
Towards an Optimized Model of
Incident Ticket Correlation

Patricia Marcu
Munich Network Management Team

Leibniz Supercomputing Center
Boltzmannstr. 1, 85748 Garching, Germany

marcu@mnm-team.org

Genady Grabarnik, Laura Luan
Daniela Rosu, Larisa Shwartz, Chris Ward

IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

genady, luan, drosu, lshwart, cw1@us.ibm.com

Keywords—incident ticket, incident management

Abstract—In recent years, IT Service Management (ITSM) has
become one of the most researched areas of IT. Incident and
Problem Management are two of the Service Operation processes
in the IT Infrastructure Library (ITIL). These two processe s
aim to recognize, log, isolate and correct errors which occur in
the environment and disrupt the delivery of services. Incident
Management and Problem Management form the basis of the
tooling provided by an Incident Ticket Systems (ITS).

In an ITS system, seemingly unrelated tickets created by
end users and monitoring systems can coexist and have the
same root cause. The connection between failed resource and
malfunctioning services is not realized automatically, but often
established manually by means of human intervention. This need
for human involvement reduces productivity. The introduction of
automation would increase productivity and therefore reduce the
cost of incident resolution

In this paper, we propose a model to correlate incident tickets
based on three criteria. First, we employ a category-based corre-
lation that relies on matching service identifiers with associated
resource identifiers, using similarity rules. Secondly, wecorrelate
the configuration items which are critical to the failed service with
the earlier identified resource tickets in order to optimize the
topological comparison. Finally, we augment scheduled resource
data collection with constraint adaptive probing to minimize the
correlation interval for temporally correlated tickets. W e present
experimental data in support of our proposed correlation model.

I. I NTRODUCTION

IT Service Management (ITSM) has become a significant
research area in the IT in the past few years as IT service
providers have focused on the development of methodologies
and tools that help provide high quality service with maximal
efficiency. An important component of ITSM is Incident and
Problem Management which provides mechanisms to recog-
nize, isolate, correct and log problems and incidents which
occur in a system and disturb the service provisioning.

The IT Infrastructure Library (ITIL), best practice in man-
aging information technology (IT) infrastructure, development,
and operations [1] addresses, IT Incident Management along
with other processes related to IT Service Operation. Incident
Management is the process that deals with incidents, defined
in ITIL terminology as ”An unplanned interruption to an IT
service or reduction in the quality of an IT service. Failureof
a configuration item that has not yet impacted service is also
an incident”[2].

The Incident Management Process is supported by various
tools including Incident Ticket Systems (ITS). These are
software systems used in an organization to record information
about service failures or malfunctions and about the interven-
tions made by technical support staff or third parties on behalf
of the end user who reported the incident. This record is called
ticket. Tickets can also be automatically issued by monitoring
systems in response to degradation of the vital signs of the
monitored IT system. Monitoring systems are deployed across
computing infrastructure for proactive management of system-
health and service quality. Upon detection of predefined condi-
tions, the monitoring systems trigger events that automatically
generate tickets.

While monitoring systems are useful tools for ITSM, it is
unrealistic to expect that all elements of the IT infrastructure
will be constantly monitored. Typically in a large data center
monitoring of critical resources is done periodically. The
variation of the monitoring interval depends on criticality and
stability of the resource. For some resources the monitoring is
set up to be triggered manually in order not to overload the
network.

A ticket created by a monitoring system typically provides
information from the point of view of the low level resource
on which the service is based, such as reports of server
failures or overload, or network router failure. Thus in an
ITS coexist two categories of related tickets, namely tickets
from the end user and the tickets from the monitoring system
but relationships between them are not immediately identified.
The link between tickets is typically realized manually but
this, often, is an expensive process in terms of manpower and
productivity. However as our study shows, it is critical for
effective incident management to identify tickets which are
redundant or potentially have the same root cause.

Ticket correlation must happen at the time of ticket creation
in order to isolate the cause for a ticket reported by end-
user as well as to support problem determination and root
cause analysis. Accuracy in correlation of the tickets creates
advantages for the user as well as for service provider. It
contributes to the faster resolution of the ticket and the service
provider enjoys a higher efficiency in root cause analysis, and
problem determination, while, at the same time, keeps costs
and resource utilization on a low level.

