Hochleistungsrechner - Aktuelle Trends und Entwicklungen
Winter Term 2017/2018
Task-based Programming Models in HPC

Jakob Schneider
Ludwig-Maximilians Universitat Miinchen

January 19, 2018

Abstract

As programming for large clusters becomes harder
and harder, every tool that simplifies the life of an
HPC programmer is valuable. Task-based program-
ming (TBP) models are one such tool. This paper
describes the basic mechanisms of TBP on shared
memory systems and shows how these functional-
ities are extended to fit distributed memory sys-
tems. To this end, a few libraries on shared and dis-
tributed memory systems are investigated and their
specific features highlighted. To conclude we try to
evaluate TBP against other common programming
models in terms of performance, efficiency, and scal-
ability.

1 Introduction

With the increasing complexity in high performance
computing hardware systems, the software side of
things mirrors this intricacy. With threads inside
of cores inside of proccesors and the addition of
accelerators such as the Xeon Phi co-processor or
GPGPUs, application development is getting much
harder. Synchronizing all these components is a
very complex task (Venkat Subramaniam [15] calls
this the ”syncronize and suffer” model), but thank-
fully there are advancements that could simplify an
HPC programmer’s job significantly. Task based
programming (TBP) is such a tool.

In TBP, the developer creates tasks with dependen-
cies and the scheduler arranges the task execution,
data distribution and synchronization. Tasks can
be suspended and resumed on the same or other
CPUs, and load balancing is done via work steal-
ing.

TBP can facilitate parallel programming, but it
needs to be carefully evaluated, as there are sce-
narios, in which threads can perform better than
tasks. One such scenario may be an application
with a lot of blocking (mutexes, waiting for user in-
put). If a task is blocking, the worker thread that
this task is assigned to is not able to perform any
work while waiting.

The rest of this paper is structured as follows: Sec-
tion 2 first introduces general features of task based
programming models and show specific examples
in existing frameworks for shared and distributed
memory systems. In Section 3, the different frame-
works are evaluated against each other and classic
programming models in terms of scalability, perfor-
mance, and efficiency. Section 4 provides a conclu-
sion about the presented techniques.

2 Task-Based Programming
Models

The important features of TBP are the following:

e Task Spawning: The programmer can de-

clare parts of code as tasks and these tasks
can be spawned, that is, put into a queue of a
worker thread and then executed.

e Dependency Declaration: Tasks most
likely have dependencies, for example results
from previous tasks, or the current results are
needed by subsequent tasks. These dependen-
cies must be declared, so that the scheduler can
arrange the order of execution correctly.

e Suspension and Resumption of Tasks:
Tasks can be suspended at specific points, for
example when waiting for data. Afterwards,
the task can be resumed at this point, and can
even be transfered to another worker thread for
resumption.

e Load Balancing: The runtime system sched-
ules the given tasks according to different
strategies. If a worker thread has no work, it
can steal tasks from other workers.

2.1 Shared Memory

First, we will look at programming models for sys-
tems with shared memory to understand what ben-
efits come with task based programming, before
looking into how the task model can be imple-
mented in distributed memory systems.

2.1.1 OpenMP 3.0

Task parallelism for OpenMP was proposed in 2006
and made available with the release of OpenMP
3.0 in May 2008. Tasks in OpenMP are defined as
follows:

A structured block, executed once for each time the
associated task construct is encountered by a thread.
The task has private memory associated with it that
stays persistent during a single execution. The code
in one instance of a task is executed sequentially. [4]
A task is declared by the preprocessor directive
#pragma omp task [clause]

followed by a code block. With the clauses the pro-
grammer can specify dependencies between tasks,
for example stating that a task needs a variable

from another task. Furthermore variables can be
declared private (initialized inside the task), first-
private (initialized outside before the task, but then
private to each task using it) or shared.

The proposal specifies two important features of
tasks:

e Suspend / resume points: Tasks can be
suspended at these specified points, so that
other tasks can be executed first. The sus-
pended tasks will be resumed at the point of
interruption. These points are specified with
the preprocessor directive

#pragma omp taskyield

e Thread switching: If a task is suspended at
a suspend point, a different thread can pick it
up and continue at the same point.

