
detect cycles without any starting point. It uses a distributed variant of Knuth’s algorithm
[KS01]: Then nodes are mapped round-robin onto the processors, i.e. all nodesx with
x mod P = p are mapped onto processorp. For each nodex of then/P −N nodes that
are mapped to a processor and that are not starting points, this processor follows the cycle
from x until it reaches either a starting-point, a node smaller thanx, or x itself. In the first
case,x is on a cycle with a starting-point, i.e. on a cycle that has already been detected. In
the second case,x is not the leader of the cycle it is on. Only in the third case, a new cycle

3This can be achieved without communication by choosing starting points deterministically. This scheme
can be randomized against the permutationf by using a second, randomly chosen permutation known to all
processors to generate the starting points from the deterministically chosen starting points.

4Here the starting point xx can be computed from the processor indexp and its indexi in the outer loop.
Therefore it would be sufficient to store only the next starting pointx and the distancedist to disk.



Figure 1: Algorithm from [KS01] on example permutation withn = 12, N = 2, P = 2.

has been detected. In Phase 4, each processor sends each cycle (more exactly: the leader
and the length of this cycle) that it detected to a specified processor (typically processor 0)
that gathers the results of phases 1 and 3. The following pseudo-code illustrates phase 3:

/* code for processor p, where p=0,...,P-1 */
for(i = N;i < n/P;i++) {

dist = 0; xx = x = startingpoint(i,p);
do{ x = f(x); dist++; }while(IsNotStartingpoint(x) && (x>xx));
if(x == xx) DetectCycle(xx,dist);

}

Figure 1 illustrates this algorithm5 for n = 12, N = 2, andP = 2. The starting points are
shaded.

The analysis in [KS01] showed that the expected runtimes areO(n/P ) for phase 1,O(N)
for phase 2,O((lnn−ln(N ·P ))·n/P ) for phase 3, andO(log n) for phase 4, respectively.
Therefore we concentrated on improving phase 3 in [KS01]. However, in practice it is
often sufficient to find most cycles. In this case, phases 3 and 4 are omitted, because most
cycles will be detected during phases 1 and 2, while phase 3 consumes the majority of the
algorithm’s runtime. This lead to a closer investigation of phases 1 and 2.

5Note that we used a slightly different mapping of nodes and starting-points onto processors than in the text.



3 Parallel-External Computation of Cycle Structures

Phase 1 is already highly optimized. First, there is no communication among processors.
Second, assuming that the code for evaluatingf fits into the cache, the phase completely
runs internal to the processor except for an occasional write to the hard disk. The expected
distance between two starting points isn/(N · P ), as there aren elements in total, and
there areN · P randomly distributed starting points. IfN · P , i.e. N in particular, is
sufficiently large, then the workload will be well balanced between the processors, even
without further measures. Also, a sufficiently largeN will ensure that most cycles contain
at least one starting point, i.e. are detected in phases 1 and 2. This indicates thatN should
be chosen as large as possible.N is bounded by the size of the available hard disks.

On the other hand, the largerN , the larger the problem in phase 2. On a first look, one is
tempted to assume that phase 2 can be implemented by a recursive call to the algorithm
from the previous section, until the problem is small enough that a sequential algorithm
can be used. The difference that the distance between elements was 1 in the previous
section and is an integer now can be handled in a trivial manner: in the previous section,
the counter variabledist was incremented by 1 in the inner loop. Now it would have to
be incremented by the distance to the next starting point.

However, there is another notable difference: in the previous section, we assumed that each
processor could evaluatef for any argumentx ∈ S, and that this evaluation consisted of
executing a portion of code that fitted into the cache. Now, we consider a so calledmodified
permutationf ′ over the set of starting points, where the function table is distributed overP
files, each on a different hard disk, i.e. local to a different processor. An algorithm to solve
this problem must be an external-memory algorithm, see e.g. [Vi99], as no processor will
have enough main memory to load allP files into. Evaluation off ′ consists of a hard disk
access for starting points stored locally, and of two communications (request and response)
plus a hard disk access for starting points stored on another processor’s disk. The latter is
the case to appear more often, because only a fraction of1/P of the function table is stored
locally. Even if one would bundle communications by executing one step of the inner loop
for a number of iterations of the outer loop of Phase 1, the performance would be very
poor, as it would still requiren/(N · P ) communication rounds, the expected number of
iterations of the inner loop.

The algorithm we have in mind must use a coordinated access to the disk data, i.e. ac-
cessing the disks as seldom as possible and accessing disk blocks as large as possible. As
the data reside onP hard disks, the algorithm must be parallel-external. In [KS01], we
thought about adapting the peeling-off algorithm, which solves the list-ranking problem.
However, during implementation (see next section) it turned out that this algorithm took
much more time than phase 1, although a much smaller problem was attacked. Therefore
we decided to employ a variant of the one-by-one cleaning algorithm [Si02], as explained
in the remainder of this section.

