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Abstract—Group communication is an important means for
communication in todays interconnected world, where multiple
endpoints need exchange of data in the most efficient and
concurrently secure way. The resulting complexity represents
a substantial challenge, especially in the constrained environ-
ments introduced through the Internet-of-Things and sensor
networks. An in-depth analysis of existing work shows that
the problem of secure key distribution within groups requires
novel approaches. Instead of designing yet another (group) key
distribution scheme, this paper offers a minimal client based
on the well-known Group Internet-Key-Exchange protocol
G-IKEv2. The evaluation of this first open client with real-
life observations and corresponding measurements proves its
applicability for secure group key distribution and will serve
as the basis for implementing group and identity management.

Keywords-IoT; Multicast; Security; Constrained Networks;
Key Management.

I. INTRODUCTION

In the absence of energy or bandwidth constraints, to-
day’s (fixed line) networks tend to emulate multicasting
by a multitude of unicasts reducing group management to
simple functionality on top of point-to-point communication.
Unfortunately, energy, bandwidth and compute power is
crucial, especially in constrained environments and wire-
less sensor networks (WSN). Thus, multicasting is meant
to become more important, as it heavily reduces network
overhead [1] and both, the required for CPU power and
energy consumption. As a consequence, the need for secure
group management and secure group key distribution in
constrained environments increases and is not yet solved
appropriately – neither in standards, nor in the literature and
not as a suitable implementation.

In [2], a definition of secure group communication in con-
strained environments is given. It is shown that both sender
authentication and secure group management mostly address
confidentiality during transport, but neither authentication
nor secure key exchange or secure group management are
considered. These points are addressed by the contributions
of this paper:

1) Analysis of existing secure group management ap-
proaches and their suitability for constrained networks
(Section II)

2) Description of Group-IKEv2 (G-IKEv2 [3]), which
is based on Internet Key Exchange v2 (IKEv2 [4]),

together with an implementation of a minimal G-IKEv2
client (Section III-A)

3) Implementation and evaluation of a G-IKEv2 client for
the RIOT [5] operating system (Section III-B and IV)

The next section reviews works on secure group manage-
ment and evaluates existing approaches and related work
concerning their suitability for constrained environments.
With the results of Section II, G-IKEv2 [3] is shown best
applicable for secure group key distribution in constrained
networks. Section III designs a minimal G-IKEv2 client
and summarizes its implementation to be deployed onto
minimally equipped embedded / constrained systems. Fur-
thermore, Section IV evaluates the client both analytically
and using real-life observations and measurements, before
Section V summarizes and concludes the paper.

II. ON SECURE GROUP MANAGEMENT

Secure group communication is referred to the insurance
of a multitude of security attributes, such as accountability,
availability, reliability, confidentiality, integrity, authenticity
and non-repudiation in a communicating group [2]. In or-
der to enable secure group communication, management
of the group itself is found obligatory. Nevertheless, in
many scenarios group management is designed in a cen-
tralized manner, which is the most common form of group
management (e. g. Kerberos, X.509-PKI, etc.). For highly
distributed and constrained networks like the Internet of
Things (IoT) or wireless sensor networks, traditional group
management approaches are not applicable due to various
reasons, e. g. CPU power constraints, energy restrictions,
highly distributed and dynamics environment, etc.

In the following, Section II-A extracts requirements for
securely managing groups in constrained environments. Sec-
tion II-B then elaborates in more detail on related work
in terms of secure distribution of cryptographic material
(such as keys), before Section II-C concludes by choosing a
suitable protocol to cope with constrained environments in
the sense of this work.

A. Requirements

In order to achieve secure group management, certain
(security) requirements have to be met. This section sum-
marizes obligatory security features from RFC 3740 [6]
– with regard to the field of constrained environments –
and adds additional requirements to also grant the not yet
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addressed 1 ∶ 1-communication pattern as a special case of
group communication from [2]. To summarize, the following
security features have been found mandatory:
Identity Management: The management of IDs ensures to

uniquely identify a member of the group members or
devices requesting access to the group.