There are two different types of task barriers in
OpenMP 3.0:

e taskwait The current task waits for every
child task that is generated since the beginning
of the current task.

e taskgroup The program waits for all tasks in
the taskgroup to complete.

2.1.2 1Intel Cilk Plus

Intel Cilk Plus adds simple language extensions
to C and C++ to allow the programmer to use
task and data parallelism. It adds three key-
words (cilk_for, cilk spawn and cilk _reduce),
as well as so-called hyperobjects, that simplify
shared states between tasks without race conditions
or locks.

The keywords are pretty self-explanatory:

e cilk_for parallizes loops,
e cilk _spawn spawns a task,

e cilk_sync waits for all spawned tasks in func-
tion before the program continues.

The most common hyperopbject is a reducer. The
. N o s
following example computes » ;" foo(i) in parallel:

cilk::reducer_opadd<float> result (0);
cilk_for (i = 0; i < Nj; i++)
result += foo(i);

Each worker thread has a deque instead of a classic
queue. It pushes and pops tasks to and from the
tail (and works thus in a LIFO order), which tends
to improve locality. Additionally, if a worker tries
to steal work from another worker, it does so from
the head of the other worker’s deque. The tasks at
the head of the deque are more likely to be larger
and spawn a lot of child tasks, and thus may lead
to less overhead created by stealing.

Intel Cilk Plus will be deprecated with the release of
the Intel Software Development Tools in 2018 and
remain in deprecation mode for two years. Intel rec-
ommends migrating to OpenMP or Intel Threading
Builing Blocks.

2.1.3 Intel Threading Building Blocks

Intel Threading Building Blocks (or TBB) is a
C++ template library that again allows the di-
vision of the program in tasks. In contrast
to Cilk Plus, TBB offers no keywords, but al-
gorithms (e.g. parallel for), containers (e.g.
concurrent_vector), constructs for memory al-
location (e.g. scalablemalloc), synchroniza-
tion (e.g. mutex) and atomic operations (e.g.
fetch_and_add):

It also provides the Intel Flow Graph to express
dependencies and data flow:

tbb::flow::make_edge (h,w);

//start the first node
h.try_put(continue_msg());

//wait for the whole graph to finish
g.wait_for_all();

//create the graph
tbb::flow::graph g;

//create a node
tbb::flow::continue_node
<tbb::flow::continue_msg>
h (g, [l1(const continue_msg &)
{std::cout << "Hello ";});

//create a second node
tbb::flow::continue_node
<tbb::flow::continue_msg>
w (g, [J(const continue_msg &)
{std::cout << "World!";});

//1link the nodes

These nodes fulfill the same purpose as tasks.
There is also a visual graph design tool, called Flow
Graph Designer, which lets you create, arrange and
connect nodes. The Flow Graph Designer then gen-
erates the C++ code and you just have to fill in the
content of the nodes.

2.1.4 Task Parallel Library

The Task Parallel Library (TPL) is a library for
NET. It provides types and functions that facili-
tates exposing parallelism in a program. It makes
heavy use of generics and delegates. Leijen et al.
[13] offer an overview of the design and implemen-
tation of the TPL.

Similar to Cilk Plus, it introduces tools to par-
allelize loops (Parallel.For()) and create tasks
or futures. It also introduces the Interlocked
class, that provides function for thread-safe incre-
menting, decrementing or adding a value to a vari-
able. Fork-join parallelism is realized through the
Parallel.Do() method.

The task queues, which are double ended like in
Cilk Plus, are mostly lock free. Only if there are
not enough tasks in a queue for popping and pos-
sible work-stealing, the local thread takes a lock.
The freedom from locks is bought by adding states
(init, running and done) to the tasks, which are
set with atomic compare-and-swap operations, to
ensure that each task is only run once.

2.1.5 Ordered Read Write Locks

The ”Ordered Read-Write Locks” (ORWL)-Model
builds upon the concept of read-write locks. Clauss
et al. [6] explain, that while read-write locks fulfill
their purpose, the programmer often has to take
further actions to prevent deadlocks or starvation.
The solution proposed by the authors is a synchro-
nization overlay coupled with queues for the locks.