In this paper, we propose a novel method for correlation
of the tickets reported by end users with those reported by
monitoring systems regarding resource problems. In section II
we review previous work in the area. Our multi-stage corre-
lation process has a few advantages over related work, First,
class-based filtering and initial focus on the critical resources
for the failed service are meant to speedup the process by
limiting the likelihood of expensive CMDB searches. Second,
the adaptive resource polling increases the quality of the results
by limiting the impact of the time lag in receiving monitoring
tickets. Section III presents a motivating example. The model
and the method for ticket correlation are described in Section
IV. Section V has formalization and experimental results
that validate the proposed correlation model. Conclusion and
further work are provided in Section VI.

II. RELATED WORK

This section reviews prior research related to the correlation
of trouble ticket/symptoms/events for Incident and Problem
Management and fault diagnosis.

In a seminal work related to fault diagnosis in integrated
network and system management [3] Dreo proposes the use of
trouble-ticket correlation for discovery of tickets and access to
problem-solving expertise. Dreo argues that good models for
the functional and topological (i.e., resource mapping) aspects
of a service are key elements for high-quality correlation.
In this paper, we use novel models for such dimensions
of correlation as topology and time, namely the topology
aspects are modeled by Configuration Management Database
(CMDB) relationships; and the temporal aspects are handled
with flexibility, based on constraint adaptive resource polling.
In addition we employ a category-based correlation.

[4] proposes an algorithm for event correlation, extended
in [5], based on the same service model as in [3]. Events
are correlated for root-cause analysis using Rule-Based Rea-
soning (RBR) and active probing. While we follow a similar
approach, we use a novel set of RBR-rules and use adaptive
probing (an enhanced concept of active probing) to trigger the
creation of relevant resource tickets.

[6] proposes a system for self-improvement help desk ser-
vice that uses Case-Based Reasoning (CBR). This techniques
emphases the importance of searching through the descriptions
of a ticket. [7] describes a similar approach using RBR tech-
niques for discovering the historical and predictive valueof
trouble ticket data. Both these approaches use keyword search.
The likelihood of incorrect correlation results is relatively
high because, often the highly relevant keywords are hard to
determine.

Gupta et al. propose ([8]) an automated algorithm for
correlating incoming incident with configuration items of the
CMDB based on a keyword search of the CMDB. This
algorithm can be used in our work to reduce the overhead
of CMDB search.

Adaptive probing techniques [9], [10] use a measurement
technique that allows fast on-line inference about current
system state via active selection of only a small number

Dispatcher

http Server

WAS

DB server

(standby)
DB serverB

DB serverA

DB

CatelogDB

DB
Transaction

DB

Index DB

Dispatcher

SAN

WAS

WAS

shopping.ear

search.ear

http Server

Dispatcher

http Server

WAS

DB server

(standby)
DB serverB

DB serverA

DB

CatelogDB

DB
Transaction

DB

Index DB

Dispatcher

SAN

WAS

WAS

shopping.ear

search.ear

http Server

Fig. 1. Shopping Cart and Search Catalog e-commerce ServiceRealization

of most informative probes. In our proposal, we use this
technique to trigger the generation of relevant resource tickets.
We augment this technique with a innovation required by a
constraint on the overall duration of probing execution andon
the number of probes running simultaneously.

[11] proposes the use of the relationship between managed
objects, as defined in CMDB, to correlate symptom events
occurring in an event storm towards determining the root cause
of the problem. While exploiting similar object relationships,
our approach also uses additional service-specification details
towards improving the accuracy and response time of the event
correlator.

[12] exploits the relationships captured in CMDB regarding
services, components and users to determine the impact of
network outages on services and users. Namely, metadata in
the network packets blocked by an outage identify the services
and users immediately affected and CMDB relationships help
determine the further impact.

III. M OTIVATION

a) Insights from a large corporate account:Our work is
motivated by an analysis of trouble tickets for a large corporate
account. The account comprises a large variety of comput-
ing systems, ranging from personal computers to clusters of
servers and up to mainframes. This infrastructure supports
a large range of services ranging from personal-computing
to enterprise services (like email) to business services (like
application-service provider).

We consider a volume of over 6.5 million trouble tickets
created in a 2.5 year period. We discover that multiple types
of monitoring tools are employed. Some monitoring tools
focus on system and application vitals. Samples system vitals
include CPU and file system utilization, network interface

status and file sizes. Sample application vitals include web
application servlet response time, JDBC call response timeand
database table space utilization. In the context of this work,
the tickets generated by these tools are considered ’resource
tickets’.