Authorization and Authentication Infrastructure (AAI):
Authentication requires some form of key distribution,
such as a public key infrastructure (PKI), while
authorization enables the management of rights for the
group.

Group Key Management (GKM): Among others, GKM
enables secure access to relevant information, such as
group keys in order to grant confidentiality, integrity as
well as sender- and group-authentication.

Group Management (GM): Basic group management op-
erations, such as createGroup, joinGroup, leaveGroup
or destroyGroup are a minimal subset of non-optional
functions.

Security: Groups have additional requirements on security,
especially after group operations have been carried out.
A member leaving the group may still have access to
messages received during its membership, but not any
new message (forward secrecy). New group members
need access to future messages, but must not be able
to read any message before they joined the group
(backward secrecy).

B. Related Work

During the past decade, several research activities on key
distribution in different areas have been carried out [7]. It
started with the key distribution for mobile networks (e. g.
UMTS, GPRS, etc.), followed by activities to share keys
in wireless sensor networks, while considering constrained
environments. Salgarelli et al. [8] provide a solution for a
wireless key exchange and authentication protocol, which
has been compared to current approaches such as the Exten-
sible Authentication Protocol (EAP [9]) and Transport Layer
Security (TLS [10]). Although this work focuses on wireless
networks and mobility, it still requires 12 messages to
distribute a pair of keys. Additionally, it is not designed for
multicast key distribution, which is essential when talking
about group communication.

Group key distribution itself has been studied in [11],
which resulted in a couple of standardization activities (some
of them discussed in Section II-B). Rafaeli et al. [11]
survey a set of approaches for secure group key distribu-
tion (GKD). According to their analysis, there are three
different types of GKDs: centralized, decentralized and
distributed GKD protocols. Most of the protocols con-
sidered are rather mathematical schemes than networking
protocols, but nevertheless some of them are included in
actual group management protocols, such as the Group
Domain of Interpretation (GDOI) [12]. Although all of these

approaches specify the possibility of secure (group) key
distribution (also in constrained networks), none of them
had been properly implemented, distributed or evaluated
against the requirements in constrained environments such
as 1) highly resource constraint devices, 2) highly distributed
and 3) globally connected.

In the following, recent activities with the goal of a DTLS-
based multicast solution for low latency networks [13] are
analyzed and the most commonly used protocol (GDOI)
and its potential replacement G-IKEv2 are explained (more
on G-IKEv2 can be found in section III). Additionally, the
concept behind hierarchical and distributed GKMs and their
applicability in constrained networks is detailed.

1) Centralized Group Key Management: Centralized key
distribution is the most obvious way of managing group
keys as it leaves the complexity and trust to a single sys-
tem. Most of the commonly used protocols (DTLS, GDOI,
Kerberos, etc.) are designed on top of centralized systems.
However, the concept of centralization inherits some natural
difficulties, such as weak scalability, especially when only
one server manages a geographically distributed network.
In general, the larger a group gets, the more complex
becomes its management and the resulting operations. This
makes many centralized group key management concepts
not feasible for constrained environments.

2) Decentralized Group Key Management: Decentralized
key distribution still sticks to the concept of a central server,
but splits the group in administrative domains for both
management operations and key exchanges. Additionally, it
distributes the workload over more devices and thus eases
the key calculations on the client side. On the other hand,
the decentralized concept requires strong trust relationships,
which is a showstopper for many use cases where admin-
istrative domains can change frequently and devices are
potentially physically accessible by arbitrary persons. As
exemplary standards, GDOI and G-IKEv2 (see below) are
able to use decentralized schemes for group key derivation.

3) Distributed Group Key Management: Distributed con-
cepts remove any kind of management server, thus, every
member of the group holds the complete state of the
group. This approach produces additional network load
and compute operations for re-keying every time a group
management operation is performed. Thus, these concepts
work well in closed and ”stable“ environments such as
wireless sensor networks, but they obviously do not scale
to a large extent.

