Monitoring of Service Level Agreements with
flexible and extensible Agents

Rainer Hauck

Helmut Reiser

Munich Network Management Team
University of Munich, Dept. of CS
Oettingenstr. 67
D-80538 Munich, Germany
Phone: +49-89-2178-{2155|2163}, Fax: -2262
E-Mail: {hauck|reiser }@informatik.uni-muenchen.de

Abstract

In a customer/provider relationship a provider offers
services to users who pay for using them. To control
service delivery certain Quality of Service (QoS) pa-
rameters have to be agreed through so called Service
Level Agreements (SLAs). Monitoring of some of these
QoS parameters only makes sense when done from the
customer site. In a cooperation project we developed a
flexible and extensible agent for that purpose using the
Java Dynamic Management Kit (JDMK) and the Ap-
plication Response Measurement (ARM) API. Based
on our experiences with the prototype implementation
this paper analyses the suitability of JDMK and ARM
for the monitoring of SLAs and for building scalable
and flexible management systems in large—scale enter-
prise networks.

Keywords:
Service Level Management, JDMK, ARM, Distributed
Management, Management by Delegation

1 Introduction

In recent years some concepts have been developed to
overcome the deficiencies of centralized management
architectures. Examples are the Management by Del-
egation (MbD) paradigm, flexible agents and mobile
agent technologies to build a flexible distributed man-
agement system. In such a system it is possible to
delegate management functionality from the manager
to the agents and there should be the ability to extend
agents at runtime. Besides other features these "new”
agents should have a higher degree of autonomy to act
and react.

In a typical customer /provider scenario a customer de-

mands - and pays for - a certain Quality of Service
(QoS) laid down in so-called Service Level Agree-
ments (SLAs). To proof the fulfillment of those SLAs
it would be very helpful for the provider to have a flex-
ible and extensible agent at the customer site which
can monitor service usage and can even trigger active
tests. The fact that an agent belonging to the provider
is running at the site of the customer implies strong
security requirements.

The paper shows how the concepts and services of the
Java Dynamic Management Kit (JDMK) can be used
for building such an architecture. It also shows weak-
nesses and deficiencies JDMK still has to deal with. As
an example of how the monitoring of QoS parameters
can be done, a web browser was instrumented using
the Application Response Measurement (ARM) API
to deliver information about the actual response times
a customer is experiencing.

The paper is structured as follows: Section 2 gives an
overview about the scenario the paper deals with and
shows the requirements a management solution for this
scenario has to fulfill. In section 3 JDMK and the ARM
APT which are both used in building our solution are
introduced. Section 4 describes how we applied JDMK
and ARM to the problem domain. An example how
real QoS parameters can be obtained is shown. Sec-
tion 5 summarizes our experiences and evaluates how
JDMK and ARM are suitable for monitoring SLAs in
large enterprise environments.

2 Scenario: Outsourcing of Ex-

tranets

An exemplary scenario — which this paper is based on
- is a car manufacturer (customer) which enables all

Corporate Network
Manufacturer

c—s Trader 1/3 ;' =)

Figure 1: Extranet Solution for a Car Manufacturer

its traders (more than 1000) to use special applica-
tions within the corporate network (CN) of the man-
ufacturer (e.g. Online Ordering of cars). The traders
build a so called extranet (EN). Besides the specific ap-
plications the EN enables connections to the Internet.
The provider side is represented by DeTeSystem, a net-
work and system provider and outsourcing partner for
the biggest customers of Deutsche Telekom AG. The
provider implements the EN infrastructure with all the
demanded services on the customers behalf. It is also
responsible for the management of the extranet with
all services which are offered by itself. This means that
the provider is not responsible for applications offered
by the customer.

The corresponding infrastructure is represented in fig-
ure 1. Traders are connected with a Point of Presence
(PoP) of the provider over leased lines or ISDN dial-
up lines. They form a virtual private network (VPN)
on top of the infrastructure of the provider, which is
also used by other customers. In the Service Area
(SA) of the provider reside servers for the services ren-
dered by the provider (e.g. Mail, DNS, Authentication
Service, ...) and a well defined access point to the In-
ternet. If a trader wants to use a service of the manu-

facturer it will be routed into the SA of the car man-
ufacturer. In this configuration traders use services in
the SA of the provider as well as in the SA of the cus-
tomer.

2.1 Management Requirements for
Monitoring SLAs

In order to observe the quality of delivered services it
is necessary to negotiate Quality of Service (QoS)
parameters as well as modes for the measurement and
evaluation of these parameters. QoS parameters must
reflect the expectations of the customer. They are parts
of Service Level Agreements between the customer and
the provider. SLAs are used — among other things —
for billing purposes. If a service is not delivered with
the quality that was agreed in the SLA the customer
may get a discount. Therefore the SLA and the QoS
parameters have to be supervised by the management
system of the provider. Further the provider is obliged
by the SLA to report the compliance with agreed QoS
parameters.