For detailed insights related to the correlation of resource-
and user-tickets such as relative volume and arrival patterns
we focus our analysis on one of the largest organizations in
the corporate account and select a period of 30 days with
a relatively high number of resource tickets. We analyzed
a base of about 16,000 tickets, of which about 900 are
resource tickets. Out of the remaining trouble tickets about 100
were service tickets, while the rest related to workstationand
personal account management. We identify several relevant
challenges for the problem of ticket correlation:

• Handle delayed delivery of resource tickets, due to the
specifics and configuration of the monitoring tools. This
motivates our approach for additional resource pooling
during the ticket correlation process.

• Handle a large number of redundant tickets. Redundancy
is mainly observed for resource tickets and is caused
by the use of threshold-based policies for notification of
potential critical situations. Once the system vital reaches
the threshold, tickets are generated periodically until the
situation is cleared. Therefore, the time spent with manual
analysis of redundant tickets can be relatively high, which
motivates the need for automation of ticket correlation.

• Handle repeated service tickets at varied time distances
from the related resource tickets. Service tickets can
arrive within a few minutes from the relevant resource
ticket, or after one or more days, while the root cause is
being solved.
b) Motivating example:Figure 1 depicts a tiered J2EE

enterprise application deployment includes front-end http
servers, request dispatchers, WebSphere Application Servers
(WAS), and back-end database servers. Multiple instances
of http servers andWAS servers are used for load sharing.
Standby servers are configured for fail-over protection of the
request dispatcher and the database servers. The databases
reside in a storage system and are connected viaSAN to the
database servers.

The e-commerce application is packaged as the enterprise
archive file shopping.ear, which includes shopping cart and
catalog search services. The shopping cart service employstwo
databases, one for the catalog records and shopping transaction
records. Each database is deployed on a different database
server for security and performance reasons. The catalog
search service is a search engine, packaged as the enterprise
archive search.earand deployed on a different server from
the shopping cart service. The deployed application accesses
the index database in order to serve the search requests from
shopping.ear.

Figure 2 gives a detailed view of a configuration of the
systems depicted in Figure 1. This view is derived from the
configuration data available in the configuration management
system. It visualizes the relevant system artifacts (the circles)

ComputerSystem5c

(standby)

DBServer5c

runson

OSLN5c

WASServer3c

OSLN3c

httpServer1b

ComputerSystem3c

shoppingApp.ear

runson

shoppingApp.ear

contains

Dispatcher2b

(standby)dispatcher2a

ComputerSystem4a

WASServer4a

runson

OSLN4a

search.ear

contains ComputerSystem5a

DBServer5a

OSLN5a

indexdb catdb1

controls

catdb2

connects

shopping.ear

ComputerSystem5b

DBServer5b

runson

OSLN5b

xsactdb1 xsactdb2

controls

uses

affects

affects

bindsto

OSLN3bOSLN3a

WASServer3bWASServer3a

ComputerSystem3bComputerSystem3a

httpServer1a

connects

uses

affects

installedon

Backup for

ComputerSystem5a &

COmputerSystem5b

ComputerSystem5c

(standby)

DBServer5c

runson

OSLN5c

ComputerSystem5c

(standby)

DBServer5c

runson

OSLN5c

WASServer3c

OSLN3c

httpServer1b

ComputerSystem3c

shoppingApp.ear

runson

shoppingApp.ear

contains

Dispatcher2b

(standby)dispatcher2a

ComputerSystem4a

WASServer4a

runson

OSLN4a

search.ear

contains ComputerSystem5a

DBServer5a

OSLN5a

indexdb catdb1

controls

catdb2

connects

shopping.ear

ComputerSystem5b

DBServer5b

runson

OSLN5b

xsactdb1 xsactdb2

controls

uses

affects

affects

bindsto

OSLN3bOSLN3a

WASServer3bWASServer3a

ComputerSystem3bComputerSystem3a

httpServer1a

connects

uses

affects

installedon

Backup for

ComputerSystem5a &

COmputerSystem5b

Fig. 2. Service System Mapping

and their relationships (the arrows and annotations). For in-
stance, theWAS server in Figure 1 is represented by three
configuration items:

• a computer system (e.g.ComputerSystem3a)
• an operating system (e.g.OSLN3a) which has an ”in-

stalledon” relationship to the computer system, and
• a WAS server (e.g.WASServer3a) with a ”runson” rela-

tionship to the operation system
Other note-worthy relationships are:

• the database servers affect theWAS servers, e.g.DB-
Server5ahas an ”affects” relationship with the WEB
serversWASServer3a, WASServer3b, WASServer3c, and
WASServer4a;

• the databases reside on theSAN, therefore they have
”resideson” relationships to the storage subsystems in the
SAN;

• storage subsystems are mounted to the operating systems
in which the database servers run on; therefore they have
a ”bindsto” relationship to the operating systems;

• the applications use the databases, e.g.search.earhas a
”uses” relationship with theindexdb.