4) DTLS-based: The IETF internet draft on Security for
Low-Latency Group Communication [13] describes secure
multicasting by using DTLS in low latency networks. The
focus is the distribution of symmetric keys, which are also
used for authentication and thus limiting the achievable level
of security. Nevertheless, the draft designs a system includ-
ing a key distribution center and authorization server, but it
does not consider issues of forward and backward secrecy



Table I
COMPARISON OF EXISTING GROUP KEY EXCHANGE MECHANISMS

Feature / Requirement DTLS GDOI G-IKEv2 Decentralized Distributed
Group Management
↪ Join Unicast 8 4 4 4 4
↪ Join Multicast 4 4 4 4 4
↪Leave Unicast 8 (4)a (4)a 4 4
↪Leave Multicast 8 (4)a (4)a 4 4

Security
↪ in general 4 (4)b 4 4 4
↪Forward Secrecy 8 4c 4c (4) 4
↪Backward Secrecy 8 4c 4c 4 4

Applicability
↪Link Local 8 8 4 8 8
↪Broadcast Domain 8 8 4 4 4
↪LAN 4 4 4 4 4
↪WAN 4 4 4 (4) 8

Lightweight:
↪ Implementation 4 8 4 8 8
↪Memory/Storage 4 (4) 4 8 8
↪Networking (4) 8 4 (4) 8
↪Standardized for IoT 4 8 (4) 8 8

legend: 4 addressed by design (4) partially addressed 8 not addressed by design
a Leave is only supported by the GKM server b based on obsoleted IKEv1
c with logical key hierarchy (LKH)

and re-keying. Additionally, no group management opera-
tions are considered, despite joinGroup-operations. Due to
the design choice to use DTLS, the applicability is limited
to local and wide area networks, but excludes possibility to
be used on lower ISO/OSI-Layers. On the other hand, with
RFC 7925 [14] DTLS is adjusted to comply with the needs
and constraints of IoT devices.

5) IPsec based (GDOI and G-IKEv2): With multicast
usually being an IP specific use case, the choice of IPsec for
security seems natural. GDOI [12] was the first standardized
protocol for securing multicast. It is a centralized protocol,
but with the possibility of using hierarchical key distri-
butions mechanism such as logical key hierarchy (LKH).
However, due to the network overhead during key exchanges
(7 messages) and using the obsolete IKEv1 as the underlying
protocol, a replacement is inevitable. That said, G-IKEv2 [3]
is currently proposed as a new standard for group key
management. Using IKEv2 reduces the number of messages
during key exchange to only 4, making it easier adoptable
for constrained devices. Additionally, with RFC 7815 IKEv2
is specified for the use in IoT [4] and recommended for the
key exchange in IEEE 802.15.4 networks.

C. Summary and choice of a protocol

Table I shows the findings of this section and evaluates
related work against four categories of requirements:
Group Management describes the ability to manage

groups for multicast and unicast, both of which are
considered subsets of n ∶m-communication patterns.

Security evaluates on the security of a given solution in
general and adds a special focus on forward and back-
ward secrecy.

Applicability considers if a solution can be used in link
local networks (e. g. radio networks) or broadcast do-
mains (e. g. in self organizing WSNs) – both being
ISO/OSI layer II networks – or local area networks
(LAN, environments requiring local routing) or wide
area networks (WAN) where global routing is required.

Lightweight shows if a solution can be found suitable
for constrained devices in terms of their limitations
(complexity of the implementation, limited CPU power,
memory / storage capacities, network resources). Addi-
tionally, it is assessed on the availability of a specifica-
tion specific to constrained devices and environments.

To conclude, G-IKEv2 is suited best for the area of applica-
tion of this work. With its underlying protocol IKEv2 already
being adopted (RFC 7815 [4]) and used in constrained envi-
ronments and its flexibility to be extended by concepts of de-
centralized and distributed group key distribution schemes,
it represents a good choice.

