
A Scalable Approach to Automated Service Dependency Modeling
in Heterogeneous Environments

Christian Ensel�
Munich Network Management Team
University of Munich, Dept. of CS

Oettingenstr. 67, 80538 Munich, Germany
phone: +49-89-2178-2171, fax: -2262

email: ensel@informatik.uni-muenchen.de

Abstract
This paper presents a new methodology to automati-
cally generate service dependency models. It strives to
enable more comprehensive IT–management by provid-
ing an always up-to-date information basis about inter–
dependencies of IT–services and other management ob-
jects like services applications and network components.
The approach specially aims for heterogeneous environ-
ments as found in large enterprises and outsourcing sce-
narios. It comes with an agent based implementation ar-
chitecture allowing its smooth integration into existing IT–
infrastructures.

Keywords
dependency models, automated model creation, IT-
management, agent architecture, neural networks

1. Introduction
Without doubt, IT–management has made enormous

progress over the last years. It evolved from its early
focus on the network and systems layers to the manage-
ment of complex services that takes into account special
requirements coming from enterprise wide business pro-
cesses and service outsourcing to external partners. Cur-
rent management architectures and their realizations in plat-
forms and tools provide standardized remote access to a
wide range of objects in the managed environment [1]. But
still there exists a number of management tools based on
proprietary resource interfaces. And worse, important ma-
nagement information is often only available through those
non–standardized interfaces or even not at all. This is es-
pecially true for information about dependencies between
those managed objects, although this would be required for
the aforementioned higher level management. The know-
ledge about dependencies may still look simple on the level
of contracts, but as soon as IT–infrastructures of different
organization overlap—which is a pre-requisite for outsourc-
ing scenarios—the situation becomes much more complex.

�The author’s work was sponsored by Siemens AG, Zentralabteilung
Technik, Fachzentrum Neuroinformatik in the context of the project
“LEONET” of the German Ministry for Education and Research (BMBF).

Often, each administrator can only concentrate on one part
whereas the ‘big picture’ of the overall dependencies and
interconnections gets lost.

Figure 1 shows a small scenario with two domains (L and
R). One hosts a web serverWS and a database serverDB
providing content for the web pages. The other contains
the Domain Name SystemDNS responsible to resolve the
name of both web– and database server. Thus,WS is said
to depend onDNS. Further, there are two users who typi-
cally access information on the web server via web clients.
They depend onWS and—if they want to type normal URLs
instead of IP addresses—also onDNS.

web client 1

DNS

communication infrastructure

web client 2

DB serv er

web serv er
(WS)

domain L domain R

Figure 1. Simple multi service scenario

The figure also depicts the mentioned dependencies be-
tween its major objects. For simplicity, it neglects all de-
pendencies to the communication infrastructure and further
sub–services. One can see that although several objects of
the example depend onDNS, none of their existing imple-
mentations explicitly tells to do so and cannot be queried by
management applications for this fact.

As there is no support to obtain information about depen-
dencies by nowadays management tools, conventional ap-
proaches generally struggle with evaluation problems, e.g.,
of configuration files (for an overview see section 3.2). The
problem becomes worse if, e.g., the format of those files
changes with software updates etc. In heterogeneous en-
vironments such modeling systems typically must further
be restricted to a very limited set of resource types or ven-
dors. The major alternative to dependency detection at run-
time would be an a priori description of the environment
with its components and dependencies, similar to what is
achieved in software engineering by the help of Architecture
Description Languages (ADL) and Module Interconnection
Languages (MIL), respectively. However, so far similar de-
pendency description languages have not been commonly
agreed on in the IT–network and service provisioning world.

As a consequence, dependency models are not generally
used in today’s management world—although their bene-
fits are commonly known (section 2 explains existing appli-
cations). This fact leads to a lack of overview for the IT-
administrators and prevents the use of powerful manage-
ment tools like event correlators that are based on depen-
dency models [2]. More applications are described in sec-
tion 2 together with an overview of existing types of depen-
dency models.

Typical enterprise scenarios will of course be much larger
than the example above. In such cases it would be hard to
keep the overview even with the help of dependency mod-
els. To reduce the number of elements, respectively to re-
strict the model to currently interesting parts, the concept
of domains is used to provide a basic means of structur-
ing models. This allows to provide an overview on higher,
e.g., business process oriented levels, and enhances visu-
alization and understandability for the IT–managers work-
ing with them—without abandoning details on lower levels
needed for proper fault diagnosis. Graphical user interfaces
of management tools will typically be capable of folding
and unfolding domains to navigate into sub–models, thus
handling scalability of their visualization. However, this
concept also needs support from the underlying modeling
architecture.

To overcome the two main problems of automated
modeling—the lack of direct dependency information as
well as the scalability issues—this paper presents a new ap-
proach to gain management relevant dependency informa-
tion. Unlike conventional approaches it is designed to ob-
tain useful results independent of the heterogeneity of the
managed environment. It is based on two key parts. The
first (covered by section 4.1) are the underlying concepts
of dependency determination that are carried out with the
help of neural networks. However, this paper does not aim
at details about artificial intelligence like, e.g., the training
methods of our neural networks, but concentrates on mod-
eling and realization aspects relevant for IT–management.

Thus, the second part (section 4.2) deals with questions of
installation efforts and scalability to seamlessly integrate the
modeling into real IT–environments.

Section 2 introduces the most important types of models
and shows their existing applications. This is followed by
an overview of thestate of the artof approaches to model
creation in section 3. They are analysed by the help of a
generic modeling process which also leads to a complete set
of requirements. Our solution to meet those requirements is
presented in section 4. Section 5 draws the conclusions of
the paper.