An example for such QoS parameters are the response
time, the connectivity or the availability of a certain

service. It must be remarked that these parameters
have to be measured and valued from the customer
point of view. Most of the QoS parameters (e.g. the
connectivity or the availability) of a service are only
defined if the customer tries to use this certain service.
For the monitoring of these parameters it is necessary
for the management system of the provider to be able
to measure from the side of the customer, i.e. that in
our scenario an agent which performs the monitoring
of QoS parameters must be installed at a trader’s host.

A customer will allow the provider to install an agent at
it’s systems only if it meets high security requirements
and if no additional or only minimal costs are caused
by the agent. This means that such an agent must not
initiate connections — especially for customers which
are connected via a dial-up line. The agent has to do
its measures locally as far as possible and transfered
results should be as small as possible.

Requirements for services, QoS parameters and SLAs
could change in course of time. Therefore it is necessary
that the architecture is flexible and it is able to react
on such changes quickly. It must be possible to extend
the agent with additional functionality, e.g. for the
monitoring of a new QoS parameter.

In such large—scale corporate networks with thousands
of hosts and locations all over Germany and Europe it is
absolutely essential that the management system scales
very well. A lot of different hardware and software at
the customer side, requires a high degree of platform
independence for the corresponding agent.

2.2 Related Work

Distributed network, systems and application manage-
ment is an active field of research motivated — among
others — by the experiences with deploying centralized
management systems in large-scale corporate networks.
To overcome deficiencies of centralized management
systems a lot of research has been done.

Management by Delegation (MbD) [4, 14, 15] de-
fines a concept for delegating functionality from man-
aging systems to agents in order to enhance them at
runtime. The decision when this delegation should hap-
pen and which kind of functionality should be trans-
ferred to the agents is taken by the managing system,
thus preventing autonomous decisions by the agents.
Flexible agents [11] rely on MbD and exhibit a cer-
tain degree of autonomy; they are able to receive event
notifications from peers and can be grouped together
in order to jointly achieve a task. In recent years mo-
bile agents [12, 13] which add the concept of mobil-
ity to flexible agents or MbD have been investigated.

Their roaming capabilities allow them to move across
networks in order to achieve specific, pre-defined tasks.
However, the applicability of mobile agents is bound
by security concerns; [5] and [20] discuss these aspects.
Mobile management agents are designed to achieve
administrative tasks on systems and software; while
[1] discusses the advantages of applying mobile agents
to management, [3] presents a Java-based environment
for configurable and downloadable lightweight manage-
ment applications.

Taking care of the growing importance of customer
care is the aim of Customer Service Management
(CSM) [9]. It offers a management interface between
customer and service provider, which enables the cus-
tomers to monitor and control their subscribed services.

3 Framework and Development
Tools

The Java Dynamic Management Kit (JDMK)!, devel-
oped by Sun Microsystems [18, 19], promises to over-
come many of the mentioned problems and supports
some new requirements. Application Response Mea-
surement API (ARM) is a valuable standard for the
application perfomance instrumentation. In the next
sections, we will introduce the architecture and services
of JDMK and the concepts and use of ARM.

3.1 Architecture of JDMK

JDMK represents a framework with corresponding
tools, based on the JavaBeans specification [17], for the
development of management applications and manage-
ment agents. The base components of the architecture
are summarized in figure 2. The Core Management
Framework, M—Beans, C—Beans and different kinds of
adaptors and services are the essential parts of JDMK.

M-Beans (Managed Beans) are Java objects im-
plementing the intelligence and the functionality of an
agent. An M-Bean acts as a representative for one
or more managed objects (MOs). M-Beans are
developed using a design pattern which is based on
the JavaBeans component model. They are addressed
with and uniquely identified by their object name.
Names of M—Beans consist of the following parts: class-
Part|.attribute=value|,attribute=value]*]. Each of the
parts can be set with user-defined values, especially
the classPart does not need to be the same as the name
of the class implementing the M—Bean. The optional

Thttp://www.sun.com/software/java-dynamic/

1 Java Virtual Machine

Java Virtual Machine < M-Let
o — .
Service
C-Bean | = =] 5
2 \|'8 5| &
2 S| M-Bean
-g o | € 3
C-Bean <] e
= £
1 [}
= M-Bean
N Z
2=
Manager §- o
2 8 | M-Bean
L 1
Agent

Figure 2: JDMK Architecture

attribute=value pairs may be used to characterize M—
Beans more precisely. All parts of the name can be
used to define filtering rules for selecting special M-
Beans (see also Filtering Service in Section 3.2).

In order to use JDMK services or communication re-
sources the M—Beans have to be registered at the
so called Core Management Framework (CMF).
Only registered Beans can be accessed from outside the
CMF. The name of the M—Bean is used for the regis-
tration. The CMF generates the name if it was not
set explicitly. The CMF together with its M—Beans
represents the management agent. It is therefore the
central interface for objects (M—Beans, services, ...)
which may be registered from the agent itself or from
a manager.

