
Hauptseminar Hochleistungsrechner: Aktuelle Trends und

Entwicklungen

Winter Term 2017/2018

Accelerators for Deep Learning

Mirjam Trapp
Ludwig-Maximilians-Universität München

19.01.2018

Abstract

Deep learning has become an increasingly impor-
tant topic in computer science, accelerators aim-
ing at improving performance of deep learning ap-
plications have become a subject of interest. In
this paper, we are taking a look at three different
current accelerators considered to be representative
of general directions for accelerators in deep learn-
ing, namely NVIDIA Tesla GPU, Google TPU and
IBM TrueNorth and try to draw some comparison
between them. We compare these three regarding
their usability in deep learning and conclude that
each has its usefulness for different aspects which
reflects their primary design point. However, those
three accelerators are built for different purposes
and one cannot simply replace one of them by one
of the others.

1 Introduction

Artificial Intelligence in general and the related
topic of machine learning have lately been a big
topic due to increasing technological possibilities,
even though the subject itself has been discussed
for decades.
A specific approach to artificial intelligence which
is recently becoming an item of discussion due to
new implementations is artificial neural networks.

Deep Learning can generally be seen as a subtopic
of neural networks, which can in its simplest form
be described as a set of connected processors, with
those connections typically being weighted [13].
Deep Learning is implicating the existence of a cer-
tain hierarchy in the neural network, with different
levels also providing different levels of abstraction.
As for many topics in computer science, the increas-
ing amount of data accessible to us is contributing
to the improvement of prediction regarding statis-
tical methods of computer science. [14]
There are different types of deep learning, the most
common one being supervised learning, where the
neural network is trained by using a set of data that
has already been classified in advance in order to
try to adjust its weights to minimize classification
errors, most commonly using Stochastic Gradient
Descent (SDG). [14]
A slightly different version of unsupervised learn-
ing in neural networks are backpropagation archi-
tectures, which aim at adjusting the weights of the
connections as specifically as possible, tracking the
impact of the specific weights on the total error re-
garding the outcome by going backwards from neu-
ron to neuron, following the connections. This way,
it is possible to change only those weights having
an actual effect on the undesired outcome. [14]
There are also approaches of unsupervised learn-
ing with neural networks, as in having the network

1



find own rules based on which to separate the given
training data. A classic example for this is Hebbian
Learning. [16]
Hardware accelerators were originally developed to
be tools mainly for faster graphic processing in a
computer - which they are still used for today -
, since rendering and displaying graphics requires
a limited set of instructions to be performed very
frequently and could therefore be optimized by run-
ning on a specialized device.
They are for the same reason also perfectly suitable
for increasing performance of deep learning applica-
tions in artificial neural networks, where the same
type of operation, namely matrix multiplications,
usually has to be performed over and over again.

2 Motivation

Today the most commonly used accelerators for
deep learning are GPUs.
As pointed out by LeCun in [14] the first deep
learning application that used backpropagation
was successfully built in 2009 using GPUs.
Following Moore’s Law, the performance capabili-
ties of GPUs have steadily increased over the last
decades making them a more useful acceleration
tool then ever, without being limited to their
original task of fast processing of graphic images
anymore.
Among classic GPUs the most well know company
would probably be NVIDIA who have also more
recently been in focus due to the increasing public
interest in self-driving cars. NVIDIA’s Tesla GPU
range is for instance used in the NVIDIA DGX and
NVIDIA Drive PX systems [23] that are used by
well-known car companies such as Audi, Mercedes
and Tesla.
Their newest accelerator architecture is NVIDIA
Volta which was launched in June, 2017.
However, there are new approaches entering the
market targeting the field of deep learning with
its specific requirements. The Google TPU for
example received massive media attention in 2016
when Google’s AlphaGo program managed to beat
Lee Sedol, one of the world’s best Go players [19].