2. Dependency Information Models and App-
lications

Modeling dependencies of managed objects has to be
seen in the context of the description of management in-
formation in general which has always been an important
part in the definition of management architectures like OSI
(Open Systems Interconnection) management standardized
by the ISO [3]. The syntax and semantics are defined in
the so calledinformation model; its access in thecommu-
nication model. The focus of management information tra-
ditionally lay on attributes and properties of single objects.
Although, e.g. OSI management already defined a General
Relationship Model (GRM, [4]), it was never widely used
in IT–management. Only in recent years the issue regained
more interest [5]—mainly with the increasing number and
complexity of the inter–service, –system and –domain de-
pendencies.

Examples for typical information specific to single man-
aged objects are variables of the Management Information
Bases (MIBs, [6]) defined in the Internet Management Ar-
chitecture, like...mib-2.system.sysLocation that is
defined to store the system’s location. This kind of infor-
mation is either stored at the real objects (hardware compo-
nents, applications, etc.) and accessible via management
agents using standardized protocols or within the corre-
sponding object representation at the management tools.

The following subsections focus on another aspect of
modeling management information: the so calleddepen-
dency models. Various types of such models are illustrated
together with their applications. Although most model types
could also be used for the management of lower (communi-
cation) layers, they are analysed with regard to service de-
pendencies, i.e., we leave aside models at the lower OSI lay-
ers, like network topologies. Of course, knowledge about
the underlying communication structures is also essential,
e.g., to diagnose problems or to identify bottlenecks, but
this has to be (and to a satisfactory part already is) carried
out by very different techniques than the ones needed on the
level of end user– and supplementary services, with a much
higher degree of complexity and dynamics.

web client 1
on host ’e.L’

web server
on host ’b.R’

DNS server
on host ’d.L’

communication
infrastructure

A depends
on B

AA BB

web client 2
on host ’c.R’

DB server
on host ’a.R’

Figure 2. Simple environmental service depen-
dency graph

2.1. Environmental Models

The description of the scenario in the introduction al-
ready comprised the objects’ dependencies. These imme-
diately lead to the dependency model of figure 2 depicting
the web server with its database, both web clients, the DNS
server and a generalizing object for the common commu-
nication infrastructure. In the following, such models are
calledenvironmental modelsto stress their capability to re-
flect information specific to real objects in the managed IT–
environment (in contrast to the abstract models explained
further down).

Each node represents one single or alternatively a group
of real objects, which may be enriched with further manage-
ment information—corresponding with traditional manage-
ment variables in other information models. The group– or
collective objectsare used in various cases: They represent
whole domains (e.g., organizational units like departments
or responsibility areas of IT–managers) or—on a more tech-
nical level—distributed applications that are intended to ap-
pear in the model as a whole, but not in full detail. Figure 3
depicts such a domain object, by hiding the whole domain
R under one node. It could, e.g., be the model that is dis-
played to the administrator of domainL who is not allowed
to look at details beyond his own area, but nevertheless is
interested in dependencies to the outside world. Domains
are represented by one element in the model, which is ei-
ther a terminal element or stands for (and may be expanded
to) collections of one ore more:
� simple (terminal) objects also taken from the modeled en-
vironment, and/or
� underlying (sub-)domains, recursively providing more
fine grained levels of detail.
[7] presents further details on the subject of domains. As
they obviously are an important concept, the architecture
presented in section 4.2 also includes the appropriate fea-
tures.

The second type of components in the models are (di-
rected) edges representing dependencies between the nodes.
For some applications of the models, undirected graphs are
sufficient. For others it is useful to attach further manage-
ment relevant attributes, e.g.:
� to form groups which, e.g., express that a dependency
only occurs together with others,
� to express that some dependencies must occur in a certain
timely order,
� to attach values of strength or likelihood, but also
� to reflect ’internal’ management information, e.g., how
the dependency was detected or how much effort its reeval-
uation would take.

web client 1
on host ’e.L’

domain ’R’

DNS server
on host ’d.L’

communication
infrastructure

Figure 3. Management perspective from domain L

If DNS in our example fails, web clients in principal are
still useable by typing IP addresses. This restriction in the
quality of service could be denoted as an attribute of the
dependency between the clients and theDNS server.

Applications

Utilizations of models can be found in several research
projects. One application is the so calledroot cause anal-
ysis. It helps to find a common (root) cause of problems
or faults detected at distinct places within an environment.
It may be applied to network components reporting error
conditions as well as to services, where end users detect
problems. The reason for the actual need of such root cause
analysis is that error conditions or problem reports brought
to administrators or management systems, are just descrip-
tions of symptoms. To be able to derive their causes, further
knowledge about the dependencies among them is neces-
sary. [8], [9] and [10] explain this subject in detail.

Similar dependency models are needed whendetermin-
ing availability requirementson sub–services (looking from
a top down perspective) respectively for thecalculation of
service availabilityfrom the availability of underlying ser-
vices (bottom up), as described in [11].

Knowledge of dependencies between systems may be of
further use for theprediction of impactson other systems
due to management operations. This is of particular interest
in typical maintenance scenarios, where a server has to be

shut down temporarily: It is essential to know, respectively
to simulate the effects on other systems beforehand. Fur-
ther investigations of advantages can be found in [12] and
[13]. A common result of their and others’ examinations
is that—assuming models do already exist—great benefits
can be achieved for management tasks. For our purposes,
following major advantages for the practical utilization of
environmental models can be resumed: they
� are not restricted to special types of objects (e.g., hosts,
applications, services and comprehensive objects likecom-
munication infrastructure),
� provide overview to IT-administrators on selectable levels
of details,
� support for more intelligent management tools.