III. A MINIMAL G-IKEV2 CLIENT

This section focuses on the design of a minimal G-IKEv2
client (Section III-A) and its prototypical implementation
for a sensor operating systems such as RIOT [5] (see also
Section III-B).

A. Design

The main idea to achieve minimalism for G-IKEv2 is
borrowed from RFC 7815 on Minimal IKEv2 [4]. To achieve
a minimized message exchange, the number of exchanged
packages was kept minimal by using a minimal and pre-
determined configuration of the client rather than using
compression.
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Figure 1. Simplified G-IKEv2 exchange for minimal implementations

Figure 1 illustrates a minimal G-IKEv2 key exchange and
re-keying action.
Key Exchange. A G-IKEv2 key exchange can be divided

into two phases:
À Establishing an SA (IKE SA INIT). The first

two messages from the client to the Group
Communication Key Server (GCKS) and back
establish a Security Association (SA) and thus a
secure channel between the client and the server.

Á Exchanging keys (GSA AUTH). Given the se-
cured communication path, the client identifies and
authenticates itself and in turn receives transport and
key encryption keys (TEK and KEK) from the server.

Â Re-Keying (GSA REKEY). Whenever a TEK loses va-
lidity (e. g. because it is outdated), a re-keying action is
triggered by the server (GSA REKEY), which is close
to equal to the GSA AUTH phase.

In the following, the different payloads (À – Â) are described
in more detail and a special focus is put on how minimiza-
tion could be achieved.

À IKE SA INIT
A Diffie-Hellman key exchange between the client (initia-
tor, i) and the server (responder, r) is carried out during
the IKE SA INIT phase in À. In this case, the server
holds the role of the group key management server. The
IKE SA INIT is identical to the IKE INIT of IKEv2 and
does not include any group relevant information. Its only
purpose is to establish a secure connection between the client
and the server.

In the first step, the initiator sends a packet consist-
ing of minimally the Security Association (SA), Key Ex-
change (KE) and a random number Ni – the so-called
Nonce. Simply speaking, the SA payload contains a list of
proposals for cipher suites to use for securing the following
GSA AUTH packet and the KE includes the initiator’s
Diffie-Hellman value and group. For a minimal implemen-
tation, exactly one proposal is sent, which the responder
must accept. Upon acceptance, the GCKS responds (second

packet as per Figure 1) by sending the same SA, his KE
(including his Diffie-Hellman value) and Nonce (Nr). At
this point, both the initiator and responder can derive the
shared secret, which will be found the most time consuming
operation during the key exchange (see Section IV).

Á GSA AUTH
Having successfully completed the IKE SA INIT phase
results in a secured channel between the client and the server
as a prerequisite for the GSA AUTH phase in Á. The first
GSA AUTH message uses the same security properties as
given by IKE AUTH in IKEv2. The IDi payload may in-
clude either a 4 Byte IPv4 address, or a 16 Byte IPv6 address
or an arbitrary ID of variable length. The AUTH payload
contains a hash of the IKE SA INIT request message,
signed with either a digital signature or a pre-shared secret
to eliminate possible man-in-the-middle attacks. Optionally,
the initiator may also include an IDg (Group-ID) payload
that identifies the group he wishes to join.

It is important to note that unlike IKEv2’s IKE AUTH ex-
change, the initiator does not send any SA or traffic selector
payloads in the request. Because group communication is
targeted, the GCKS defines the configuration for transport
security and thus, further negotiation is neither needed nor
allowed or foreseen. For a minimal implementation, only
one encryption and authentication function is implemented,
which should be the one used for the group communication
chosen by the server.

After having verified the initiator’s identity and authentic-
ity, the GCKS responds with its own ID, proves knowledge
of the secret and additionally sends the GSA and KD
payload containing the optional re-key SA, one or more
group traffic encryption SAs and their corresponding keys.