The deep learning processes needed to train the
algorithm were reportedly performed using Google
TPU [20].
Interestingly enough, Google TPU is an
application-specific integrated circuit (short
ASIC). In October 2017, it was even reported that
Google had developed a new version of AlphaGo
that was able to beat its predecessor that had
succeeded against Lee Sedol [20].
Another interesting development would be the ef-
forts to make accelerators that are directly inspired
by the human brain. There seems to be a general
public interest in simulating the functioning of
the human brain, presumably partly due to the
potential medical uses of such a model. There
are several projects that aim at building such
simulations, most commonly known the Human
Brain Project which is supported by the European
Union [21] and the BRAIN Initiative [22] that is
funded by the US government.
Technology developed in such efforts, such as
neuromorphic chips, are however not necessarily
limited to being a part of large-scale brain simu-
lations, but can also quite obviously be used for
deep learning tasks in general. One good example
for this would be IBM TrueNorth which got devel-
oped as part of the DARPA SyNAPSE program,
another program aimed at the development of
neuromorphic technology in the US [11].
Though not being publicly released yet, results of
tests performed by IBM have shown that the chip
performs very well on image recognition tasks [17].

3 Methodology

The following chapter provides a deeper insight
into three different types of accelerators, examining
their architecture, the corresponding software
environment and benchmarks.
The accelerators are furthermore compared re-
garding performance, efficiency and usability. The
accelerators as examples for new developments in
those three different categories of GPUs, ASICs
and neuromorphic chips are NVIDIA Tesla V100,
Google TPU and IBM TrueNorth.

2



This is mainly due to the fact that those three
accelerators have received a lot of public attention
prior and after their release, being praised as
futuristic takes on accelerators.
Conveniently, NVIDIA’s Tesla V100, Google TPU
and IBM TrueNorth are representing three very
different approaches, which makes them interesting
to review in comparison to each other, even though
a direct comparison may be difficult due to their
different architectures and the different objectives
they were designed for.

4 Analysis of Accelerators for
Deep Learning

The following chapter will discuss the architecture,
software environment and benchmarks of NVIDIA
V100, Google TPU and IBM TrueNorth and further
draw a comparison between them.

4.1 NVIDIA V100

This section will give a description of the architec-
ture, software environments and benchmarks of the
NVIDIA V100.

4.1.1 Architecture

NVIDIA V100 is the first accelerator using
NVIDIA’s new volta architecture and will first be
used in the NVIDIA Titan V graphics card that got
announced by NVIDIA on December 7th, 2017.
It comes in two different versions depending on
the system interface that is used, Tesla V100 PCIe
and Tesla V100 SKM2, the first one using PCIe
Gen3 and the second one using NVIDIA NVLink.
Tesla V100 PCIe comes with 640 NVIDIA tensor
cores and achieves an interconnect bandwidth of
32GB/sec, whereas Tesla V100 SKM2 has 5120
CUDA cores and an interconnect bandwidth of
300GB/sec. [8]
According to NVIDIA, the Tesla V100 is highest
performing parallel computing processor thus far.
Regarding the accelerator’s architecture, it consists

of multiple GPU processing clusters, each of which
is containing seven Texture Processing Clusters, as
well as 84 Volta Streaming Multiprocessors and
eight 512-bit memory controllers. [7]
According to the authors of the Tesla V100
whitepaper, a main goal when designing the accel-
erator was to also increase its efficiency, which is
why the V100 can run in two different modes: Max-
imum Performance Mode and Maximum Efficiency
Mode, stating that the GPUs could still achieve a
potential performance of 75 to 85 percent of its full
performance when running in Maximum Efficiency
Mode. [7]
A new feature of the V100 compared to previous
NVIDIA architectures is the fact that the Stream-
ing Multiprocessor can perform 32-bit floating point
operations and 32-bit integer operations in parallel,
since it has separate cores for these two purposes.
This design was chosen in order to improve deep
learning matrix arithmetics. [7]