More applications of environmental models emerge if the
algorithm used for their generation allows—like the one
presented in section 4—frequent iteration of the modeling
process in certain time intervals. This enables the analy-
sis of changes of dependencies in the managed environment
during that time. This is, e.g., useful forfault prediction,
because significant changes in the overall system behavior
are detected through emerging or disappearing dependen-
cies. This often reflects errors that are already present in
currently unused parts of a service which may later (under
different usage conditions) effect its usability. The detected
changes may also be used to point out forbidden actions or
disallowed use of services. This is helpful especially for
intrusion detectionand torecognize service misuse.

2.2. Abstract Models

In contrast to the environmental models dealing with ob-
jects directly mappable to real world components, the main
elements of abstract models are classes providing an ab-
straction of the specialties of real environments. The depen-
dencies between those classes are also specified on that level
of abstraction. It is easy to see that environmental models
actually are instantiations of abstract models, in regard to
objects as well as their dependencies.

Abstract models are normally generated manually—
either by the vendor of the corresponding objects in the
real world (e.g., the developer of an application provides a
model showing the dependencies to other applications and
the underlying system), or by the suppliers of management
tools that are based on reasoning on such models. Just like
environmental models, abstract models are suitable to ex-
press knowledge about higher layers, e.g., to model ser-
vices. They do not depend on environmental specifics, but
only express general or principal dependencies.

The model shown in figure 4 looks similar to the previ-
ous one. However—as each node now depicts a class—both
web clients are covered by a single“web client” element.
Following object oriented principles, the nodes’ and edges’
attributes are now replaced by definitions for allowed, re-
spectively needed attributes.

DNS server

web server

web client

 communication
infrastructure

DB server

Figure 4. Simple abstract service dependency graph

Applications

In principal, the applications are similar to the ones de-
scribed in the previous subsection, with the difference that
abstract models are:
� partly constructible before their actual application on real
environments (e.g., by the service vendors),
� much smaller and simpler to handle.

However, the models’ restriction to the abstract level of
course has implications on their usability. This problem is
typically circumvented by one of two methods:Virtual in-
stantiation, keeps lists of real objects (together with the ob-
ject specific management information) for each class, but
the inference engine’s main work is carried out on the ab-
stract models.Full instantiationmaps the abstract to en-
vironmental models. In this case the former are used to
add commonly known dependency information to specific
scenarios, but after their instantiation they are not directly
operated on by the management tools.

More direct use of abstract models has been carried out in
severalModel Based Reasoning(MBR, [12]) systems, for a
number of years. These have already been able to map the
results of errors in simple components to services or sys-
tems visible to end users. Another application is to diag-
nose possible sources of errors on lower layers, if problems
on higher ones are reported. Still, management tools based
on abstract models so far have not been very successful with
regard to their market share. The number of available mod-
els remained too small to let the strengths of the tools be-
come fully visible: On the one hand, companies delivering
products do not want to enclose models due to the extra ef-
forts needed and because of strategic policies enforced to
protect the companies’ market positions (e.g., confidential-
ity). On the other hand, it is also virtually impossible for
the providers of the management tools to supply sufficient
models themselves.

As a partial solution to this problem a standardized and
widely accepted library for the most important classes could

be used. In the past, efforts to do so have not been very
successful. However, the endeavors of the Distributed Ma-
nagement Task Force (DMTF) for the Common Information
Model (CIM, [14]), where esp. the Common Schemas are
able to serve as a basis for further abstract models, hopefully
will be more successful. The following subsection provides
more information on models similar to CIM.

2.3. Object Models

To obtain a complete picture one also has to look at object
oriented approaches. Standardized object oriented model-
ing of management information exists at least since the def-
inition of OSI management. An example for a vendor spe-
cific object oriented management model is the one used in
Cabletron Spectrum [15]. It was introduced to overcome
problems of the Internet Management which lacks a simi-
larly powerful information model.

Newer endeavors led to the aforementioned CIM speci-
fied by the DMTF, a federation of many leading companies
in the areas of computer systems, software and networks.
It is an information modeling and representation schema
widely accepted by the industry. The CIM Specification
provides a “Meta Schema”, a specification language called
“Managed Object Format” (MOF) and mappings to other
information models. Details can be found in the CIM Spec-
ification 2.2 [14]. CIM further includes a set of pre–defined
basic schemas, defining fundamental classes like“System”
(in the “Core Schema”) and classes specific to certain areas,
like “Rack” in the Common Schema “Physical”. In addition
to the definition of an appropriate set of general attributes
and an inheritance hierarchy it also allows the modeling
of arbitrary dependencies between classes, respectively ob-
jects. Thus, CIM provides concepts for descriptions on the
abstract modeling level and means to instantiate, represent
and exchange environmental models. However, for depen-
dency determination and model generation CIM also needs
to be supplemented with further algorithms.

3. Principles of Dependency Model Creation

This section shows how we subdivide the overall ‘lifecy-
cle’ of dependency models—from their conception to their
utilization—into phases and explains the subtasks that have
to be carried out in those phases, together with an overview
of the state of the art of conventional modeling approaches.
The structuring of the process further helps to understand
the requirements on automated modeling and how our new
method (described in the next section) provides solutions
for them.

The main phases are:
1. object selection
2. tool installation
3. model creation
4. model based management

(1−i’)
choose classes
(abstract lev el)

select matching
objects

(1−ii)
identify matching real objects

(systems, applications, ...)