Additionally, handles are introduced, by which the
locks are accessed, so a task can request a lock and
may continue other work until the lock is granted.

The synchronization overlay is an abstraction of the
data dependencies between the tasks. It is gener-
ated and optimized at startup and ensures a lock
free execution.

Gustedt et al. [9] enrich the ORWL model with
an automated system to improve data locality in
systems with distributed memory. It utilizes hwloc,
a framework presented by Broquedis et al. [5], to
obtain information on the hardware topology and
generate an allocation strategy, that aims to reduce
communication between the nodes and optimise the
shared caches in the nodes.

2.1.6 StarPU-MPI

StarPU is a software tool that simplifies the cre-
ation of highly parallel applications for heteroge-
neous multicore architectures. It is presented by
Augonnet et al. [3].

It features a runtime support library, which handles
the scheduling of its tasks. StarPU tasks consist of
a codelet (computational kernel for a worker, can
be a CPU, CUDA or OpenCL device), a data set
on which the codelet works and information on its
data dependencies. Task dependencies in StarPU
are deduced by data dependencies by default, but
can also be specifically set by the programmer.

As the dependencies can be specified, so can the
scheduling. The programmer can choose to imple-
ment her own algorithms or choose from various
designs offered by StarPU. Available queue designs
span FIFOs, priority FIFOs, stacks and deques,
which can be adapted at will. Data transfers are
automatically handled by the StarPU runtime sys-
tem.

Augonnet et al. [2] augment StarPU with MPI,
which allows its use on distributed systems, but
shows, that the network poses a severe bottleneck,
but that could change as newer CUDA drivers en-
able the direct communication between the GPU
and and the network cards.

2.2 Distributed Memory

In this section, we will take a look at frameworks
that are specifically designed for systems with dis-
tributed memory and use the task based program-
ming model.

2.2.1 Charm-+t+

Charm++ is a programming language based on
C++ that provides high level abstractions to sim-
plify the development of parallel programs. Pro-
grams written in Charm++ can be executed un-
changed on systems with shared and distributed
memory. Kale et al. [12] presents the design prin-
ciples behind Charm++:

Portability: Charm++ lays a heavy focus on
portability, and it achieves it through tasks, but
they are called Chares. Chares have the ability to
create other chares and communicate with them.
Latency Tolerance: Instead of blocking-receive-
based communication, Charm-++ uses message
driven execution, meaning all computations are ini-
tiated by received messages. Futures are supported
as well, and while some chare may need to wait on
data, others can be executed.

Object Orientation: Charm-++ consists of the
following classes of objects:

e Sequential Objects give the programmer the
choice of having non-parallelized parts of the
program.

e Concurrent Objects are the chares.

e Shared Objects contain data of any type,
and can be distributed data structures. There
are different classes of shared objects for ex-
ample read-only, accumulator objects or dis-
tributed tables.

¢ Communicaton Objects describe the mes-
sage entities.

Several load balancing and memory management
strategies are available: random, share with neigh-
bours, central manager/scheduler and prioritized
task creation.

Zheng et al. [17] introduce FTC-Charm++, which
extends Charm++ with a fault tolerance protocol
based on checkpoints. The reason why it is based on
checkpoints rather than on logging mechanisms is
explained by a look to the evolution of applications
that need fault tolerance at all. In the past these ap-
plications were mission-critical programs that un-
der no circumstances should fail. Efficiency loss or
overhead imposed by the fault tolerance techniques
were neglectable, as long as the application didn’t
crash.

In most of today’s high performance computing, a
strong focus is set on efficiency. A computation,
that runs for hours or days, fails and has to be
restarted again, costs a lot of time and with it en-
ergy. Logging techniques entail a lot of overhead on
communication, which again makes the application
less efficient.

Zheng et al set the following requirements for a fault
tolerance system in high performance computing:

e No reliance on fault-free storage
e Low impact on fault-free run time
e Low recovery time after a crash

e High execution efficiency after a restart (and
maybe a loss of a processor)

The proposed solution is based on double in-
memory checkpointing or double in-disk checkpoint-
ing. The checkpoints are saved in the local memory
(or on a local disk) of a process instead of a cen-
tral storage location. Additionally, every processor
gets a buddy processor, and both their checkpoints
are saved in both their memories or disks. That
way, the system is not dependent on fault-free stor-
age. In-memory checkpointing, opposed to in-disk
checkpointing, ensures the low impact on fault-free
run time.