4.1.2 Software Environment

The compatible software APIs for this GPU include
NVIDIA CUDA and OpenCL and it is suited for
several deep learning frameworks such as Caffe. [8]
The most commonly known software framework
used for NVIDIA GPU programming would be the
CUDA toolkit.
CUDA was developed in 2006 and is supposed to be
a general-purpose parallel computing platform typ-
ically with a software environment using C, though
other languages such as FORTRAN and C++ are
supported as well [10].
The main objective when creating CUDA was to
enable scalable parallelism in order to maximize
the overall performance. Therefore, threads are
organized in a hierarchical structure, with several
threads building a thread block and several thread
blocks forming a grid. The premise for thread
blocks is that they have to be fully independent
from one another, in other to being able to schedule
execution flexibly. Within thread blocks, threads
coordinate their actions via shared memory. [10]
In a combined CPU andGPU architecture, those
threads generally run on a different device (GPU)

3



than their host (CPU), with device and host typi-
cally not sharing any memory. The GPUs accessible
to the host are identified via a so-called compute
capability, which is essentially a version number,
from which the CPU can derive information about
the GPU’s hardware and therefore what functions
are supported by that specific GPU. [10]
Grids of kernel functions that are invoked by the
CPU are then distributed for execution onto the
GPUs as evenly as possible. Thread blocks are fur-
ther grouped into warps with regards to the GPU
hardware. [10]
Specifically in the Tesla Volta architecture, there
is so-called Independent Thread Scheduling, giv-
ing each thread its own execution state, program
counter and call stack in order to minimize the risk
of deadlocks within warps. There is also a feature
called schedule optimizer, through which it is for
instance possible to build even smaller subgroups
of threads within warps. [10]
There are several newer extensions to CUDA, for
example Cooperative Groups, which is enabling the
user to specify in detail to which degree which
thread shall be able to communicate with what
other threads. [10]
Another extension is CUDA Dynamic Parallelism,
which confers the possibility to create new work
tasks on the GPU itself instead of necessarily hav-
ing to be called by the host [10].

4.1.3 Benchmarks

The peak performance given by NVIDIA is 7
TFLOPs/sec on V100 PCIe and 7.8 TFLOPs/sec
on V100 SKM2 regarding double precision as well as
14 TFLOPs/sec on V100 PCIe and 15.7 TFLOPS
on V100 SKM2 for single precision, causing a max-
imum power consumption of 250W on V100 PCIe
and 300W on V100 SKM2. [8]
Furthermore, it is stated that the peak performance
for training and inference is 125 tensor TFLOPs [7].

4.2 Google TPU

In the following, the architecture, software environ-
ments and benchmarks of Google TPU shall be dis-

cussed.

4.2.1 Architecture

Google TPU was built by Google in order to have a
customized accelerator for neural networks, regard-
ing the increasing need of computational resources
regarding Google’s own data centers. The main
idea was to work with quantization to lower the
cost of matrix multiplications in neural networks.
Via quantization, floating point values are reduced
to 8-bit integers, which makes operations on them
computationally much cheaper. [12]
Specifically, quantization maps floating point val-
ues to integer values based on the position of that
floating point value in the total range of values that
the floating point number could have - given a float-
ing point range from -10.0 to 30.0, the value 30.0
would then be mapped to 255 in the integer repre-
sentation [9].
It should be noted that quantization works for in-
ference - the model classifying some given input
based on its internal classification rules - but usu-
ally not for training itself, where the aim is to op-
timize those classification rules. This is due to the
general robustness towards errors that the neural
network should have when classifying new input.
[9]
The accelerator’s design is explicitly specialized for
neural network prediction, therefore it is using a
CISC architecture. Instead of a classic ALU that
stores and fetches values from registers, Google
TPU uses a systolic array in which several cells are
connected to and pass on result values between each
other. Each cell can also store its result value with-
out the need of using a register. [12]
As described in [15], Google TPU furthermore con-
sists of a matrix multiply unit, with the weights
for the addition and multiplication operations be-
ing stored in a weight FIFO.
The TPU communicates with the host CPU over a
PCIe Gen3 x16 bus, transferring 14 GiB/sec [15].
Google TPU has a size of 28nm and needs 40W of
energy, running on a 700MHz frequency. It comes
as an external card that matches a SATA harddisk
slot. [12]