The information of Figure 2 is used in the following sections
to demonstrate how the proposed algorithms correlate end-user
tickets with system generated tickets in order to help identify
root causes.

IV. M ODELS AND ALGORITHM FOR CORRELATION OF

INCIDENT TICKETS

A. Concepts and definitions

This section introduces the concepts used in the design
of our novel algorithm for ticket correlation. Namely, we

formalize the concepts of ticket, service and configuration
item (related and critical CIs) and also introduce Constraint
Adaptive Probing.

A generic ticket definition:A ticket is a record of an
incident, including all pieces of information related to the
incident, such as the reporter of the incident (person or
software component), the date of reporting, what priority the
incident has, the person assigned to work on the resolution,
the current ticket status, and other details.

Tickets are classified as 1)resource tickets, when they are
reported by the monitoring system and 2)service tickets,
when they are opened by an end-user, representing the users’
perceived experience of a service.

-identifier : String

-source : SourceClass

-status : StatusClass

-priority : PriorityClass
-timestamp : DateTime

GenericTicket

-resource : Resource

-resCategory : String

ResourceTicket

-service : Service

-servCategory : String
-customerID : String

ServiceTicket

Fig. 3. Ticket Class Hierarchy

In Figure 3 the class hierarchy of tickets is given. The two
classesResourceTicket and ServiceTicket, representing the
two kinds of tickets mentioned before are subclasses of the
GenericTicket class.

The GenericTicket class has the following attributes:

• identifier, which typically is a string, representing the
unique reference (or case) number for the incident report;

• source, with possible valuesresourceandservice, identi-
fies the origin of the ticket as resource-based monitoring
or end-user service, respectively.

The attributesstatus, priority and timestampare irrelevant to
this discussion.

Additional to these attributes, the classesResourceTicket
and ServiceTicket have their specific attributes. The class
ResourceTickethas two more attributes:

• resource, which is a unique identifier for the affected
resource; and

• resCategory, which is a unique identifier for the resource
category (see details in the section related to service
model).

The classServiceTicket has three specific attributes:

• service, which is the service unique identifier for the
service that the end user has a problem with;

• servCategory, which is the unique identifier for the ser-
vice category; and

• customerID, which identifies the end-user that is experi-
encing service problems.

Table I shows a sample of a resource ticket and one of a
service ticket, with all the related attributes defined.

Resource Ticket Service Ticket

Attribute Value Value
identifier 320054D 453999
source resource service
status pending new
priority medium high
timestamp 081320081245 08132008928
resource indexdb shopCatalog
resCategory HW/Server/WAS/indexdb
service shopping cart
servCategory SW/webAppl/searchCatalog
customerID A2816AB

TABLE I
EXAMPLE OF RESOURCE ANDSERVICE TICKETS

Service definition:The service definition is specified by
the provider in a service catalog. The service definition has
two important parts:service categoryandsimilarity (matching)
rules. Typically categories are defined from the point of
view of the customer. The similarity rules relate the service
to an abstract representation of the infrastructure (resource)
component. These would be provided as part of the service
definition in the service product offering and developed during
service design. The similarity rule is one innovation in our
approach. As the name suggests, it is a rule that matches the
classification the user chose at the creation of the service ticket
to one that is done by the monitoring system at the resource
ticket creation. This has a very simple form:if servCategory
then resCategory. For one service category more similarity
rules may exist. We assume each ticketing system has his own
system of ticket classification.

Example: A user creates a ticket for the shopping cart
and search catalog e-commerce service (see Figure 1). The
service category represented in this case as a ”classification
path” could be SW/webAppl/searchCatalog/cannotSaveSearch.
The principal part of this classification path is
SW/webAppl/searchCatalogwhich denotes there is a ticket
for a web application search catalog. The possible rules in
the service definition are:
if SW/webAppl/searchCatalogthen HW/Server/WASor
if SW/webAppl/searchCatalog HW/Server/WAS/indexdbor
if SW/webAppl/searchCatalog HW/Storage/Database/CatalogDB or
if SW/webAppl/searchCatalog HW/Storage/Database/TransactionDB

Dependency Tree:The dependency treeis a representa-
tion of a network with all its components and the relationships
between them. These components are therelated CIs.