To maintain a high efficiency after a fault, the task
based model of Charm++ plays an important role,
as the work of lost processors can be dynamically
load balanced onto the remaining ones. Figure 1
shows the performance of LeanMD (a molecular dy-
namics simulation program) after a crash with and
without load balancing.

Without Load Balancing

.
-Ei 44 ll'w
o \
o
2 \
e L
8 31 1l
@
E] '
S 2 l.«mw* -
=]
g]
5 1 Ml]
o T T T T T T
0 100 200 3nn 400 500 600
6 — With Load Balancing
5]

load balancing
/

Simulation time per step (seconds)
(2
1

o /
] ¥
—N\m&w ﬂ"‘ﬂ”\w“f‘ \ H‘m\wfﬁj*ﬂn’.ﬂw‘w’vm} "‘“\"ﬁ'\"'{u‘\‘ﬂ"}'ﬁ

o T T T T T T
0 100 200 300 400 500 600

Timestep

Figure 1: Performance with and without load bal-
ancing after a crash [16].

2.2.2 High Performance ParalleX

Kaiser et al. [11] introduce High Performance Par-
alleX (HPX) as a general purpose C++ parallel
runtime system. The paper describes HPX as fol-
lows:

HPX represents an innovative mixture of a global
system-wide address space, fine grain parallelism,
and lightweight synchronization combined with im-
plicit, work queue based, message driven computa-
tion, full semantic equivalence of local and remote
execution, and explicit support for hardware accel-
erators through percolation.

Design Principles In this paper, four main fac-
tors are identified, that prevent scaling. They
are appropriately named the SLOW factors:
Starvation, Latencies, Overheads and Waiting for
contention resolution. To reduce these factors, the
following design principles are established:

e Latency Hiding instead of Latency
Avoidance: It is pointed out, that latency is
tightly related to an operation waiting on a re-
source. Instead of focusing on minimizing this
waiting time, it could be employed to do useful
work.

e Fine-grained Parallelism instead of
Heavyweight Threads: This is closely
related to Latency Hiding, as even very small
latencies can be used to do work, but only
if context switching is fast enough to gain
performance.

e Avoid Global Barriers: The paper men-
tions, that many common operations, such as
loops parallelized with OpenMP, entail global
barriers. But usually there is no need to wait
on all iterations to finish before doing other
work.

e Adaptive Locality Control: Static data dis-
tribution may lead to inhomogenous workloads
across the system, therefore an dynamic data
placement system is required. HPX imple-
ments a global, uniform adress space and a de-
cision engine that is able to distribute data at
runtime.

e Move Work instead of Data: As operations
are commonly much smaller than the data re-
quired to perform them, the work should be
moved to the data and not the other way
around.

e Avoid Message Passing: When two threads
communicate, they have to synchronize, in
other words wait for each other, therefore mes-
sage driven computation should be prefered.

Subsystems: HPX’s architecture consists of five
subsystems, each of which encapsulates a specific
functionality.

e The Parcel Subsystem: The parcel subsys-
tem handles network communication. Parcels
are a form of active messages, which means
that they are capable of performing process-
ing on their own. In HPX, a parcel contains
the global address of its destination object, a
reference to one of the object’s methods, the
arguments for the method and optionally a
continuation. The communicating entities are
called localities. A locality transmits and re-
ceives parcels asynchronously.

e The Active Global Address Space: The
AGAS constructs a global address space for
all localities the application currently runs on.
Opposed to partitioned global address space,
the AGAS is dynamic and adaptive, it evolves
over the lifetime of an application.

e The Threading Subsystem: When a local-
ity receives a parcel, it is scheduled, run and
recycled by the threading subsystem. Context
switching between HPX threads does not re-
quire a kernel call, so that millions of threads
can be executed per second on each core. There
is usually one OS-thread per core, that the
HPX threads are mapped onto. The thread-
ing subsystem uses work-stealing for intra-
locality load balancing and threads are never
interrupted by the scheduler, but can suspend
themselves when waiting for data.

e Local Control Objects: LCOs handle par-
allelization and synchronization, they provide
means of shared resource protection and exe-
cution flow organization. Examples for LCOs
are futures, dataflow objects, mutexes and
barriers.

e Instrumentation and Adaptivity: HPX
implements ways to analyse performance mea-
sured by hardware, the OS, HPX runtime ser-
vices and the application. It can use this data

to adapt the resource management system and
therefore increase performance.