4



4.2.2 Software Environment

The software library used for running Python code
on Google TPU is called TensorFlow and was made
specifically for Google’s machine learning applica-
tions, though having been turned into an open
source platform lately.
TensorFlow consists of a number of different APIs
enabling the user to build and train their own neu-
ral networks at different levels of control, with the
most low level one being TensorFlow Core, and the
higher level APIs being built on top of TensorFlow
Core. The concept giving the library its name is
tensors, which are basically just an array which can
have a varying number of dimensions. The other
concept that shows in TensorFlow’s name is com-
putational graphs, which represent a series of op-
erations that will be run by a TensorFlow program
after building the graph. TensorFlow also offers a
graphic visualization tool for these computational
graphs, called TensorBoard. [9]
Computational graphs are generally built using
three different functions, inference, loss and train-
ing, where, as the names would suggest, the graph
is build by the inference function, loss calculation
is included into the graph by the loss function and
training gives the functions used for minimization
of the loss. After the training stage, an evaluation
graph can be generated to enable the user to revise
one’s program. [9]
Whereas the most low level API TensorFlow Core
requires advanced skills with regards to program-
ming and machine learning, the high-level API
tf.estimator is recommended to unexperienced users
and takes a lot of work from the developer. It offers
a range of predefined classification models that can
be used on one’s own data sets for training, while
still offering the possibility to create one’s own clas-
sification functions as well as defining the prepro-
cessing operations applied to the data beforehand.
It also comes with several functions to convert data
sets into different tensor formats. [9]
As mentioned above, TensorFlow is not restricted
to Google TPU or Google’s neural network appli-
cations in general, but can also be used on clas-
sic CPU/GPU architectures. There are therefore

a number of benchmarks available for different
NVIDIA GPUs testing common classification mod-
els [9], unfortunately it apparently has not been
tested for the NVIDIA Tesla V100 yet.
As for more recent developments, there is also a new
compiler for linear algebra called XLA being devel-
oped which is trying to improve TensorFlow with
regards to memory usage, execution speed, porta-
bility, etc. [5]

4.2.3 Benchmarks

The peak performance of Google TPU is stated to
be 92 Teraops per second on its matrix unit, this
is however referring to integer operations due to its
architecture [9].
Comparisons with Intel’s Haswell Xeon CPU and
NVIDIA’s K80 GPU on different benchmarks for
convolutional neural networks, recurrent neural
networks and multilayer perceptrons furthermore
showed Google TPU to be 15 to 30 times faster
than Intel’s CPU and NVIDIA’s GPU [5].

4.3 IBM TrueNorth

The following section shall give an overview of
the architecture, software environment and bench-
marks of the IBM TrueNorth.

4.3.1 Architecture

The IBM TrueNorth chip is described in [11] by
one of its developers, Dharmendra Moda. Accord-
ing to him, a main focus in the development pro-
cess was reducing the power consumption of a chip
that is inspired by the human brain, regarding the
fact that a hypothetical computer simulating the
brain would need around 12GW in energy, whereas
the actual human brain only runs on 20W. The
IBM TrueNorth chip consists of around one million
artificial neurons, connected by 256 million artifi-
cial synapses, each of them programmable. This is
made possible by 4096 cores in total (parallel and
distributed).
Furthermore, there is a customizable on-chip com-
munication network, as well as the possibility

5



to build a customizable network of chips. IBM
TrueNorth is considered to be very energy-efficient,
it takes 70mW to run what is described as a typical
recurrent network. [11]
The neurosynaptic cores on the TrueNorth chip are
implemented as a number of axons which are con-
nected to a number of neurons, where each axon is
assigned a so-called activity bit with a correspond-
ing time stamp modeling event flow. Each connec-
tion is furthermore weighted. [18]
On the hardware side, the axon-neuron connections
are modeled as a 1024 x 256 SRAM crossbar, tak-
ing in the axon activity as input (using an input
decoder) and giving the neuron spikes as output
(using an output decoder) [18].