Example: Figure 2 in Section III shows a part of the
dependency tree for the realization of the servicecatalog shop-
ping. In e.g.httpServer1ais depending ondispacher2a. The
dispacher2adepends onWASServer3a, ComputerSystem3a
andOSNLN3a. TheWASServer3adepends on data base server
DBServer5aand DBServer5b. DBServer5adepends also on
WASServer4awhich depends on theindexdb. The other data
bases which are controlled from the database serversDB-
Server5a: catdb1, catdb2are dependents of theshopping.ear

End User Correlator

open service ticket

classify service ticket

save service ticket

Ticket System CMDB

find similar RT ordered by time

[YES]

[NOT]

find service related CIs

find RT for the related CIs

[YES]

[NOT]

[YES] [NOT]

Service catalog

find critical CIs

find RT for the critical CIs

[YES]

[NOT]

get open RT get similarity rules

get service categoryget Business Service CIs

1a 1b

2

3

5

4execute probing

Fig. 4. Process Workflow for Trouble Ticket Correlation

contained inWASServer3a.
Business Service CI:The Business Service CIis an

instantiation of the service definition. It is of great importance
in our approach that Business Service CI contains information
on the CI instances that arecritical for support of the service
instance for a specific customer. Critical CIs are also included
in the dependency tree, as a subset of related CIs.

Example: The Business Service CI, as an instance of the
catalog shopping service for the customerA2816AB. Criti-
cal CIs for this instance are thedispacher2a, WASServer3a,
WASServer3aandDBServer5a.

Constraint Adaptive Probing (CAP):is a technique for
finding the most effective way of probing CIs in an often large
dependency tree within a given duration of time and without
overloading the network.

B. Optimized Correlation Model

In this section, we propose a novel approach for service to
resource ticket correlation, building on the notions introduced
in the previous section. Our goal is to reduce the computational
overhead and increase the accuracy of determining correlated
service and resource tickets. Namely, given a service ticket

and a pool of resource tickets, the proposed approach is based
on three components:

• category-based correlation, which filters the resource tick-
ets based on thesimilarity rules.

• critical-CI -based correlation, which filters the resource
tickets based on their reference to the CIs that are critical
for the failed service. By looking only at the critical CIs,
we aim to minimize the overhead of dependency tree
search, also called topological comparison.

• temporal correlation, which uses CAP to ensure the best
way to probe the CIs in the dependency tree in order
to trigger a creation of resource tickets by monitoring
system.

The activity diagram in Figure 4 describes the steps of the
correlation process, starting from the creation of the service
ticket by the end-user.

The column on the left side of the diagram shows the
activities of theEnd User. On the right side we have the
provider domain. Activities of the provider are shown in the
right part of the diagram, separated into four columns:The
Correlator realizes correlation activities.The Ticket System
includes open tickets which we use in the correlation. The

CMDB includes the dependency tree (topology with related
CIs) and the Business Service CIs (with their critical CIs)
as defined before. Last but not least theService Catalog
represents the interface to the customer. In the Service Catalog
we find the service definition.

The activity starts with the End User opening and clas-
sifying a new incident ticket, through selection of classi-
fication path. E.g. userB of customerA2816AB opens a
ticket regarding the servicecatalog shoppingwith the service
category SW/webAppl/searchCatalog/cannotSubmitRequest. From
here on the activity is driven from the correlator domain.
Before real correlation can occur additional data is retrieved
from the above named domains. Existing open resource tickets
(RT) are retrieved from the ITS. Through the service category
(classification path) in the service ticket, all relevant similarity
rules are pulled from the service definition. Concurrently
the service category and the customer identification (from
the service ticket) are retrieved from the Business Service
CIs. Using the data above, the two activities 1a and 1b are
processed in parallel

1a Finding similar tickets from the open resource tickets (of
the Ticket System) ordered by time. First a comparison
between different service categories is done. This helps
to reduce the number of searched tickets to only those
tickets which somehow refer to this service. This infor-
mation is stored as values of the attributesresCategory
andservCategoryof the ticket and can be matched with
the similarity rules in the service definition. The depth of
the classification path in our example is 4 but typically
the deeper this is the more refined the search is, and the
higher the precision in rule matching. This classification
path is the first part of the similarity rule. The second
part will be as well a classification path but for a resource
ticket, in most cases indicating on a faulty resource.

1b Finding critical CIs as, defined in the Business Service
CIs combined with the service category from the service
definition. This information will be retrieved through the
value of the attributecustomerIDcontained in the service
ticket and the service category of the service definition.
If both these activities succeed, activity 2. follows other-
wise activity 3.