To determine if an optimal task size for specific ap-
plications exit on the HPX runtime system, Grubel
et al. Grubel et al. [8] used an one-dimensional
stencil operation, the heat distribution benchmark
HPX-Stencil, with varying task sizes. In this
benchmark, the calculations for each grid point are
wrapped in futures. Additionally, the grid points
are partitioned, and these partitions are represented
as futures, too. This way, the number of calcula-
tions per future can be fine-tuned.

Measurements were taken by the previously men-
tioned instrumentation. Over the course of the
experiments, the total number of grid points was
always 100 million, but the size of the partitions
ranged from 160 to 100 million points. Taking into
account the idle-rate (computation to thread man-
agement ratio), thread management overhead and
wait time per thread, a clear optimal range for the
task size can be determined. Figure 2 shows the
different measurements exemplarily on a Haswell 8
core CPU. Wait time in this figure can be nega-
tive, because of the way it is calculated: Wait time
is defined as the difference between the measured
average task duration and the task duration of the
same experiment on one core. The time on one
core can be higher, because of behaviours such as
caching effects [8].

This knowledge can easily be used to statically and
potentially even dynamically assign optimal task
sizes.

3 Evaluation

In this chapter we will look into several benchmarks
on different kinds of systems to compare scalability,
performance and efficiency.

3.1 Scalability

Scalability is very important for applications, oth-
erwise the application needs to be adjusted to every
system, or maybe even completely rewritten.

PN W o
L !

seconds

| @ Exec Time ¥ HPX-TM & WT ||
,lewT & HPX-TM ™

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
Partition Size (Grid Points)

Figure 2: Execution Time (Exec Time), combined
thread management and wait time (HPX-TM &
WT), wait time(WT), and thread management
(HPX-TM) on a Haswell 8 core CPU.

The first interesting benchmarking result is from
the work of Kaiser et al. [11]. They used the
Homogeneous-Timed-Task-Spawn benchmark on a
Intel Ivybridge system with two sockets, and eval-
uated HPX against Qthreads and TBB. The result
show a clear performance drop at the socket bound-
ary for Qthreads and TBB (see Figure 3). 2.5 mil-
lion tasks were user for each core, and these tasks
did no work and returned immediately, simulating
very fine grained tasks.

Tasks Executed per Second
—a—HPX A
Qthreads (
BB -

0 5 10 15 20
Number of Cores

Millions
= = N ~ w
) 1S) @ <) o S

Tasks Executed per Second

o

Figure 3: Tasks executed per second on a two-
socket Intel Ivybridge system [11].

Another interesting benchmark was conducted by
Bryce Adelstein-Lelbach from the Center of Com-
putation and Technology (CTT) at Louisiana State

University. He spawned 500000 tasks on a HP
DL785 G6 node with 48 cores on eight sockets!.
The tasks did not perform any communication and
had artificial workloads of 0, 100 and 1000 ps, which
exposes the task overheads of each framework. Fig-
ure 4 shows, that TBB and HPX are almost tied
when tasks are fine grained, but with growing task
sizes, HPX is more stable in scaling than TBB.
Note that the links provided to the SWARM library
no longer works and no information on this library
could be found.

3.2 Performance

Kaiser et al. [11] show that HPX can maintain 98%
of the theoretical peak performance of a system on
a single node (16 cores) and 87% with 1024 nodes.
It outperforms the MPI implementation by a factor
of 1.4 (see Figure 5). On a Xeon Phi co-processor,
HPX is able to reach 89% of the theoretical peak
performance.