The received SAs are stored in the Security Associa-
tion Database (SAD), including the Transport Encryption
Keys (TEK), for securing the group communication between
the clients and Key Encryption Keys (KEK) for securing the
re-keying of newly distributed TEKs. Please note, if forward
and backward secrecy of the communication is required, the
KEK can be generated by functions such as Logical Key



Hierarchy (LKH, see [11]). This requires the implementation
of the Download Type payload, which is able to transport
different schemes for re-keying, one of them being LKH.

Â GSA REKEY
The GSA REKEY message is the only message required
for a re-key action and is initiated by the GCKS. It contains
an AUTH payload to prove knowledge of the auth-secret
that was previously shared in the KD payload, a new GSA
payload and the new keys in a KD payload. The message
itself is protected with the algorithms and keys that had
been saved in the KEK SA, exchanged earlier during the
GSA AUTH response (see above). Please note, if forward
secrecy is required, the KEK and TEK needs to be re-keyed
within to separate GSA REKEY messages, otherwise a left
member could still have access to new TEKs.

The client is required to match the incoming
GSA REKEY packet to the correct re-key SA, validate
the AUTH payload and update its SAD entries with
the new attributes and keys. Although the message is
typically sent using multicast (and thus does not require a
response), certain re-keying schemes (e. g. LKH) require
GSA REKEY requests to be sent in unicast.

B. Implementation

Cryptography and highly restricted devices tend to ex-
clude one another at the first glance. Comparing the cipher
requirements in Table II with the constraints of the used
devices in Table III gives a first idea on this contradiction.
As resources – and especially their amount of main mem-
ory – are very limited, some thoughts on limitations and
cryptographic choices introduce this section. The second part
summarizes potential pitfalls and caveats found during the
implementation of a minimal G-IKEv2 client.

Limitations and cryptographic choices
In order to maximize compatibility between different imple-
mentations, IKEv2 as well as G-IKEv2 support numerous
cryptographic functions, which are negotiated during the
initialization phase. In order to minimize payloads, exactly
one offer will be defined for a minimal implementation.
Additionally, the cryptographic function must be chosen
carefully in order to honor the characteristics of constrained
environments and devices.

Table II shows the impact of popular cryptographic func-
tions on the size of the IKE SA INIT and GSA AUTH
messages. It also gives an overview of the size of the cryp-
tographic keys that need to be stored in the SAD to secure
the key exchange and the group communication itself. As the
client is not mandated to choose the cryptographic function
for the group communication, the group communication key
server needs to be configured carefully, always having the
limitations of the clients in mind.

Any IKEv2 implementation must be able to handle mes-
sages of up to 1,280 Byte (see RFC 7815 [4]). This requires

Table II
MEMORY NEED OF DIFFERENT CIPHERS

Cipher-Suite IKE SA INIT GSA AUTH Key length
(2 per SA)

Fixed Size 88 B 98 B —
Encryption:
- AES128-CBC — + 16 B + 15 Ba 16 B
- AES256-CBC — + 16 B + 15 Ba 32 B
Integrity:
- SHA1-96 — + 12 B 20 B
- SHA256-160 — + 16 B 32 B
- AES-XCBC-96 — + 12 B 16 B
Combined:
- AES128-CCM - 8 Bb + 8 B + 8 Ba 19 B
- AES256-CCM - 8 Bb + 8 B + 8 Ba 35 B
- AES128-GCM - 8 Bb + 8 B + 8 Ba 19 B
- AES256-GCM - 8 Bb + 8 B + 8 Ba 35 B
PRF:
- SHA1-96 — + 20 B —
- SHA256-160 — + 32 B —
DH Group:
- ECP256 + 64 B — —
- curve25519 + 64 B — —
- 2048MODP + 256 B — —

a a maximum of +x B for padding need to be added
b packet size is reduced by the size of the Integrity Proposal