In principle, what we try to do is to reduce cycles in a manner similar to list-ranking, which
is now possible because of the expicit pointer structure, until they only consist of one
point. We will use two basic operations on sets:autocleanandaltroclean. By performing



Figure 2: Examples for autoclean and altroclean.

an autoclean on a setSi of nodes, we mean the removal of all links between nodes of the
same set. Figure 2(b) depicts an example: all nodes from (a) that have a predecessor within
the set are removed (such as nodes 4, 5, and 1), and a nodex that has a predecessor outside
the set (such as node 6) will have a successory outside the set, with a distance which is
the sum of all distances on the path fromx to y. If the set fits completely into the main
memory of one processor, and each node can be marked as visited, then autoclean can be
performed by following each path in the set until it leaves the set, and remove the nodes
inbetween. The following loop implements autoclean, with a runtime that is linear in the
size of the set:

/* assume the set to consist of nodes 0 to r-1 */
for(x = 0;x < r;i++) if(IsNotYetVisited(x)) {

dist = dst(x); xx = x;
while(IsInSet(x=f’(x)) && (x!=xx))do {

SetVisited(x); dist+=dst(x);
}
if(x==xx) { SetVisited(x); DetectCycle(xx,dist); }
else { f’(xx) = x; dst(x) = dist; }

}

If the setSi is distributed over several processors, then the removal of the in-between
nodes leads to communications, which have to be carefully chosen. This is what the one-
by-one cleaning of Sibeyn [Si02] does. It works in rounds, and the runtime is dominated
by 2P − 3 communication rounds. In each communication round, each processor sends
and receives at most one packet (one-to-one communication). The sizes of these packets
are bounded by the number of nodes mapped onto this processor. The setSi is assumed to
fit into the combined main memories of theP processors.

By performing an altroclean on a setSi of nodes, we mean the removal of all links that
leave the set. Assume that all nodes are partitioned into two setsS0 andS1, and that the
setS1 has undergone an autoclean. Now, the altroclean of the setS0 can be performed
as follows. For each nodex in the setS0 with a successory = f ′(x) that is in setS1,
we pose a request to setS1 to return the successor ofy, i.e. z = f ′(y), together with the



distance betweeny andz. As the setS1 is autoclean, each link points to a node in the set
S0, and hencez is in S0. Figure 2(c) illustrates this, e.g.7 = f ′(f ′(6)). As the sets will be
distributed over several processors, the requests and replies will involve communications
between the processors. In order to minimize communication overhead, every processor
first prepares all requests, and sends all requests going to one processor in one packet. Note
that we only assume the setS1 to fit into the combined main memories of theP processors.
It is not required that the setS0 fits completely in the combined main memories of theP
processors. If it is larger, it can be split into subsets that fit, and the altroclean can proceed
in rounds, where each round only altrocleans one subset. In one round, each processor
sends and receives up toP packets (all-to-all communication). The sum of the sizes of the
packets sent (received) by one processor is bounded the number of nodes from the setS0

(S1) that this processor hosts in this round.

Now, if we first perform an autoclean of setS1 and then an altroclean of setS0 with respect
to setS1, we have detected every cycle that is contained completely inS1, and we have a
setS0 that is closed in the sense that no link points outside ofS0. Hence, from then on,
we need only work withS0.

We apply this scheme to our data organization in the following manner. The setS1 consists
of the lastM elements in each file, just enough that the set can be loaded into the main
memory of theP processors. The setS0 consists of the firstN − M elements of each
file. We apply the one-by-one cleaning algorithm of Sibeyn [Si02] to autoclean the setS1.
Then we do an altroclean of the setS0 in N/M − 1 rounds. In each round,M elements of
S0 are loaded into the main memory of each processor, and this subset ofS0 is altrocleaned
and the updated function tables ofS0 written back to the disks. Then the complete scheme
is recursively repeated for the setS0, so that there areN/M rounds of autoclean/altroclean
alternations, where the size of the setS0 is continually shrinking. We see that each disk
access involves reading or writing a block ofM nodes. As disk accesses occur only at
the beginning of the autoclean routine, and the beginning and end of each round in the
altroclean, we see that the access to data is very regular.

The layout of the data is as follows: each file consists ofN nodes. For each node, we store
its successor and the distance to this successor. Therefore, we need to store 8 bytes per
nodes as long as we restrictn to at most232. The node index itself need not be stored,
because it can be computed from the position within the file. At any time, a processor
stores at mostM nodes from the setsS0 andS1, and up toM requests or replies. Hence,
the processor needs a main memory capacity of24 ·M bytes.