(1−i’’)
select relev ant

objects

(2)
install means of
data collection

p
h

as e 1:
o

b
ject selectio

n
p

h
as e 2:

t o
o

l in
stallatio

n

list of
objects

Figure 5. Two phases of preparation

The first two phases are needed as preparation for the actual
automated model generation, while the last two take place
at operation time.

3.1. Preparation

The first phase needs to be carried out per dependency
model. It selects the objects that are finally going to be rep-
resented in the model. Most basic choices are:
� the desired level within the management hierarchy: e.g.,
high level services, applications and their components, net-
work systems, or any other level,
� the object type: e.g., all available services vs. a certain
selection of classes,
� the model’s main range: restricts the model, e.g., to ob-
jects from one certain department or area of responsibility,
� the models border area: in addition to the main range
the model may also enclose collective objects representing
things outside that range, likeinternetor thedomain Rin
figure 3 which are represented in the model just like any
other object.

Obviously the selection heavily depends on the purpose
that the model will be used for. Figure 5 further shows two
choices on which level the selection process of step1 may
take place:
i
0) Either on the abstract (class-) level, e.g.,“web servers”

and “web clients” followed by (possibly platform sup-
ported, automated) instantiation, to select the real objects
belonging to the chosen classes.

ii
00) Or directly on the level of objects in the real world,

e.g.,web server on host b.R, web client on host e.Letc.

So far, the selection of objects followed a top–down ap-
proach. However, one also has to consider restrictions com-
ing from the modeled environment and the modeling tools
used in the later phases, because these may only accept re-
stricted types of input data that is not available for all ob-
jects. Especially collective objects for domains are usually
not supported by current automated modeling tools. Sec-
tion 4 will therefore also show how our approach deals with
this problem.

In step1-ii the chosen objects must be mapped onto the
matching components, applications etc. in the real environ-
ment. This requires no special actions for simple objects
but for those where the realization is dispersed over distinct
real objects, e.g., distributed applications and also the previ-
ously mentioned domains. In our example, two main routers
could be selected to represent the objectcommunication in-
frastructure.

One can see that this phase is only semi–automatable
through the help of systems management or workflow utili-
ties which are able to provide lists of available services, do-
mains and departments etc. The assessment whether those
objects should take part in the model must be done by hu-
man administrators.

In phase 2 the appropriate probes to meter the objects’ ac-
tivities (as explained in section 4.2) must be installed. As for
all measurements in distributed environments special care
has to be taken on where to place the means of collection
and the model generating algorithms; esp. in the TCP/IP
world, where the management data is transferred ‘inband’
through the same channels as the user data.

In some cases it is necessary to create multiple models for
the same environment, e.g., due to the application of distinct
management tools or overlapping modeling of different or-
ganizational areas. Therefore, it is an important requirement
on the means of information collection to be able to install
them independently from a single model creation process,
thus making them and their collected data reusable.

3.2. Generation and Management

During normal operation of the systems and networks,
activity data is collected (step3-i, figure 6). After a certain
period of time the information is transferred to places where
the models are generated. The type of information gathered
in this step totally depends on the method used in step3-
ii which is the most challenging task of the process: the
actual automated generation of models. Several methods
have evolved to support or replace manual generation which
mainly suffers from the enormous effort it imposes on the
administrators during actual model creation and also to keep
them up-to-date. Alternative automated approaches are:

(3−i)
meter / collect
activ ity data

(4)
apply management to:

(3−iii)

(3−ii)
generate

dependency model

env iron−
mental
model tt

i) single model
ii) changes in models

over time

p
h

ase 3:
m

o
d

el creatio
n

p
h

ase 4:
m

an
ag

em
en

t

Figure 6. Phases for model generation and ma-
nagement

Service instrumentation: The modeling process would
be most easy if the modeled objects provided appropri-
ate instrumentation by themselves. The problem is that—
although CIM and other information models theoretically
have appropriate description mechanisms—none of today’s
applications is able to provide this kind of information at an
acceptable granularity. Most do not even allow to be queried
for any dependency information at all.

Evaluation of files at dependents’ side: A straightfor-
ward method to determine the dependencies is to look for
configuration data at the dependents (i.e., the objects play-
ing the client role in a client–server relationship) directly
expressing on what services they depend. E.g.,WS’ depen-
dencies (in the introductions’ example) cannot be queried
directly, but are hidden in its configuration file that mentions
the database server by name instead of by IP address, plus
the fact that this host name isnot listed in local name resolv-
ing files like “/etc/hosts” on typical Unix systems. One can
already imagine how hard an automated detection of depen-
dencies by looking at configuration files would be. The case
would become even more complicated if host name and IP
address indeedare listed in “/etc/hosts”, because it would
then be up to a third file to determine whether local resolv-
ing is carried out at all. Similar problems exist for the fol-
lowing case.

Evaluation of files at antecedents’ side: Similar to the
previous one this modeling method analyses files. However,

it looks for indications of service utilization (by clients) at
service side, e.g., in a server’s log files. In the example
of figure 1 the web server’s log file would contain entries
showing that both clients had connections. In other words,
both have a dependency onWS.

However, a major drawback of all approaches that anal-
yse log or configuration files is that these typically have a
proprietary format or sometimes change with software up-
dates. Even worse, not all applications provide log files or
similar mechanisms containing this information; also access
to files may be restricted for several other reasons, like se-
curity policies.

Exploiting software repositories: A new extension to
these approaches is described in [16]. Additionally to the
analysis of application configurations it makes use of infor-
mation stored in software installation repositories of opera-
tion systems to obtain intra–system relationships.