C—Beans (Client Beans) can be generated from M-
Beans (or rather from the .class—files implementing
the M—Beans) using a special compiler (mogen). C-
Beans are proxy objects for remote M-Beans. M-
Bean functions and data can be accessed by perform-
ing operations on C—Beans which are then propagated
to the M—Bean. C—-Beans use adaptors to communi-
cate with their corresponding M-Bean. Together with
their adaptors and additional management function-
ality they form the manager. An agent is also able
to register C—Beans with its CMF. By doing this, the
agent becomes a manager for that agent which imple-
ments the corresponding M-Beans. The strict sep-
aration between the manager and the agent role in
protocol-based management architectures is therefore
abolished in JDMK.

An Adaptor implements a special kind of a protocol,
it is an interface for the CMF and hence for the agent.
It is also realized as a Bean and therefore it is very easy
to register adaptors at a CMF. With adaptors, manager

and agent may be connected to each other or to other
applications. At present RMI, HTTP, HTTP over SSL
(HTTPS), IIOP, SNMP and a so called HTML adap-
tor, which represents a web server, are available. This
concept allows to communicate with the same JDMK
agent by means of different protocols. It is not nec-
essary to change the functionality or the code of the
agent, the only thing to do is to register another adap-
tor. Should e.g., a web browser be used to connect
to an agent the HTML adaptor must be registered at
the CMF of the agent. This adaptor generates HTML
pages for all M-Beans which are registered at the CMF.
Of course it is possible to use more than one adaptor
at the same time.

3.2 JDMK Services and Development
Tools

Besides the base components of JDMK several services
and tools exist to simplify the development of manage-
ment applications and agents (cf. figure 3).

Event Timing Scheduler Counter and predefined

Gauge Monitor

5]
NN
FS; g ‘g Cascading Structuring Service
%) [} 5 h

o . Update mechanisms,

Q i 3

gi; 8 g M-Let Service Versioning
] a °
I3] c Class and Launcher " .
17} s} & f Dynamical Extension
a o ﬁ Library Loader of Agents

[} Repository Filtering Metadata Base Services

Core Management Framework

(I mogen mibgen Development Tools

Figure 3: JDMK Services and Development Tools

Repository Service is used for the registration pro-
cess. Beans may be registered either as volatile or per-
sistent within the CMF.

With the aid of the Filtering Service it is possible
to define filtering rules selecting all M—Beans which are
registered at a CMF that match the filtering rule. Such
rules may be defined over methods, attributes with
their concrete values and over object names and their
single parts.

To determine the properties and methods which are
supported by an M-Bean the Metadata Service,
based on the Java Reflection API, can be used. The
Metadata, the Repository and the Filtering Service are
called Base Services of the CMF.

The Discovery Service is used to detect all active
CMFs. Therefore an IP-broadcast is sent by the service
and all CMFs that have registered a so-called Discovery
Responder reply to the broadcast message.

Management Functions

printserver.mnm.de

M-Let ~—0 | 1
Service

e
e

0

ean

&\\&\\\\ ! 2.

classes/MBeanl.class
classes/MBean2.class

W Instances of Objects
&\\\\\:@ loaded by M-Let Service

7

Instances of Objects

M-Bean loaded from the locale filesystem

beanserver.mnm.de

<MLET

CODE= MBean3
ARCHIVE= remotebean.jar
NAME= "M-Bean 3"
VERSION=2

>
</MLET>

http://beanserver.mnm.de/MyRemoteBean.html

remotebean.jar

MBean3.class
Helper.class

http://beanserver.mnm.de/remotebean.jar

Course:

1. loading a HTML file
2. loading and instantiating M-Bean classes
3. register M-Beans

Figure 4: The JDMK Management Applet (M-Let) Service

Agent and manager are able to use different Class
Loaders — even in parallel — to load the implementa-
tion classes from local or remote sites. To take advan-
tage of native (non—Java) dynamically linked libraries
in M—Beans the Library Loader Service may be
used. The Class and Library Server is available as
a local or remote repository for class files and libraries.
This server can be used either as a stand-alone appli-
cation or — because it is realized as an M—Bean as well
— registered with a CMF.

M-Let, Launcher and Bootstrap Service are used for
the dynamic extension of agents, for update mecha-
nisms and for bootstrapping.

The M—-Let Service (Management Applet Ser-
vice) offers the possibility to download and configure
M-Beans dynamically. For this purpose a new HTML
tag (<MLET>) is defined. The M-Let Service operates
according to the following steps (see also figure 4):

1. The M-Let Service loads a HTML page from an
URL from which it can obtain all the necessary
information about the Beans to load (i.e. names,
objects, code repository).