LibGeoDecomp - Weak Scaling - Distributed

(Host Cores)
700000

600000 —a—HPX

500000 ——MPI

Theoretical Peak

200000

100000

0
0 200 400 600 800 1000

Number of Localities (16 Cores each)

Figure 5: HPX vs MPI in terms of efficiency [11].

Interestingly, Perez et al. [14] mention, that an ap-
plication using their task based programming model
can rival highly tuned libraries in terms of perfor-
mance, without much tuning effort.

Most other benchmarks evaluate the different task-
based programming models among themselves,
which is not relevant for this paper, as it tries to
measure task-based to classic apporaches.

Thttp://stellar.cct.lsu.edu/2012/03/benchmarking-user-
level-threads/

3.3 Efficiency

As power consumption has become an increasingly
important factor in HPC, it is mandatory to take a
look at the efficiency of the applications.

Tordan et al. [10] compare the overheads for differ-
ent task operations, such as spawning new tasks,
stealing and synchronizing. They use TBB and
Wool ([7]), an experimental library with the goal
of extremely low overhead task creation and syn-
chronization.

W Spawn M Sync/Get task m Steal

Energy (% of the total consumption)
o

Core count

(a) Stress

M Spawn B Sync/Get task M Steal

Energy (% of the total consumption)
s
]

Wool| TBB (Wool| TBB |Wool| TBB |Wool | TBB |Wool | TBB |Wool | TBB

Core count

(b) MemStress

Figure 6: Percentage of total energy consumption
of different operations in CPU and memory bound
situations [10].

Time for Execution of 500000 Threads
(Artificial Work: Ops)

Time for Execution of 500000 Threads
(Artificial Work: 100ps)

Time for Execution of 500000 Threads
(Artificial Work: 1000ps)

"
s s s
s s s 1Y
. . S == HPX
g g i —#— Qthreads
s e 2 5
) s, i o —m-T88
2 F — ; T == SWARM
N e D . ,,/\ %M . _»'Q\K P
1 «MN — 3 ~ _/""" . \\/ \ Y
‘Q— P — z —
o 0 o

) 10 20 30 a0 50 0 10 20
Number of Cores

Number of Cores.

30 20 s0 0 10 20 30 40 50
Number of Cores

Figure 4: Task overheads for HPX, Qthreads, TBB and SWARM

The results (see Figure 6) show, that Wool sur-
passes TBB in spawning new tasks, but as soon as
the application is bound through memory access,
Wool has huge overheads in synchronizing (many
workers).

In a third test with matrix multiplications, where
tasks are relatively big and few, TBB surpasses
Wool in energy efficiency, as Wool has a very ag-
gressive work stealing algorithm, whereas TBB puts
workers, that fail to steal tasks several times to
sleep and wakes them up later.

Tordan et al. developed FASTA ([10]), a tool that
speeds up simulation times by only calculating spec-
ified samples. This tool can not be used for all
applications, but there are some for which a 12x
speedup can be reached with an accuracy error of
only 2.6%.

But in the end, Tordan et al. [1] point out, that as
the number of cores grows, more power gets con-
sumed by synchronization and management over-
head.

4 Conclusion

This paper provides an overview over task-based
programming models, for both shared memory and
distributed memory systems. First it introduced
the common concepts and illustrates the specific
implementations of frameworks for shared memory
systems, two of which later received support for dis-
tributed memory systems. Then it introduced three

libraries that were specifically built for distributed
memory and emphasizes the differences.

The evaluation showed that, compared to the usual
programming models, TBP shows great promise,
especially in the field of scalability and ease of use.
With minimal optimization effort, performance can
rival the common techniques, and as workload dis-
tribution is handled by the scheduler, adjustment
for different hardware setups may be non-existent.
The presented advantages (scalability, ease of use,
and efficiency) show that task-based programming
models are a promising tool worth looking into.

References

[1] Iordan Alexandru, Artur Podobas, Lasse
Natvig, and Mats Brorsson. Investigating the
potential of energy-savings using a fine-grained

task based programming model on multi-cores.
2011. QC 20120223.