2 Critical CIs found in1b are used to search the similar
RT from 1a ordered by time for corresponding RTs. If
we find matches then the correlation is complete. This is
the best use case scenario of the proposed search.

3 If there were no RTs found for the critical CIs the
input is needed from the dependency tree (topology) for
the Business Service CIs. If no related service CIs for
this service have been identified, than the correlation
concludes as there are no RTs that can be correlated.
Otherwise follows the next step. The related CIs (in the
dependency tree) by definition include the critical CIs too,
so we cannot miss any candidates in this search (CIs that
were not found in1b are surely found in3).

4 In our approach we anticipate that in some cases no

1: procedure INCIDENTTICKETCORRELATION

2: initializeAllList ⊲ all lists needed are initialized
3: newServiceT icket = getNewServiceT icket()
4: listOfOpenRT = getListOfRT ()
5: listOfSimilRules = getSimilRules()
6: servCategory = getservCategory()
7: for eachSimilRule in listOfSimilRules do
8: ResIdentT ree = getResourceIdentT ree()
9: listOfResIdentT ree.add(ResIdentT ree)

10: end for
11: for eachRT in listOfOpenRT do
12: RTcategory = getResIdnetifier()
13: for eachresCategory in listOfResIdent do
14: if RTcategory = resCategory then
15: listOfSimilarRT.add(RT)
16: end if
17: end for
18: end for
19: BusServCI = getBusServCI(customerID)
20: listOfCriticalCIs =

getCriticalCIs (BusServCI, servCategory)
21: if notempty (listOfSimilarRT) and notempty

(listOfCriticalCIs) then
22: listofRTforCritCIs = findRTforCritCIs

23: if notempty (listofRTforCritCIs) then
24: listOfCorrelRT = listofRTforCritCIs

25: end if
26: end if
27: listOfRelatedCIs = findServiceRelCIs

28: if notempty (listOfRelatedCIs) then
29: listOfRTforRelCis = findRTForRelCIs

30: listOfCorrelRT = listOfRTforRelCis

31: else
32: doCAP (listOfRelatedCIs)
33: end if
34: return listOfCorrelRT

35: end procedure

Fig. 5. Incident Ticket Correlation Algorithm

tickets for the last time slot are available after activity
3 was done, because of the monitoring configuration. In
this situation we propose to use CAP on the resources in
the dependency tree. The probing of the faulty resources
generates resource tickets. The role of CAP is to find
the most effective way of probing for a given set of CIs
within a dependency tree that could be completed during
a given time duration with the restriction on number of
probes that could be executed in parallel. The feasibility
of this solution and the algorithm are further described
in Section V

5 Again the Ticket System is searched on RTs for the
related CIs. The correlations ends after this step either
with a list of correlated RTs or with the result that there
are no correlated RTs.

Figure 5 describes the correlation algorithm in pseudo-
code with more implementation details. The procedure IN-
CIDENTTICKETCORRELATION implementing the activity di-
agram in Figure 4 starts with initializing all the list whichare
used in the algorithm.

At the beginning the list of open RT and the similarity rules
will be retrieved (lines 4, 5) from the ticket system respectively
from service definition. The service category will be obtained
from the service ticket (line 6). The specific resource category
of the similarity rules for the identified service will be added to
the list of resources (lines 7-10) and the list of similar resource
tickets is filled (lines 11-18). These steps corresponds to1a
in the activity diagram.1b is here realized in line 20 and2 in
lines 21-26. Related CIs are found on line 27 (correspondingto
3 in Figure 4). Finally the list of resource tickets for related
CIs is filled and the list of correlated CIs will be returned.
Constraint adaptive probing is realized on line 32.

V. CONCEPT EVALUATION

A. Constraint Adaptive Probing Formalization

This section is devoted to formal exposition of the Con-
straint Adaptive Probing Problem. We also provide an algo-
rithm that gives us a feasible solution of the problem.

In the CAP we are looking for a sequence of sets of
probes, which guarantees that number of left CIs to be probed
manually regarding the incident is minimal.

Suppose that one of the CIs in the dependency tree of
the service failed, our goal is to find failed CIs and through
probing to trigger the generation of RT. If the dependency tree
is large and all probes are executed sequentially the probing
exercise could take a long time. Since the ticket system has to
be searched after the probing is completed we need to restrict
the duration for the probing. This means that the number of
sequential tests has to be limited.

Another restriction that we introduce is the limitation on the
number of probes that run in parallel. Multiple probes issued
simultaneously could negatively affect the network.