2. By using this information the M-Let Service is
able to download the implementation classes of the
M-Beans and to instantiate them.

3. Afterwards, the M—Let Service must register them
with the CMF.

It is also possible to put version information inside the
(<MLET>) tag and to use the M—Let Service for version-

ing.

The Bootstrap Service, which is implemented as a
stand-alone Java application, simplifies the distribution
and instantiation of JDMK agents. This service is used
to download implementation classes of an agent from a
local or remote server. Therefore the Bootstrap Service
initializes the CMF, starts the M—Let Service, loads the
necessary classes, initializes, registers and starts all the
required M—-Beans and services of the agent.

Two compilers, mogen and mibgen, are delivered with
JDMK as development tools. The mogen is used to
create C—Beans from M-Bean .class files.

For developing an JDMK based SNMP Agent for a
device mibgen can be used. If SNMP-MIB files are
available for the managed device, the mibgen Compiler
is able to use them to create M—Beans representing the
MIB. The M—-Beans have to be enlarged with functions
e.g., implementing access to resources of the managed
system.

3.3 The Application Response Mea-
surement API (ARM)

In today’s distributed computing environments tra-
ditional approaches to response time monitoring no
longer seem to be adequate. Host centric approaches
face the problem of not taking into account the dis-
tributed nature of the application to monitor. Net-
work based approaches in contrast often are unable to
map the packets found on the network to transactions
meaningful to the user. Moreover these solutions are
frequently proprietary and do not allow integration of
applications and management tools from different ven-
dors.

The Application Response Measurement API
(ARM) [2] has been developed in 1996 in a joint initia-
tive of Tivoli Systems and Hewlett-Packard. Later that
year HP, Tivoli and 13 more companies established the
ARM Working Group of the Computer Measurement
Group (CMG)? to continue development and promo-
tion of the ARM. It promises to allow transaction based
monitoring of response times in a distributed and het-
erogeneous environment. Work on version 2.0 of the
API was finished in November 1997. In January 1999
the ARM API version 2.0 was adopted by the Open
Group as its technical standard for application perfor-
mance instrumentation.

To achieve the goals mentioned above a simple API was
defined that is supposed to be implemented by man-
agement tools. The applications to be monitored are
instrumented to call the following API functions:

e arm init
Is called during initialization of the application to
be monitored and names the application and the
current user.

e arm getid
This call is used to define the various classes of
transactions appearing throughout the applica-
tion.

e arm start
A call to arm_start is inserted into the applica-
tion’s code just before a transaction to be mea-
sured begins. Data to describe the current status
of the application can be included.

e arm_stop
This signals the end of a transaction. As seen with
arm_start, data can be included.

e arm update
To provide status information about a running
transaction, arm update is used. It can be called

2http://www.cmg.org/regions/cmgarmw /index.html

any number of times between an arm_start and
an arm_stop. It can also be used as some kind of
a ”heartbeat” signal to show that a long running
transaction is still alive.

e arm end
Cleans up the ARM environment. A call to
arm_end should be made when the application is
ended or if no further monitoring is required.

A library implementing the calls has to be linked
against the instrumented applications. The ARM Ser-
vice Development Kit (ARM SDK) provides two li-
braries. On the one hand there is the so called NULL
library, which simply returns TRUE for all the API
calls. It can be linked against an instrumented appli-
cation when no monitoring is to be done and it effects
system performance only to a minimal extent. On the
other hand there exists a library which implements a
logging agent, that means an agent that writes all the
information received by the application to a file. The
logging agent is considered to be used mainly for test-
ing purposes.

Actual performance monitoring can be done by using
management tools that provide a measurement agent
that implements the APT and that is also linked against
the application to be monitored (see figure 5).

Servers

arm_start :
Measurement ARM j@——F—— Business

Management Agent API arm_stop Applications
Application
oG R[E]

=Wl Communication
Bl

arm_start .
Agent API arm_stop ~——/| Applications
L d

Clients

Figure 5: Using the ARM API

An important feature added with version 2 of the API
is correlation of transactions. Often one transaction
visible to the user consists of a number of subtransac-
tions. When indicating the start of a new transaction
using arm start, a data structure called a correlator
can be requested from the measurement agent. When
indicating the start of a subtransaction (again using
arm_start), this correlator can be used to inform the
measurement agent about the existence and identity of
a parent transaction.

4 Monitoring of Service Level
Agreements using JDMK and
ARM

In an industrial cooperation project with DeTeSystem
[7] a prototypical management solution was developed
that fulfills the requirements mentioned above. In this
project JDMK (version 3.0 beta 2) and ARM (ver-
sion 2.0) were used for the monitoring of Service Level
Agreements.