In every case the result of this step is one dependency
model reflecting the current stage of the environment. Step
3-iii indicates the reiteration of the previous two steps,
which leads to a sequence of models being generated over
time. The appropriate duration of the time period be-
tween the models also depends on the modeling approach
and application. Looking at configuration files might be
needed only about once a day, while our approach allows (if
needed) to reflect the actual service utilization in arbitrary
periods of time, e.g., for every hour.

For the interaction points between this phase and the
next it is crucial to define a common model exchange for-
mat. Several of the formats mentioned in section 2 (like
MOF, etc.) suite this purpose. In [17] we developed an
XML/RDF–based format specially suited for dependency
description in distributed environments. However, for the
purpose of this paper the actual representation is of minor
interest.

Once the model is generated the last phase starts. Ma-
nagement tools use the generated models directly (step4-i)
or calculate and use comparisons of sequentially generated
models (step4-ii), e.g., to point out emerging differences
(which indicate changes in the modeled environment) to
the administrator or to generate alarms to management plat-
forms if dependencies to certain important services change.

Special management cases may also require to derive an
abstract service model from the environmental one. This
helps to find unusual cases of unexpected dependencies ei-
ther indicating inconsistencies in the model or errors in the
network or service design.

3.3. Summary of Requirements

The following list of requirements summarizes the inves-
tigations of the overall modeling process and the analysis of
the current approaches. Both clearly indicate the need for a
new automated modeling approach that:

1. is able to sufficiently close the lack of dependency infor-
mation;
2. handles the scalability issues required by large environ-
ments, regarding both model visualization and efforts to cre-
ate the models;
3. supports domain concepts (actually as a consequence of
the previous requirement);
4. allows to create models reflecting the actual system be-
havior in a certain time interval to enable management app-
lications to evaluate short–term changes in the environment
as described above;
5. cleanly decouples data collection (step3-i) from the ac-
tual model creation (step3-ii) to be able to reuse collected
data for (overlapping) models created for different places,
e.g., for different departments;
6. is based on data available for most types of managed re-
sources, but still
7. needs very little effort to be installed and used in het-
erogeneous environments (this concerns both the hetero-
geneity of the probed objects as well as of the runtime–
environments for the probes themselves);
8. has little impact on the performance of the managed sys-
tems and networks.

Further concerns like security issues are not covered by
this paper; in our prototype security features like authenti-
cation of agents and encrypted communication are automat-
ically provided by the agent system we use (the agent based
architecture is presented in subsection 4.2).

4. New Approach to Automated Modeling
This section presents our new solution to the key part

(step3-ii) of the overall modeling process together with an
agent based architecture allowing its clean integration into
real IT–environments.

4.1. Determining Dependencies with Neural Net-
works

Our new approach is based on neural networks and thus
very different from traditional ones explained further above.
As input data for the neural networks we use any kind of val-
ues that express an object’s activity within small time peri-
ods (of about 1 to 10 seconds each). We further restrict our
selection on values that are relatively easy to collect and
available for most types of services, hosts, etc. Examples
for such values are, but are not restricted to:
� CPU activity of hosts (mainly useful, if the selected hosts
are interesting objects by themselves or carry only one main
service);
� CPU usage of an application, compared to the CPU power
available over a certain period of time (useful in various
cases measuring applications in scenarios different from
above);
� communication bandwidth used by a system during each
of the short time intervals;

� sum (or other appropriate function) of activities of sub-
components (if the activity of an object is not directly mea-
surable as one value, like for distributed applications or do-
main objects).
Generally speaking, this is data taken from lower layers like
the operating system, middleware or transport system.

tt

activity a

tt

activity b

yes / no

neural
network

Figure 7. Neural network decides per pair of objects

As depicted by figure 7 two streams (time series) of ac-
tivity data are fed into a pre-trained neural network for
each relevant pair of objects. The neural network decides
whether a dependency exists or not and (if required) re-
trieves further information about that dependency like the
assumed dependency strength. Of course, the values of ac-
tivity do not explicitly show a dependency. But simplifying
the process within the neural network one can imagine that
peaks of activity often occurring in both input streams with
similarly repeating patterns over time (as depicted in the ex-
ample below) allow the conclusion of a dependency.

Neural networks were chosen because of advantages,
like:
� dealing with uncertain information, and
� robustness to noise in the input data.
These advantages are necessary to overcome the lack of
explicitly useful information in the simple input values
and problems like small timely displacements of values at
certain managed objects (e.g., due to not well synchro-
nized clocks). The second point is especially important,
because—depending on the kind of values that express
activity—there potentially is a lot of “internal” activity,
meaning that actions are performed which are completely
unrelated to other objects outside.

In our project we constructed and trained neural networks
with data collected from real environments for which the
results (whether dependencies between the objects exist or
not) where known. For a proper decision quality the train-
ing set had to contain data from at least two or more distinct
types of service implementations and different sources of
activity data (to obtain samples of positive training cases) as
well as pairs of non–related services (negative cases). Each

of them was observed under various usage conditions and
during times of high and low service utilization. Using data
from real environments led to the problem of noisy training
data, but with the neural networks quality to perform gen-
eralization on the input data our requirements could still be
met. As a positive consequence the design and installation
of a special test field was not necessary.

In later tests we positively verified the results in different
environments without retraining the neural network. How-
ever, we do not exclude that it may be necessary to improve
the neural networks in other cases, e.g., with the help of spe-
cial reinforcement learning techniques that can be applied
even in parallel to the networks utilization. Further stud-
ies on the robustness and general reusability are currently in
progress.

Figure 8 shows two example plots of data collected from
two hosts during the same period of time with a sampling
rate of 5 seconds. The values shown represent the intensity
of the hosts’ IP–communications with others during time
intervals of five seconds. It is of course just a very small
excerpt of the real time series fed into the neural network.