Problem (Constrained Adaptive Probing) under the fol-
lowing constraints

a) a number of the sequential tests should not exceed a
predefined numberL.

b) a number of parallel tests should not exceed a predefined
numberP .

find a sequence of sets of probes such that the number of CIs
that is left to be considered is minimal.

This problem is NP hard, since it contains problem of
active diagnosis as a subproblem (see [9]). As an approximate
solution to the CAP we give an algorithm based on the greedy
approach.

Definitions: Let us assume that a service’s dependency
tree containsn CIs or nodesN = {N1, . . . , Nn} each of which
could be in one of two statesOK or FAILED. As in example
above the CIs in the dependency tree could represent a physical
component (server, network, hub etc.) or software components
(web application etc). The state of the business service that

relies on this dependency tree is denoted by a binary vector
X = {X1, . . . , Xn}, whereXi is one of the statesOK or
FAILED of a CI Ni.

A probe or testT is a method for finding information about
service’s CIs. We denote byN(T) =

{
NT1

, . . . , NTj

}
j=1

⊂
N a set of Cis which are tested by probeT . ProbeT fails if
one of the CIs is in stateFAILED and succeeds if all CIs in
N(T) areOK. For simplicity sake we suppose that each test
takes time 1.

Dependency between different CIs are expressed in the
form of dependency MatrixD(m × n), where Dij = 1 if
Nj depends onNi or Nj → Ni. For the setÑ ⊂ N denote
BD(Ñ) = {Ni ∈ N |∃N ∈ Ñ such thatN → Ni}.

Dependency matrix and probes are related as follows: if
probeT is OK thanBD(N(T)) is OK.

In our exposition we follow Khinchin’s [13] approach to
the information theory. LetP denote a partition to the set of
CIs N andP({A1, ..., Am}) denote partition generated by the
sets{A1, ..., Am} from N .

Greedy Constraint Adaptive Probing Algorithm
Input:
A set of probes T, dependency MatrixD, resource constraintP ,
time constraintL, prior partitionP of the service nodes N
Output:
A sequenceS = S1, S2, ..., Sk of subsets
of probesSi ⊂ T | with |Si| ≤ P & k ≤ L
Initialize:
S ← ∅
do
1. Select p most informative probesTij

, . . . , TiP
s.t. Tij

, . . . , TiP

areargmaxH(P(S ∪ P(Tij
, . . . , TiP

)|S))
2. if probeli returnsFAILED then
N ← N ∩BD(N(Tl1

)) and P ← P|BD(N(Tl1
))

3. S ← S ∪
{
Tij

, . . . , Tip

}
while
i ≤ L & ∃T ∈ T\

⋃
l
Sl s.t.

H(P(∨i

l=1{BD(N(Tl1
)), ..., BD(N(Tlp))}))|

P(∨i−1
l=1{BD(N(Tl1

)), ..., BD(N(Tlp))}) > 0
return S

Fig. 6. Greedy Constraint Adaptive Probing Algorithm

Information of the partition is defined as

I(P) =
∑

A

χA log p(A) (1)

whereχA is a characteristic function ofA and sum is taken
over all atoms of the partitionP . Relative information of
partitionP1 to partitionP2 is defined as

I(P1|P2) = −
∑

A

χA log p(A|P2) (2)

wherep(A|P2) is a conditional probability ofA relative to
P2. We also consider conditional entropy

H(P1|P2) =

∫
I(P1|P2)dp (3)

wheredp is a normalized counting measure onN .

The Greedy Constraint Adaptive Probing Algorithm in
Figure 6 is a polynomial approximation of solution for the
Constrained Active Probing Problem.

B. Evaluation through experimentation

In order to illustrate the advantages of our optimized model
we ran an evaluation through experimentation. The optimized
model allows us to reduce the user’s decision choice from a
tree of depth 11 to a tree of a residual depth (11 - hightOfBar).
Figure 7 shows the depth of the dependency tree on the y-axe.
We assume that resource dependency is a binary tree of depth

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Categorization On Demand Probing

Fig. 7. Results of the simulation

11, which gives a complete system size of 2048 resources.
We assume that the classification path varies from 6 to 9
uniformly distributed. We assume that CAP acts in addition
of the categorization. We ran the simulation for 4096 times.
For a better visualization only the first 64 runs are shown. The
simulation illustrates benefits from category-based correlation
alone - light dashed colored part of the columns and additional
benefit is provided by CAP - dark colored part of the column
(Figure 7).