4.1 Architecture

As seen before there is a strong requirement for Service
Level Monitoring to be seen from a customer’s perspec-
tive. QoS parameters of SLAs are only reasonable if the
user actually tries to use a service. However, if it does
not try to use a special service there could not be a vi-
olation of a SLA caused by the provider. Through the
use of Flexible Management Agents (FMA) po-
sitioned in the corporate network of the customer, our
solution enables the measurement of the actual Service
Levels provided to the customer.

In order to avoid additional costs for a customer con-
nected by a dial-up link the following solution was ex-
amined: The agent transmits the collected information
to the manager only when the link is up and free. In
addition packets from the agent do not affect the idle
timer responsible for the disconnecting of the link if it’s
unused for a predefined period of time. That would
mean that only the (otherwise useless) timeout inter-
vals are used for management traffic. However, the
needed functionality is not available in today’s ISDN
routers, as there is no way to distinguish between pack-
ets that should affect the idle timer and packets that
don’t. As a trade-off the following solution was cho-
sen: Management traffic is created only when the link
is up. Although being far from optimal this approach
avoids establishing a connection solely for management
purposes and thus reduces the additional cost to a min-
imum.

To check whether the link is up or down, some kind of
status information needs to be available. Two differ-
ent solutions have been examined. Many routers send
SNMP traps whenever a link is established or goes
down. The router can be configured to deliver these
traps to the agent. So the agents gets informed im-
mediately about any change in link status. As not all
routers send traps concerning the link status the sec-
ond approach might be necessary: The agent can poll
the variable ifOperStatus (operational state of the in-
terface) from MIB-II [10] on a regularly basis. As a rel-

atively high polling interval can be chosen (about half
of the idle timeout value for the link) the additional
load caused is minimal. That means that seen from
the perspective of the router, the agent acts in the role
of a SNMP manager.

Every time the SLAs change or new means of measure-
ment are needed new functionality must be installed
in the corporate network of the customer. As the cus-
tomer network is typically located far from the manage-
ment center of the provider a solution is necessary that
allows dynamic download of new functionality. This
requirement is one of the main reasons why the pre-
sented solution is based on JDMK. The CMF has to
be installed only once at the customer site and from
then on all the functionality needed can easily be down-
loaded as a M-Bean using e.g. the M-Let service.

To prevent data from being accidentally destroyed, the
agent can regularly be serialized to local disk. When
the system comes up — for example recovering from a
system crash — the JDMK bootstrap service tries to
load the local copy of the agent before it contacts the
central repository. Of course this does not prevent a
trader from explicitly deleting the information collected
by the agent before it is transmitted to the manager.

Another benefit of using the JDMK was it’s ability to
use different adaptors. The provider uses a manage-
ment platform and also wants to use web browsers to
configure the agents. By using JDMK’s SNMP and
HTML adaptors this could easily be achieved. A man-
ager application was build to receive the performance
data sent by the agents using the RMI adaptor. In the
current version it writes the data to a database where
management tools can access it.

4.2 Service Level Measurement

There are many different ways Service Level Agree-
ments might be defined. Typical representatives are
the availability of IP connectivity and the time needed
by a server to fulfill a user request. In the given sce-
nario there is the need to measure the response times of
the web servers in the service areas of both the provider
and the customer. The transactions of interest are the
download of certain web pages by the traders. In order
to learn about the actual response times the user ex-
periences, a web client (Lynx) was instrumented with
calls to the ARM API. Figure 6 shows the transactions
to be monitored.

Most important is transaction A which spans the whole
process of loading the page. To allow the manager the
localization of failures or bottlenecks two subtransac-
tions are defined. Subtransaction B covers the part of

Browser

startTransaction A

DNS-
Server

startTransaction B

URL

IP-Adress

stopTransaction B

startTransaction C

Connect

GET /index.html

index.html

= stopTransaction C

EMA stopTransaction A
result

Figure 6: ARM instrumentation of a web client [7]

contacting the DNS for hostname resolution and sub-
transaction C covers the actual download of the page.
The measurement agent forwards the results to the
FMA which can do some preprocessing on the data
and transmits it to the manager whenever the link is
up. If the FMA receives information about timed-out
connections or if the reported response times exceed
given thresholds, it can take some further action to
identify the problem. In our example it does a ping to
the local router, to the PoP and to the server that the
user tried to contact. The results can be used to deter-
mine if the problem is located in the trader’s LAN or at
a server in the service area of the customer, both would
mean that the provider cannot be held responsible for
the malfunction. Through an ARM instrumentation of
the servers and a correlation of server transactions with
client transactions even more accurate information can
be collected.

Lynx was chosen as an example because it is a simple
browser and the source code is available, so an instru-
mentation could be done in the course of the project.
Of course, typical traders will not be using Lynx but
as ARM is gaining more and more momentum many
browsers might come instrumented in the near future.

5 Evaluation of JDMK and

ARM

This section evaluates JDMK and ARM with respect to
its applicability to large enterprise management envi-
ronments. We will thereby focus on the major problem
domains which are of critical importance for a success-
ful deployment and address the requirements identified
in section 2.1.