a network buffer of at least the same size. Furthermore,
the implementation has to be able to store a minimum of
two SAs and its corresponding keys – the IKE SA – used
to secure the initial key exchange and at least one TEK
group SA downloaded from the GCKS. Another necessity
for secure communication is a source of randomness in
order to generate a Diffie-Hellman key and a nonce for
the IKE SA INIT request. G-IKEv2 communicates over
UDP and thus a network stack implementing ISO/OSI
layers 1–4 is required, too. For securing the GSA AUTH
exchange the implementation needs at least one valid cipher
suite consisting of one encryption and integrity algorithm,
one pseudo-random function (PRF) and one Diffie-Hellman
group. Given these facts, AES128-CBC for confidentiality,
HMAC-SHA256 for integrity, HMAC-SHA1 96 as a PRF
and ECP256 for Diffie-Hellman are chosen to be used.

The presented implementation is built on RIOT OS. The
main reason for its choice is its lightweight nature with a
minimal requirement of 1.5 KB main memory. Additionally,
RIOT supports various hardware and includes a network
stack fulfilling the requirements as stated above. Finally, var-
ious cryptographic libraries targeting embedded systems are
available for RIOT. Table III shows the highly constrained
devices used for the analysis in section IV.

Pitfalls and caveats
While RIOT solves many problems concerning portability
and compatibility of the implementation, its network stack
initially did not allow network packets to be encrypted
with RIOT’s own crypto functions. The problem is the way
network data is stored in the packet buffer, which is a



statically allocated section of the main memory and used
to save incoming and outgoing network packets. A packet
is represented by a linked list of so-called ’pktsnip’-
structures, each containing a pointer to the packet’s payload
and a pointer to the next element in the list. A typical
network module (e. g. the UDP module) will prepend a
’pktsnip’ to the linked list containing a pointer to its
data (e.g. the UDP header). Everything is stored at the
first empty segment of packet buffer. While this solution
solves the problems that dynamic memory allocation is not
recommended and thus should not be used in constrained
environments, it makes it impossible to calculate a cryp-
tographic cipher over the packet data because the data is
spread over the entire buffer and not linearly aligned. The
solution to the problem is to introduce a new function called
gnrc pktbuf merge() which merges the linked list to a single
’pktsnip’ and stores the data consecutively into the packet
buffer, which can be fed into the cryptographic function.

Another unforeseen challenge is that RIOT’s default stack
size of 1,024 Byte for Cortex-M CPUs turned out to be too
low. This lead to non-deterministic kernel panic in different
phases of the key exchange, making the implementation un-
reliable and distorting measurement results and was solved
by increasing the stack size to 2,048 Byte.

IV. EVALUATION

The aforementioned implementation is the basis for an
evaluation of the minimal G-IKEv2 client. First, the security
of the design and the implementation is evaluated before the
latter is tested on basis of a typical scenario for the G-IKEv2
protocol – the initial key exchange with a carefully selected
set of parameters on various hardware platforms.

A. Security Analysis

As this paper presents a security protocol, analyzing its
security is of major interest and significance. The design
presented in Section III-A does not weaken the security of
its underlying protocols IKEv2 / G-IKEv2. This is accom-
plished by only removing optional messages and payloads,
which keeps the client fully compliant to the RFCs. In order
to keep the implementation’s security level high as well,
we chose only secure cryptographic algorithms which are
based on elliptic curves. Additionally, the implementation
uses well known cryptographic open source libraries for
embedded devices and is available open source1 allowing
security experts to prove the security of the implementation.

B. Minimal system requirements

In order to minimize network and memory overhead, sec-
tion III-A defined a minimally required subset of messages
and content to exchange cryptographic material. However,
this still puts some minimal requirements onto the system

1http://www.nm.ifi.lmu.de/projects/embedded/

Table III
AVAILABLE ADRUINO BOARDS IN TESTBED

Arduino Architecture Clock
Speed

Flash
Memory SRAM

UNO ATmega328 16 MHz 32 KB 2 KB
M0 Pro ARM Cortex-M0+ 48 MHz 256 KB 32 KB
Due ARM Cortex-M3 84 MHz 512 KB 96 KB

executing the minimal G-IKEv2 client, which are briefly
discussed in the following.