0

100000

200000

300000

400000

500000

1770 1780 1790 1800 1810 1820 1830 1840

"hpheger0.Out"

0

100000

200000

300000

400000

500000

1770 1780 1790 1800 1810 1820 1830 1840

"hpheger2.In"

host 1
ac

tiv
ity host 2

ac
tiv

ity

Figure 8. Time series of two hosts’ activity values

The high spikes within the plots are of special interest. At
three time intervals (numbered with 1785, 1801 and 1826
for the first host, respectively 1784, 1800 and 1825 for the
second) both hosts show an activity of nearly the same in-
tensity and shape indicating a possible relationship. The
plot of host 1 additionally shows further significant activi-
ties (e.g., at 1794 and 1837) which turn out to be noise for
the investigation of the two hosts’ relationship.

The fact that two services show activity at the same time
does of course not yet allow to say that they are dependent,
but after observing this behavior several times with similar

PP PPPP

.

DD

example flows
of activ ity data

agents

collector agents and
P) probes:
meter and collect
activities of MOs

M) mediator agents:
− normalize, pre−process and
 pre−select relevant activities
− redirect and cache flows of
 data

D) domain agents:
determine domain activity

neural agents:
host a neural network

MO MO

Managed Objects:
relevant objects playing
a role in the generated
model

...MO...MO MO. . .

CC

management
of agents

MM MM

alternative
 flows

NN . . . NN

. . .

modeler agents:
responsible for final model creation

collaboration
between agents

legend:

C) control agents:
setup and control agents
in layer 1 and 2

la
ye

r
1

la
ye

r
3

la
ye

r
2

Figure 9. Architecture’s hierarchy of probes and agents

peak patterns, a decision becomes plausible. Further algo-
rithms are used to find groups of dependencies (occurring
together or in a row, respectively) that belong to one type of
transaction and to distinguish two timely unrelated depen-
dencies involving common objects (A!B; B!C) from real
transient ones (A!B!C).

A possible disadvantage of pairwise calculations is that
it needsO(n2) time for n elements. For large numbers of
n special techniques must be applied: One simple possibil-
ity is to pre-exclude pairs that are either not of interest, or
where dependencies are not possible anyway. In the web
server scenario one could omit all calculations for pairs of
web clients. This usually makes up a significant percent-
age, comparing the huge number of clients against a smaller
number of servers. Further reduction comes from applying
the domain concept. Smaller models are generated per in-
teresting domain. Additionally, the activity of the whole do-
main is condensed into one single domain activity allowing
to calculate the dependencies between domains and also be-
tween one single object in one domain and (other) ‘outside’
domains.

At the same time the argument of complexity also sup-
ports the use of neural networks, as they—once trained—are
able to calculate the results faster than traditional correlation
analyses.

Looking back at the requirements listed at the begin-
ning of this section, a decision method about dependen-
cies as such is obviously not enough for comprehensive
dependency modeling. It has to be supplemented with an

architecture allowing for a clean integration into real IT–
environments. Such an architecture is presented in the fol-
lowing.

4.2. Architecture for Automated Model Genera-
tion

The architecture explained in this section covers all steps
of phase3 of the modeling process, including data collec-
tion, the evaluation in neural networks and a well defined
interface to the management tools of phase4. It also con-
tains means to simplify the installation process of the agents
in the managed environment (in correspondence to phase2),
however the focus of this section lies on the operational as-
pects.

Besides some low–level probes the whole architecture is
based on agents and agent systems, respectively, but its prin-
ciples are not restricted to a special implementation of a ma-
nagement agent system. Reasons for the choice to use an
agent based architecture are that the following features are
provided by most agent systems in an easy to use way (see
also [18]):
� interfaces to resources (managed objects),
� a communication infrastructure, and
� support for flexible balancing of duties.

However, it is not assumed that agent systems have to
be hosted on all machines. As explained in the following,
the architecture contains means to cleanly embrace other
sources for activity measurement via proprietary or stan-
dardized management protocols. Along with the architec-
ture, supplementary information about the prototypical im-

plementation developed in the project is presented. The
agent platform chosen is the Mobile Agent Systems Archi-
tecture (MASA, [19]) implemented and developed at our
research group for general management purposes. The plat-
form and agents are written in Java, making them to a great
extent independent of the underlying system. The inter–
agent communication is based on the Common Object Re-
quest Broker Architecture 2.0 (CORBA, [20]).

Our agent architecture is structured in three layers (as de-
picted by figure 9):
1. The lowest layer hosts all means of data collection. It
contains implementations to measure data via standardized
or proprietary management interfaces. It further provides
a homogeneous interface for objects’ activities to the next
layer, thus making their heterogeneous nature fully trans-
parent to the rest of the architecture.
2. The middle layer filters and pre-processes the activity
data. It is further used to channel the data flows in a way that
the impact on the performance of managed systems is kept
at an acceptable level through load balancing and caching
mechanisms.
3. The last layer hosts the components for model generation
including the neural networks.

The basic types for the means of collection in layer 1 are:
1. management agents (in the sense used in management
architectures like OSI or Internet management) already in
place or to be installed,
2. proprietary measurement tools (delivered with applica-
tions, etc),
3. special probes, developed and deployed for the purpose
of gathering information for this modeling,
4. or agents of the agent architecture directly capable of
measuring through interfaces of the agent system.