WWW-
Server

5.1 Rapid Prototyping of flexible, dy-
namic Management Systems

As outlined in the previous sections, the primary
strengths of JDMK is its capability of realizing flexi-
ble and highly distributed management systems.

Agents developed with JDMK can be enhanced and
modified at runtime, thus yielding the opportunity of
delegating management tasks to them via the push
model. Furthermore, these agents can also initiate
themselves the download of management functionality
(pull model). These additional services are only trans-
ferred to the agent if needed. Under regular condi-
tions, particular tasks of the management system may
already be carried out by the agent, thus preventing the
exchange of large amounts of data between the man-
aging system and the agent. The services provided by
JDMK enable distribution and update mechanisms to
enhance agents with additional functionality residing
in centralized code repositories.

JDMK also provides mechanisms for the persistent
storage of M-Beans, thus enabling the agent compo-
nents to remain close to the resource and eliminating
the need of downloading them from remote servers.

Simple web-based user interfaces can be generated au-
tomatically by using the HTML-Adaptor. JDMK-
administered resources can be easily accessed from
systems in other management architectures because
several adaptors for different management protocols
are provided. It is thus possible to administer
JDMK-based agents from SNMP management plat-
forms through the SNMP adaptor. The toolkit also
enables the development of adaptors for new, not yet
supported protocols. The adaptor concept is helpful
if agents should support multiple management pro-
tocols simultaneously e.g., information provided by a
specific agent should be accessible not only from an
SNMP-based management platform but also from a
web browser via HTTP.

In summary, we believe that JDMK has a strong po-
tential for the rapid development of highly distributed
management environments and provides with its sev-
eral protocol adaptors a good basis for today’s hetero-
geneous management environments.

5.2 Scalability

JDMK does neither provide standardized directory and
naming services. Features for achieving location trans-
parency (like the CORBA Interoperable Object Refer-
ences) are also not available: An M—Bean is identified
by a protocol identificator, the host address and port

number, and its object name. These parameters and
some knowledge about the registered beans in a given
CMF must be present in order to make use of the M-
Beans.

The scope of the metadata service that can be used
to retrieve information on registered M—Beans is lim-
ited to a single CMF, i.e., there is no global meta-
data service. Consequently, the only way of finding the
currently active CMFs is the JDMK Discovery Service
which sends a broadcast message that is answered by
all running agents.

The establishing of domains and the structuring of the
agents in functional groups is not supported by the
development environment and has to be done by the
developer.

The conceptual weaknesses mentioned above make it
hard to develop management applications for large
IT infrastructures where a high number of different
JDMK-based agents are needed. The JDMK services
are useful for small, local environments where the
amount and the degree of diversity of the agents are
restricted. Due to the absence of focus on large sys-
tems, the scalability of JDMK-based solutions may be
critical at the current stage of the toolkit.

5.3 Security Aspects

JDMK does not have a homogeneous security concept;
instead, developers need to be aware of the different
security mechanisms to implement comprehensive se-
curity for agents that support different protocol adap-
tors.

The SNMP adaptor relies on a file containing access
control lists to determine which management systems
have the right to read or modify specific parts of the
MIB. Although this can be considered as an enhance-
ment compared to the (password-based) mechanism of
the early SNMP, modern fine-grained SNMP security
mechanisms like VACM [21] are not yet supported. As
the authentication of remote systems is based on their
IP address, the agent is vulnerable with respect to IP-
spoofing attacks.

The authentication method of the HTTP/HTML adap-
tors are login/password combinations. As sensitive
data is exchanged unencrypted, it is not possible to
implement secure HTTP-based management solutions.

The RMI and ITOP adaptors do not support authenti-
cation and access control.

The only way of enabling secure authentication is based
on the HTTPS (HTTP over SSL) adaptor which allows
the exchange of cryptographically secure certificates.

The appropriate access control system must then be
implemented by the developer.

We believe that the current security mechanisms of
JDMK are insufficient because developers still have
to implement a large part of the security mechanisms
themselves. Furthermore, the large differences between
the various security mechanisms are not yet shielded
behind a comprehensive security architecture.

54 ARM

The ARM API offers many benefits to a manager who
needs to monitor the response times of applications:

The most important factor is its openness. Resulting
from a joint initiative of 15 companies, it offers a well
defined interface that can be used either by applica-
tion developers or by management tool vendors. Ap-
plications instrumented with the API calls will work
seamlessly with management tools from various manu-
facturers. However, it is also general enough to allow
sufficient differentiation between management solution
from different vendors. Its adoption as a standard by
the Open Group further strengthens its position as the
one standard for response time measurement.