We now analyze the time complexity of the proposed method. We will concentrate on the
communication and disk access times and ignore local computation, because its complex-
ity is linear in the block sizes. We use the termtdisk(M) for the time to read/write a block
of M nodes from/to a disk. The time for the autoclean is

tauto = tdisk(M) + (2P − 3) · t1−1(M) , (1)

wheret1−1(M) is the time to perform a one-to-one routing with packets of size at most
M nodes. The time to altroclean one M-node piece (p-altro) of the setS0 is

tp−altro = 2 · tdisk(M) + 2 · tall−all(M) , (2)



wheretall−all(M) is the time to perform an all-to-all communication where each proces-
sor sends and receives at mostM nodes. The complete scheme consists ofN/M − 1
rounds, where roundi (1 ≤ i < N/M ) consists of one autoclean andi altroclean pieces.
The total time is

t =
N/M−1∑

i=1

(tauto + i · tp−altro)

= ((N/M)2 − 1) · tdisk(M) + (N/M − 1)(2P − 3) · t1−1(M)
+ (N/M) · (N/M − 1) · tall−all(M) . (3)

To simplify equation (3), we assumetall−all(M) ≈ log P · t1−1(M) and t1−1(M) ≈
tdisk(M). Furthermore, we setN = c1 ·M andtdisk(M) = c2 ·M , wherec1, c2 > 1 are
reals. We then obtain

t ≈ (c1(log P + 1) + 2P − 2)(N −M) · c2 . (4)

Therefore,t = O(N · P ), if we assumec1 andc2 to be constants.

4 Experiments

We implemented an optimal sequential algorithm that uses a bit vector of lengthn to mark
which elements have already been visited by the algorithm. This algorithm has runtime
O(n). We also implemented our parallel algorithm in C. Communication was done with
the MPI library. For phase 2, we implemented both the peeling-off algorithm and the
adapted one-by-one-cleaning algorithm, as described in the previous section. As function
f , we used a DES variant where all data paths have been reduced from 64 bits to 32 bits.
We usedN = 224 andM = 220 for the performance measurements. We tested all three
implementations on PCs with AMD Athlon processors with 800 MHz and 512 MByte of
main memory, under the Linux operating system. The PCs communicated over switched
fast ethernet. Each processor had a file storingN nodes. Each node occupied 12 bytes, as
we stored the successor in 8 bytes6 and the distance to this successor in 4 bytes.

So far, we tested 11 different keys which were randomly selected. The runtime of the
sequential algorithm was an average of 11 hours, with at most+/ − 1 hour deviation
depending on the key. Of course, to rule out the effect of the bit vector, we would have
to multiply the sequential runtime by(2/3) log n ≈ 21 (obtaining 231 hours), because the
optimal algorithm performsn evaluations off , while Knuth’s basic algorithm performs
(2/3)n log n evaluations off [Ke02].

The runtimes for the parallel algorithm, averaged over the keys, are shown in Table 1.
They show that the processor time product for phase 1, where at mostn evaluations off

6Instead of storing the index of the successor, we stored the processor where that index is mapped to, and the
local index, in 4 bytes each.



Phase P = 4 P = 8 P = 16
1 3.90 2.00 1.10
2 (peeling-off) 14.00 12.00 —
2 (one-by-one) 0.88 1.55 3.71
3 14.80 6.40 3.16
total (one-by-one) 19.58 9.95 7.97

Table 1: Average parallel runtimes in hours

are performed, is only slightly larger than the runtime of the optimal sequential algorithm.
It also shows that the runtime of phase 2 with the peeling-off variant was much longer than
phase 1, although a much smaller problem was attacked. This justifies our implementa-
tion of the one-by-one cleaning algorithm. As expected from equation (4), the runtime of
phase 2 grows about linearly withP . Also notable is that phase 3 (albeit with several opti-
mizations) takes much longer than phases 1 and 2 together, which will in many situations
lead to its omission.

In order to validate our analysis of the previous section, we also tested the influence ofN
on the runtime. ForM = 220 andP = 8, we tested alsoN = 225, andN = 2.5 · 225,
and obtained runtimes of5.51 and29.91 hours, respectively, compared to1.55 hours for
N = 224 (see Table 1). Equation (4) suggests an almost quadratic increase withN , asc1

grows linearly withN if M is fixed. The increase in runtime is surely more than linear.

Note, that after the end of our experiments, we found out that we had used a sub-optimal
implementation of all-to-all communication. After correcting this, the runtime of phase 2
shrinked considerably to 65% to 79% of the previous values, depending on the packet
sizes.

5 Conclusions

We have presented our experiences with the implementation of a parallel external-memory
algorithm, which was done as part of a much larger implementation. While the sub-
problem tackled here seemed to be a minor one during algorithm design and analysis,
it turned out a major effort during implementation and tuning.

We have given our rationale for choosing a particular combination of algorithms and also
a runtime analysis. The experiments we made support this analysis.
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