As representatives of the first type our prototype supports
access to SNMP agents, currently used to meter CPU activ-
ity of hosts and amount of network traffic on IP interfaces.
Further we implemented probes of the third type, metering
CPU utilization of applications by reading from the ‘proc
filesystem’ (as provided by SUN Solaris, Linux and others).
The means of collection should be installed close to the ob-
jects that have to be monitored to avoid unnecessary traffic.
On the other hand, not all endsystems are capable of hosting
an agent system or are not allowed to—for security or other
reasons. In these cases remote monitoring (as in our case of
data access via SNMP) is the preferred choice.

There is no difference, whether data is gathered (in step
3-i) to calculate a collective domain activity or for single
objects directly represented in the generated model. Fig-
ure 9 shows the same flow of information for both cases.
On the left hand side domain activity is calculated, while on
the right hand side the information goes directly to mediator
agents.

The homogeneous interfaces to the upper layers are pro-
vided by so calledcollector agents. If their agent sys-

tem provides appropriate interfaces they are able to directly
collect data from their host system. Otherwise they send
queries to externally implemented probes.

The mentioned interface is divided into two parts. One
is mainly used by theconfiguration agentsto initialize and
configure the agents while the second part is used for the
data queries at run–time. The same interface is also used
and provided bymediator agentsin the second layer. This
allows to cascade them in larger scenarios or leave them
out in small ones. These agents may further implement au-
tomated load balancing by traveling to hosts with unused
resources or to places with higher available communication
bandwidth. There are two possibilities of how these agents
may collaborate: Either they use the configuration part of
another agent’s interface to suggest the delegation of a task
like to apply filters on data, or via the query interface, e.g.,
by rejecting queries to probes for which it had previously
been responsible. In this case the agent may specify another
agent that should be responsible from now on. For now, our
prototypical implementation of the mediator agents concen-
trates on caching and simple delegation tasks. We do not yet
make active use of mobility aspects and complex collabora-
tion algorithms. Further tasks assigned to mediator agents
are:
� pre–selection of time intervals containing significant pat-
terns of activity;
� normalization of values;
� correction of timestamps from data of systems with long
time lags.
In adaption to the available resources these tasks may ei-
ther be combined in one agent for all data, respectively sin-
gle data streams, or be distributed over multiple cascaded
agents.

The domain agentsbasically behave just like mediator
agents. However, they implement special processing func-
tion to combine various streams of input data to one single
stream for the collective domain (or distributed application)
activity. Their query interface also allows to acquire the
underlying data of single objects to reduce the communi-
cation bandwidth in cases where detailed models are con-
structed within the domain, but the collective domain activ-
ity is needed for other models, too.

The last layer contains the process of model creation. It
is distributed onto two kinds of agents. Themodeler agents
organize the modeling. They query the other agents for
pre-processed data, initiate the modeling process and fi-
nally implement the dependency model interface used by
management tools. In our prototype it also contains an ap-
plet based user interface allowing to supervise and control
the modeling. Modeler agents may collaborate with others
by sharing ready evaluated parts of the models. Thus, an
enterprise–wide modeler agent might eventually only cal-
culate the inter–domain dependencies and query the under-
lying structures from local modeler agents. The second type

mm

mm

DD

SNM
P

domain A domain B

agents depicted as
in previous figure

agent system
at an MO

**

resulting model

domain A

serv er

domain B

server
management
station

NN

managed
object (MO)

PP

PP

PP
PP

probePP

MM

Figure 10. Deployment of probes and agents

on this layer are theneural agentswhich implement the neu-
ral networks. It is possible to install a pool of these agents
and use them from the modelers as required. However, to
reduce overhead it is recommended to place neural agents
close to the modelers or even on the same agent system.

Figure 10 shows the agents deployment in an IT-
environment with two domains. The goal is to construct a
dependency model (depicted by the gray box) for the admi-
nistrator of domain A, who is interested in the details of his
own domain as well as the connections to the central server
and the second domain B.

The data flows begin at the probes or the collector agents,
respectively. As an example, one agent in domain B (like
the others depicted by a white square without inner symbol,
but marked with an asterisk ‘*’) uses queries to an SNMP
management agent on the router and additionally collects
data from an external probe on its own host. The agent on
the other system in the domain directly accesses its host via
management interfaces provided by the agent system. Both
agents’ data is then forwarded to the domain agent that cal-
culates the resulting domain activity by joining the time in-
tervals and summing up the values in case of overlaps. On
the interface towards the mediator it behaves just like any
collector agents. Therefore, the whole domain appears as
just one object in the model. The mediator agent carries out
pre-processing on the data that did not already take place
and forwards it to the modeler agent, which generates the
complete resulting models with the help of a neural agent.

5. Conclusions and future work
Our work showed that environmental models provide nu-

merous advantages for various management tasks. Over

the past years several powerful applications and algorithms
based on models have been developed and successfully
tested. However, there are reasons why they are not widely
used. The most significant is the lack of generally avail-
able models and the huge effort needed to generate such
models by hand. In this paper, we presented a methodology
that helps to overcome this lack by enabling the creation of
such models for various use cases, in a—to a considerable
extent—automated way, thus solving the worst problems.
Further, the paper provided an agent based architecture en-
abling the model creation to be used in large scale scenarios.

For future work of the project, we consider to have a
closer look at further scalability issues, e.g., to determine
the number of objects our approach is able to handle in a
single domain, esp. taking into account that bandwidth and
other resources should be used for management only in a
very careful and restricted way. For extreme scenarios the
project will investigate how far the use of resources can be
reduced, while still being able to generate models of satis-
factory quality. Or in other words, can the neural networks
be trained better so they are able to cope with much less
grained data?