The simulation shows that significant progress could be
made towards a correlation of service ticket to resource
tickets based on category-based correlation. Furthermorethe
constraint adaptive probing capability augments the category-
based results with additional resolution that further reduces
the need for human intervention.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we examine an innovative approach to ticket
correlation that improves the accuracy and effectiveness of
the incident / problem management process. In particular
we provide a correlation capability that leverages insights
drawn during both service definition and the description of the
deployed infrastructure in configuration management systems.
The approach exploits an optimization model based on step-
wise correlation in which service categorization is augmented
with service/resource similarity rules to facilitate selection of
resources that demonstrate correlation between tickets. We
further describe how this approach can be augmented by
Greedy Constraint Adaptive Probing Algorithm to dynamically
identify additional resource details needed for correlation
when they are not directly available based on monitoring
system limitations. We show through simulation that these

combined approaches may provide significant improvements
in the ability for analysts to accurately categorize and subse-
quently correlate a set of tickets.

As future work, we plan to extend this correlation model to
handle tickets originated from different Incident Ticket Sys-
tems. This applies to heterogeneous service environments with
multi-supplier hierarchies or multi-stage services provided by
multiple equal partners Also, we plan to evaluate the impact
of the suboptimal solution for the CAP Algorithm on the
optimality of the ticket correlation results.

Acknowledgments

This paper is the result of the research during a summer
internship in 2008 at the IBM T.J. Watson Research Center.
The authors are in debt to Dr. David Loewenstern from IBM
T. J. Watson Research Center for the insightful suggestions.
The authors also want to thank MNM-Team directed by Prof.
Dr. Heinz-Gerd Hegering, for helpful discussions and valuable
comments.

REFERENCES

[1] “IT Infrastructure Library, Office of Government Commerce (UK),”
http://www.itil.co.uk.

[2] OGC (Office of Government Commerce), Ed.,Service Operation, ser.
IT Infrastructure Library v3 (ITIL v3). Norwich, UK: The Stationary
Office, 2007.

[3] G. Dreo, “A Framework for Supporting Fault Diagnosis in Integrated
Network and Systems Management: Methodologies for the Correlation
of Trouble Tickets and Access to Problem–Solving Expertise,” Ph.D.
dissertation, Ludwig–Maximilians–Universität München, Jul. 1995.

[4] A. Hanemann, “Automated IT Service Fault Management Based on
Event Correlation Techniques,” PhD thesis, University of Munich,
Department of Computer Science, Munich, Germany, May 2007.

[5] A. Hanemann and P.Marcu, “Algorithm Design and Application of Ser-
viceOriented Event Correlation,” inProceedings of the 3rd IFIP/IEEE
International Workshop on BusinessDriven IT Management (BDIM
2008), Salvador Bahia, Brazil, April 2008.

[6] K. Chang, H. Carlisle, J.Cross, and P. Raman, “A self-improvement
helpdesk service system using case-based reasoning techniques,” in
Computers in Industry, New York, March 1996, pp. 113–125.

[7] E. Liddy, S. Rowe, and S. Symonenko, “Illuminating Trouble Tickets
with Sublanguage Theory,” inProceedings of the Human Language
Technology Conference of the North American Chapter of the ACL, New
York, June 2006, pp. 165–172.

[8] R. Gupta, K. Prasad, and M. Mohania, “Automating ITSM Incident
Management Process,” inProceedings of the 5th IEEE International
Conference on Autonomic Computing, Chicago, June 2008, pp. 141–
150.

[9] I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik,
and K. Hernandez, “Adaptive Diagnosis in Distributed Systemss,” IEEE
Transactions on Neural Networks (special issue on AdaptiveLearning
Systems in Communication Networks), vol. 16, no. 5, pp. 1088–1109,
2005.

[10] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik, “Real-time
Problem Determination in Distributed Systems Using ActiveProbing,”
in Proceedings of the 9th IFIP/IEEE International Network Management
and Operations Symposium (NOMS 2004), Seoul, Korea, April 2004, pp.
133–146.

[11] B. Gruschke, “Integrated Event Management: Event Correlation Using
Dependency Graphs,” inProceedings of the 9th IFIP/IEEE International
Workshop on Distributed Systems: Operations & Management (DSOM
98), Newark, Delaware, USA, October 1998, pp. 130–141.

[12] J. Stanley, R. Mills, R. Raines, and R. Baldwin, “Correlating network
services with operational mission impact,” inProceedings of the IEEE
Military Communications Conference (MILCOM), Chicago, October
2005, pp. 162– 168.

[13] A. L. Khinchin, Mathematical foundations of information theory. New
York: Dover, 1956.