[2] Cédric Augonnet, Olivier Aumage, Nathalie
Furmento, Raymond Namyst, and Samuel
Thibault. StarPU-MPI: Task Programming
over Clusters of Machines Enhanced with Ac-
celerators. In Siegfried Benkner Jesper Lars-
son Traff and Jack Dongarra, editors, The 19th
European MPI Users’ Group Meeting (Eu-
roMPI 2012), volume 7490 of LNCS, Vienna,
Austria, September 2012. Springer.

3]

[10]

Cédric Augonnet, Samuel Thibault, Raymond
Namyst, and Pierre-André Wacrenier. Starpu:
a unified platform for task scheduling on het-
erogeneous multicore architectures. Concur-
rency and Computation: Practice and FExperi-
ence, 23(2):187-198, 2011.

Eduard Ayguadé, Nawal Copty, Alejandro Du-
ran, Jay Hoeflinger, Yuan Lin, Federico Mas-
saioli, Ernesto Su, Priya Unnikrishnan, and
Guansong Zhang. A proposal for task paral-
lelism in openmp. In Proceedings of the 3rd
International Workshop on OpenMP: A Prac-
tical Programming Model for the Multi-Core
Era, IWOMP 07, pages 1-12, Berlin, Heidel-
berg, 2007. Springer-Verlag.

F. Broquedis, J. Clet-Ortega, S. More-
aud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst. hwloc: A generic
framework for managing hardware affinities in
hpc applications. In 2010 18th Euromicro Con-
ference on Parallel, Distributed and Network-
based Processing, pages 180-186, Feb 2010.

Pierre-Nicolas Clauss and Jens Gustedt. Iter-
ative Computations with Ordered Read-Write
Locks. Journal of Parallel and Distributed
Computing, 70(5):496-504, 2010.

Karl-Filip Faxen. Wool-a work stealing library.
36:93-100, 01 2008.

P. Grubel, H. Kaiser, J. Cook, and A. Serio.
The performance implication of task size for
applications on the hpx runtime system. In
2015 IEEE International Conference on Clus-
ter Computing, pages 682-689, Sept 2015.

J. Gustedt, E. Jeannot, and F. Mansouri.
Optimizing locality by topology-aware place-
ment for a task based programming model. In
2016 IEEE International Conference on Clus-
ter Computing (CLUSTER), pages 164-165,
Sept 2016.

A. C. Iordan, M. Jahre, and L. Natvig. On
the energy footprint of task based parallel ap-
plications. In 2013 International Conference

10

[12]

[17]

on High Performance Computing Simulation
(HPCS), pages 164-171, July 2013.

Hartmut Kaiser, Thomas Heller, Bryce
Adelstein-Lelbach, Adrian Serio, and Dietmar
Fey. Hpx: A task based programming model
in a global address space. In Proceedings of the
8th International Conference on Partitioned
Global Address Space Programming Models,
PGAS ’14, pages 6:1-6:11, New York, NY,
USA, 2014. ACM.

Laxmikant V. Kale and Sanjeev Krishnan.
Charm++: A portable concurrent object ori-
ented system based on c¢++. SIGPLAN Not.,
28(10):91-108, October 1993.

Daan Leijen, Wolfram Schulte, and Sebastian
Burckhardt. The design of a task parallel li-
brary. Atlanta, FL, September 2009. ACM
SIGPLAN.

Josep M Perez, Rosa M Badia, and Jesus
Labarta. A dependency-aware task-based pro-
gramming environment for multi-core architec-
tures. In Cluster Computing, 2008 IEEFE Inter-
national Conference on, pages 142-151. IEEE,
2008.

Venkat Subramaniam. Programming Concur-
rency on the JVM: Mastering Synchronization,
STM, and Actors. Pragmatic Bookshelf, Dal-
las, Tex., 2011.

Gengbin Zheng, Chao Huang, and
Laxmikant V. Kalé. Performance evalua-
tion of automatic checkpoint-based fault
tolerance for ampi and charm++. SIGOPS
Oper. Syst. Rev., 40(2):90-99, April 2006.

Gengbin Zheng, Lixia Shi, and L. V. Kale. Ftc-
charm+-+: an in-memory checkpoint-based
fault tolerant runtime for charm++ and mpi.
In 2004 IEEE International Conference on
Cluster Computing (IEEE Cat. No.04EX935),
pages 93-103, Sept 2004.