Another important fact is its simplicity and efficiency.
There are not more than six calls to be used. Techni-
cally it is very easy to instrument an application using
these calls and its also relatively easy to provide a mea-
surement agent that implements the calls. Depending
on the amount of processing the measurement agent
does, it affects system performance only to a minimal
level. The NULL library allows applications to run as
if they were not instrumented at all.

A further benefit is the way transactions are defined.
Even in a highly distributed environment it is easy
to monitor the transactions a user is aware of. Users
are not interested in certain parts of the transactions
but in the total amount of time from their request to
the reception of the response. Through the concept
of subtransactions, managers have the chance to find
out which part of the transaction is responsible when
performance problems occur.

However, the ARM API still comes with a lot of prob-
lems:

Obviously, the first to mention is the need for instru-
mented applications. Today most commercially avail-
able applications are not instrumented. As normally
no source code is available it is also impossible to in-
strument these applications on your own. Even if the
source code is provided it is a difficult and time con-
suming task because the business transactions seen by

the user must be identified in the code, which requires
expert knowledge of the implementation.

Another problem is the use of fixed data structures.
As mentioned above information about the currently
running transaction can be included in the APIT calls.
However, the type of data is predefined to a maximum
of six numerical values and a string of length 32. In our
implementation this caused a problem because it was
necessary to include the URL of the requested page into
the packet, which often exceeds a length of 32 char-
acters. By using arm_update this problem could be
avoided, because it allows to include up to 1020 bytes
of unstructured data.

When using transaction correlation, the correlator re-
ceived by the measurement agent must be known to
the subtransactions. In a distributed environment this
requires changes to the applications because the corre-
lators have to be passed explicitly as parameters when
calling the server component.

6 Conclusion and Outlook

This paper describes a case study for the dynamic man-
agement and monitoring of SLAs based on JDMK and
ARM. We have discussed our implementation concept
with flexible and extensible agents which operate at the
customer site. Our work was motivated by the increas-
ing demand for scalable and reliable solutions which
allow the extension of management agents at runtime.
The experiences gained in this project allow an evalua-
tion of the applicability of JDMK for managing large-
scale enterprise networks and can be summarized as
follows:

The development environment permits rapid prototyp-
ing and is easy to use; the transfer of lightweight appli-
cations (implemented as JavaBeans) to management
agents at runtime works very well: JDMK supports
both push and pull models and enables agents to ac-
quire additional functionality, thus improving their (al-
beit limited) autonomy. JDMK is best described as a
development framework for Java-based Management by
Delegation. At its current stage (Version 3.0 beta 2),
JDMK is a powerful toolkit for the development of
management agents that can be accessed and modified
through several different communication mechanisms
(RMI, HTTP, SNMP, HTTPS, CORBA/IIOP).

The usability of management systems — especially
in an enterprise-wide context — depends to a high
degree on the security features of the underlying
middleware. However, the JDMK security mech-
anisms are yet unsatisfactory because the different
mechanisms of the underlying communication proto-

cols/infrastructures have not yet been integrated into
a common security architecture. It therefore depends
on the type of the underlying protocol whether e.g.,
encryption is available and how access control is han-
dled. Another critical issue is the absence of services to
obtain meta-information on the deployed agents (like
a “global” interface repository and naming services):
The services to obtain information regarding the whole
set of agents in a JDMK environment lack scalability
because they can only be applied to a single Core Man-
agement Framework, thus preventing a global view on
the agents.

JDMK is not positioned as a stand-alone management
framework but serves as the communication infrastruc-
ture of Java Management API (JMAPI)? version 2,
Sun Microsystems’ emerging Java-based management
framework. Consequently, the Sun management sys-
tem Solstice will make extensive use of JDMK. It
is therefore expected that the future development of
JDMK will eliminate the current weaknesses.

The experiences of the project further allow an evalu-
ation of how ARM can be used for the monitoring of
service levels of client/server applications. Section 5.4
mentioned pros and cons of the ARM API. As the ben-
efits of ARM outweigh the disadvantages by far there
is hope that it will increasingly be adopted by vendors.

Currently the ARM Working Group is developing ver-
sion 2.1 of the API [8] which e.g. will address the fol-
lowing topics:

e Allow applications to provide unique transaction
identifiers to the agent. This is especially impor-
tant when instrumenting server subsystems and
middleware components which often already have
their own unique IDs for transactions.

e Define an API call for legacy applications which
already provide some kind of performance moni-
toring. An arm complete_transaction call will
be defined that enables an agent to receive infor-
mation about a complete transaction.

e An object oriented version will be provided that
uses the benefits of object orientation while still
permitting full interoperability with other (non-
00) ARM implementations.

e A solution for the monitoring of Java applets will
be provided. Applets face the problem that they
cannot call local libraries, so the measurement
agent has to be included into the applet.