A minimal IKE SA INIT request has a size of 88 Byte.
It consists of the IKEv2 header and several other headers for
the different payloads to negotiate the IKE SA. As shown
in Table II, the DH group has the most significant impact
on the size of the message.

Another important value is the Nonce for the Diffie-
Hellman public value. On the one hand, it is arbitrary, but
on the other hand and in order to grant a certain level of
security it is recommended to use at least 32 Byte. The use
of combined cryptographic modes has a positive impact on
the size of the IKE SA INIT as it combines the negotiation
of encryption and integrity into one proposal.

The GSA AUTH payload requires a minimum of 98 Byte.
As the cryptographic function to ensure encryption and grant
integrity have to be same among all group members, they are
defined by the GCKS. Thus, any minimal implementation
must be able to handle the length of any cipher supported
by G-IKEv2, but not necessarily the cipher itself. Of course,
the minimally implemented client can refuse to join a group
using ciphers that are not supported.

With that, one can deduce a minimal amount of memory
needed in order to be able to execute a minimal G-IKEv2
client on a constrained device. At least the largest G-IKEv2
message (usually the GSA AUTH response2 as it also con-
tains the GSA and its keys) has to be handled. Additionally,
the device must be able to store the SA information plus
the cryptographic keys in non-volatile memory to survive
reboots or sleeping modes.

C. Configuration for tests

The testing scenario initiates and carries out a typical
G-IKEv2 key exchange in order to join a group man-
aged by a GCKS. The GCKS is implemented using a
Cisco CSR1000v server, which comes with a pre-installed
G-IKEv2 implementation supporting both server and client
mode. It is configured to allow any incoming connection and
using pre-shared secrets to grant access to a group.

Three different developer boards are executing the mini-
mal G-IKEv2 client trying to join a communication group
handled by the Cisco server. The boards were mainly cho-
sen due to using popular microprocessors and their good

2The GSA AUTH response originating from a Cisco CSR1000v server
has a size of 780 Byte including any header down to the link layer (see
section IV-C for further information on the test setup).



Due M0 Pro Due M0 Pro Due M0 Pro Due M0 Pro

Prepare IKE_SA_INIT Process IKE_SA_INIT Prepare GSA_AUTH Process GSA_AUTH

avg [ms] 1.62 2.62 187.92 421.94 10.29 17.41 6.32 10.53

std. dev. [ms] 0.00 0.00 0.11 0.13 0.00 0.00 0.40 0.00

min [ms] 1.62 2.62 187.72 421.71 10.29 17.41 6.15 10.52

max [ms] 1.62 2.62 188.11 422.18 10.29 17.41 7.26 10.53
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Figure 2. Time to prepare and process G-IKEv2 packets on Arduino M0 Pro and Arduino Due

availability. Additionally, all three of them are supported by
RIOT. The devices run RIOT, which was compiled with the
minimal G-IKEv2 client implementation. Every device is
equipped with a WiFi module (namely Espressif ESP82663).

In order to ensure comparability, the G-IKEv2 configu-
ration that can be handled by any of the test devices is
specified. While the server supports more than one proposal,
the minimally implemented clients propose only a single
cipher suite consisting of the following:
● AES128-CBC for confidentiality
● HMAC-SHA1 96 as pseudo-random function
● HMAC-SHA256 for integrity
● ECP256 for Diffie-Hellman

The AES and SHA implementations in use can be found in
RIOT’s crypto and hashes modules, for elliptic curve Diffie-
Hellman (ECDH) the popular micro-ecc4 library is used.
The 32 Byte Nonces sent in the IKE SA INIT are generated
with tinymt325 because the Arduino Due is the only devel-
oper board (among the three test devices) equipped with a
hardware random generator.

D. Evaluation

To evaluate the performance of the minimal G-IKEv2 im-
plementation, the most interesting values are a) the memory
consumption and b) the time necessary to gain access to a
group, i. e. to exchange group keys.