For the part of the neural networks we consider to work
on improvements allowing to distinguish between different
types of dependencies. A second point is that—additional to
the way it is implemented now, where the IT–administrator
is not at all involved in the training process of neural
networks—a feedback mechanism from the GUI to the neu-
ral agents could help to improve the neural networks and
thus the modeling results. However, the pre-trained neu-
ral network currently used in our prototype already reliably
works for various use cases.

Acknowledgment

The author wishes to thank the members of the Mu-
nich Network Management (MNM) Team for helpful dis-
cussions and valuable comments on previous versions of
the paper. The MNM Team directed by Prof. Dr. Heinz-
Gerd Hegering is a group of researchers of the Univer-
sity of Munich, the Munich University of Technology,
and the Leibniz Supercomputing Center of the Bavarian
Academy of Sciences. Its webserver is located athttp:
//wwwmnmteam.informatik.uni-muenchen.de.

References

[1] H.-G. Hegering, S. Abeck, and B. Neumair,Integrated Management
of Networked Systems – Concepts, Architectures and their Opera-
tional Application, Morgan Kaufmann Publishers, ISBN 1-55860-
571-1, 1999, 651 p.

[2] R. Gopal, “Layered Model for Supporting Fault Isolation and Recov-
ery,” In Hong and Weihmayer [21], pp. 729–742.

[3] “Information Technology – Open Systems Interconnection – Struc-
ture of Management Information,” IS 10165-X, International Orga-
nization for Standardization and International Electrotechnical Com-
mittee.

[4] “Information Technology – Open Systems Interconnection – Struc-
ture of Management Information – Part 7: General Relationship
Model,” IS 10165-7, International Organization for Standardization
and International Electrotechnical Committee, 1997.

[5] Manuel Rodriguez, “Modeling Object Relationships in TMN / OSI
Management Systems with SDL-92 (one page poster),” In Hong and
Weihmayer [21].

[6] K. McCloghrie and M. T. Rose, “RFC 1213: Management informa-
tion base for network management of TCP/IP-based internets:MIB-
II,” RFC, IETF, Mar. 1991.

[7] B. Gruschke, S. Heilbronner, and N. Wienold, “Managing Groups in
Dynamic Networks,” In Sloman et al. [22].

[8] B. Gruschke, “Integrated Event Management: Event Correlation us-
ing Dependency Graphs,” inProceedings of the 9th IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations & Manage-
ment (DSOM 98), Newark, DE, USA, Oct. 1998.

[9] M. Hasan, B. Sugla, and Viswanathan R., “A Conceptual Framework
for Network Management Event Correlation and Filtering Systems,”
In Sloman et al. [22], pp. 233–246.

[10] S. Kätker and M. Paterok, “Fault Isolation and Event Correla-
tion for Integrated Fault Management,” inProceedings of the Fifth
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 97), A. Lazar, R. Saracco, and R. Stadler, Eds., San Diego,
USA, May 1997, pp. 583–596, Chapman & Hall.

[11] T. Kaiser,Methodik zur Bestimmung der Verf¨ugbarkeit von verteilten
anwendungsorientierten Diensten, Ph.D. thesis, Technische Univer-
sität München, 1999.

[12] A. Pell, K. Eshghi, J. Moreau, and S. Towers, “Managing in a
distributed world,” inProceedings of 4th International Symposium
on Integrated Network Management, Yves Raynaud and Adarshpal
Sethi, Eds. IFIP, May 1995, Chapman & Hall.

[13] A. Clemm, Modellierung und Handhabung von Beziehungen zwis-
chen Managementobjekten im OSI-Netzmanagement, Dissertation,
Ludwig-Maximilians-Universität München, June 1994.

[14] “Common Information Model (CIM) Version 2.2,” Specification,
Distributed Management Task Force, June 1999.

[15] CabletronSystems, “Spectrum enterprise manager 5.0 rev 1,”
http://www.spectrummgmt.com/support/manuals/
501admin.html, 1999.

[16] G. Kar, A. Keller, and S.B. Calo, “Managing Application Ser-
vices over Service Provider Networks: Architecture and Dependency
Analysis,” In Hong and Weihmayer [21], pp. 61–75.

[17] C. Ensel and A. Keller, “Managing Application Service Depen-
dencies with XML and the Resource Description Framework,” in
Proceedings of the 7th International IFIP/IEEE Symposium on Inte-
grated Management (IM 2001), G. Pavlou, N. Anerousis, and A. Li-
otta, Eds., Seattle, Washington, USA, May 2001, IEEE Publishing.

[18] R. Pinheiro, A. Poylisher, and H. Caldwell, “Mobile Agents for Ag-
gregation of Network Management Data,” inFirst International Sym-
posium on Agent Systems and Applications and Third International
Symposium on Mobile Agents (ASA/MA 99), Palm Springs, Califor-
nia, October, 3–6 1999, pp. 130–140, IEEE.

[19] H. Reiser, S. Heilbronner, and B. Gruschke, “Mobile Agent System
Architecture — Eine Plattform f¨ur flexibles IT–Management,” Tech.
Rep. 9902, Ludwig-Maximilians-Universit¨at München, Institut f¨ur
Informatik, München, 1999.

[20] “The Common Object Request Broker: Architecture and Specifica-
tion,” OMG Specification Revision 2.0, Object Management Group,
July 1995.

[21] J. W. Hong and R. Weihmayer, Eds.,NOMS 2000 IEEE/IFIP Net-
work Operations and Managment Symposium — The Networked
Planet: Management Beyond 2000, Honolulu, Hawaii, USA, Apr.
2000. IEEE.

[22] M. Sloman, S. Mazumdar, and E. Lupo, Eds.,Integrated Network
Management VI (IM’99), Boston, MA, May 1999. IEEE Publishing.