Growing customer demand for applications ready for
management will lead to a growing number of in-
strumented applications. A number of management

3http://www.javasoft.com/products/JavaManagement,/

tool vendors already offer solutions that implement
the ARM API. The Desktop Management Task Force
(DMTF) in 1998 formed a new subgroup called “Dis-
tributed Application Performance”*. It is developing a
model for application performance that should be con-
sistent with other CIM models and with the ARM API.
This will further improve acceptance of the ARM as the
standard for application response time measurement.

Acknowledgment

The authors wish to thank the members of the Mu-
nich Network Management (MNM) Team for helpful
discussions and valuable comments on previous ver-
sions of the paper. The MNM Team directed by
Prof. Dr. Heinz-Gerd Hegering is a group of researchers
of the University of Munich, the Munich University
of Technology, and the Leibniz Supercomputing Cen-
ter of the Bavarian Academy of Sciences. Its web-
server is located at http://wwwmnmteam. informatik.
uni-muenchen.de.

References

[1] Andrzej Bieszczad, Bernard Pagurek, and Tony White.
Mobile Agents for Network Management. IEEE Com-
munication Surveys, 1(1), 1998. http://www.comsoc.
org/pubs/surveys/4q98issue/bies.html.

Application Response Measurement (ARM) API .
Technical Standard C807, TOG, July 1998.

M. Feridun, W. Kasteleijn, and J. Krause. Distributed
Management with Mobile Components. IBM Research
Report RZ 3102, IBM Research Division, Zurich Re-
search Laboratory, February 1999.

G. Goldszmit and Y. Yemini. Distributed Managment
by Delegation. In Proceedings of the 15th International
Conference on Distributed Computing Systems, June
1995.

Michael S. Greenberg and Jennifer C. Byington. Mo-
bile Agents and Security. IEEE Communications Mag-
azine, 36(7):76-85, July 1998.

H.-G. Hegering, S. Abeck, and B. Neumair. Integri-
ertes Management vernetzter Systeme — Konzepte,
Architekturen und deren betrieblicher Einsatz. dpunkt-
Verlag, 1999.

M. Hojnacki. Einsatz des Java Dynamic Management
Kit (JDMK) zur Antwortzeitiiberwachung bei der De-
TeSystem . Master’s thesis, Technische Universitat
Miinchen, May 1999.

M. W. Johnson and S. Smead. Beyond ARM 2.0 — API
Extensions that Enable Pervasive Service Level Instru-
mentation. Technical report, Computer Measurement

8]

4http://www.dmtf.org/info/dap.html

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Group (CMG), December 1998. http://www.cmg.org/

regions/cmgarmw/arm21/index.html.

M. Langer, S. Loidl, and M. Nerb. Customer Service
Management: A More Transparent View To Your Sub-
scribed Services. In A. S. Sethi, editor, Proceedings of
the 9th IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations & Management (DSOM
98), Newark, DE, USA, October 1998.

K. McCloghrie and M. T. Rose. RFC 1213: Man-
agement information base for network management of
TCP/IP-based internets:MIB-II. RFC, IETF, March
1991.

M.-A. Mountzia. Flezible Agents in Integrated Network
and Systems Management. Dissertation, Technische
Universitat Miinchen, December 1997.

A. Pham and A. Karmouch. Mobile Software Agents:
An Overview. IEEE Communications Magazine,
36(7):26-37, July 1998.

K. Rothermel and F. Hohl, editors. Mobile Agents (MA
’98), volume 1477 of LNCS, Berlin; Heidelberg, 1998.
Springer.

Jirgen Schonwalder. Netzwerkmanagement mit pro-
grammierbaren, kooperierenden Agenten. PhD thesis,
Technische Universitat Braunschweig, March 1996.

Jirgen Schonwélder. Network management by delega-
tion - from research prototypes towards standards. In
8th Joint European Networking Conference (JENCS),
Edinburgh, May 1997.

R. Sturm and W. Bumpus. Foundations of Application
Management. Wiley Computer Publishing, 1998.

Sun Microsystems, Inc. JavaBeans, Version 1.01. Tech-
nical report, Sun Microsystems, Inc., Palo Alto, CA,
July 1997. http://www.javasoft.com/beans/docs/
spec.html.

Sun Microsystems, Inc. Java Dynamic Management
Kit — A Whitepaper. Technical report, Sun Microsys-
tems, Inc., Palo Alto, CA, 1998. http://www.sun.com/
software/java-dynamic/wp-jdmk/.

Sun Microsystems, Inc. Java Dynamic Managment Kit
3.0 (beta) — Programming Guide. Technical report,
Sun Microsystems, Inc., Palo Alto, CA, August 1998.

Giovanni Vigna, editor. Mobile Agents and Secu-
rity, number 1419 in LNCS, Berlin, Heidelberg, 1998.
Springer.

B. Wijnen, R. Presuhn, and K. McCloghrie. RFC
2275: View-based Access Control Model (VACM) for
the Simple Network Management Protocol (SNMP).
RFC, IETF, January 1998.