Memory Analysis
The implementation itself needs a stack size of 504 Byte.
Storing cryptographic material in the SAD (storage for
algorithms and keys) and SPD (storage for policies defining
in-/outgoing traffic to be secured) requires at least around

3https://espressif.com/en/products/hardware/esp8266ex/overview
4https://github.com/kmackay/micro-ecc
5http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/TINYMT/

Table IV
MEMORY REQUIRED FOR THE MINIMAL G-IKEV2 CLIENT

Feature Required Memory
RIOT kernel (incl. stack) 2,560 Byte
RIOT IPv6 stack 1,024 Byte
RIOT UDP stack 1,024 Byte
RIOT net cache 928 Byte
RIOT packet buffer 1,280 Byte
IKE SA ∼ 210 Byte
SAD for 1 group membership ∼ 100 Byte
SPD for 1 group membership 40 Byte
∑ 6,142 Byte

140 Byte per group membership and around 210 Byte for
securing the connection to the GCKS. Of course, these
values depend on the used cryptographic functions and the
size of their keys. With a minimal kernel and network
implementation, such as the one shipped with RIOT, the
need of memory can be stripped down to around 6 KB,
which can still be reduced by minimizing the packet buffer.

This proves the Arduino Uno not being adequate to in-
clude both, a network stack and a G-IKEv2 implementation.
However, if a full network stack is not required (e.g. for
wireless communication on lower layers only), even a device
as constrained as the Arduino Uno could theoretically be
able to gain access to group keys using a minimal G-IKEv2.
A practical proof is yet pending and left for further study.

Performance Analysis
Measuring the time needed to gain access to a group
is broken down into four sub-measurements: 1) prepare
the IKE SA INIT packet and write it into the network
stack’s buffer, 2) process the server response (this includes
calculating the Diffie-Hellman shared secret), 3) prepare
the GSA AUTH request in order to join the group and
write it into the network stack’s buffer and 4) process the
server response. Figure 2 illustrates the results of 20 tests



per device, which are considered to be appropriate as the
standard deviation is notably low.

Processing the IKE SA INIT response turned out to be
the most resource consuming part of the key exchange. The
root cause is that this step includes the generation of the
Diffie-Hellman shared secret, which is the only asymmetric
cryptographic function used in the test case. It consumes
more than 99 % of the time of this measurement. The
fact that asymmetric functions are performing worse than
symmetric ones is well known [15] and thus not surprising.
Due to its higher clock speed, the Arduino Due is able to
calculate the Diffie-Hellman in just about 44.5 % of the time
the Arduino M0 Pro needs. A comparison of the results
in [15] and the measurements in this paper reveals that the
calculation of elliptic curve Diffie-Hellman values is 3-times
(Arduino M0 Pro) or even 7-times (Arduino Due) faster than
using elliptic curve based signatures.

V. SUMMARY AND FUTURE WORK

Secure group management faces a series of challenges in
constrained environment, which are not or only insufficiently
addressed by current solutions. After specifying the require-
ments for secure group management, an in-depth analysis
of existing solutions reveals a number of open issues or
gaps in today’s implementations. In order to address these
gaps, the solution closest to the requirements of secure
group communication is chosen and extended. Concretely,
a minimal client for G-IKEv2 has been implemented with
extended functionality for group management, opening it for
the mass of available IoT solutions. The evaluation of this
implementation confirms that a useful performance can be
achieved for gaining access to groups and performing re-key
operations, while at the same time requiring only a minimum
memory consumption. This supports our request for a useful
solution in IoT and sensor networks.

Future Work
However, the status of the project, while promising, is only
an intermediary state. Ultimately, we want to design a secure
group management solution on top of G-IKEv2, which
offers identity management within a lightweight AAI, such
that authentication and authorization are possible similar
as on modern full-fledged devices. This would allow even
more functionality at higher security within IoT and sensor
network applications.
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