4.3.2 Software Environment

Along with the chip, IBM also introduced a new
programming language with a matching simulator,
environment and libraries, which is described in
[2] by Amir et al. Seeing that the classic sequen-
tial programming model would not be suitable for
TrueNorth’s architecture, there has been developed
a completely new programming paradigm based on
the concept of so-called Corelets, which are an ab-
straction of a neural network, as well as a Corelet
Language, Corelet Library and Corelet Laboratory.
[2]
The Corelet Language is a turing-complete lan-
guage, but it is different to common programming
languages since the program itself is the neural net-
work specified by the developer with its inputs, out-
puts, parameters and connectives. The goal of this
programming language implementation is to hide
the internal processes which are specified by the
developer and only show the external in- and out-
puts to potential users of the corelet. [2]
The whole concept follows a divide-and-conquer ap-
proach with each corelet being made of a number
of subcorelets, forming a tree with neurosynaptic
cores being the leaves of that tree. Therefore, large
neural networks are essentially built from smaller
neural networks. [2]
The simplest version of a corelet as described in
the article is the seed corelet, a program which is

basically just one neurosynaptic core, which on its
inside consists of neurons and axons, neurons being
spike sources and axons being spike destinations.
There is also a list called output connector, listing
all of the neurons that put out spikes to the exter-
nal environment of the Seed corelet, as well as a
similar input connector list for axons. [2]
When a new corelet is formed from subcorelets, the
output connectors of the subcorelets become the
new spike sources, whereas input connectors turn
into spike destinations. [2]
The main symbols of the Corelet Language are
therefore quite obviously neurons, neurosynaptic
cores and corelets. As the Corelet Language is
object-oriented, this translates to a neuron class,
core class and an additional connector class. Here,
the neuron class internally consists of the initial
membrane potential, reset mode, leaks and thresh-
olds, along with some corresponding set- and get-
methods. The neurosynaptic core class internally
specifies a vector of 256 neuron objects, another
list of 256 axom types and a 256 x 256 matrix
showing connections between axoms and neurons.
The corelet class quite intuitively contains its sub-
corelets, neurons, neurosynaptic cores and connec-
tors, with the connector class specifying a list of
pins that are storing the inter- an intra-corelet con-
nections of the neural network. [2]
Generally, the communication between neurosynap-
tic cores is performed using all-or-none spike events
that are transported over a message-passing net-
work [2].
The Corelet Language got implemented with MAT-
LAB OOP. Since it is object-oriented, there are fea-
tures such as objects and classes as described above
as well as inheritance and polymorphism. [2]
The Corelet Library is basically a container for pre-
made corelets that can be reused by developers who
can also add their own corelets into the repository.
When the article [2] was written, there were about
100 corelets in the repository, for instance aggre-
gators, linear filters, a Discrete Fourier Transform,
etc. The Corelet Library can be seen as a tree itself,
as all corelets are subcorelets to a base class. [2]
Corelet Laboratory is the program environment to
create and execute code on. The underlying con-

6



cepts here are composition and decomposition, with
composition being the creation of corelets from
smaller elements. In order to actually run such a
program, it is necessary to decompose the whole
structure of corelets into an actual TrueNorth pro-
gram that can be compiled and simulated. Corelet
Laboratory further offers support for program veri-
fication. As in most deep learning frameworks, the
simulation results can also be plotted and further-
more visualized in a video. [2]

4.3.3 Benchmarks

It is stated by Merolla et al. in [17] that TrueNorth
achieves a peak performance of 46 billion SOPS
(synaptic operations per second) per watt, compar-
ing it to the peak performance of the current most
energy-efficient supercomputer, which has a peak
performance of 4.5 billion FLOPS per watt.
This again points out the great energy efficiency of
IBM TrueNorth.

4.4 Comparison

With regard to power consumption, it is quite
easy to see that IBM TrueNorth and Google TPU
clearly outperform NVIDIA’s Tesla V100, with
IBM TrueNorth only needing 70mW to run a net-
work and Google TPU which needs 40W compared
to the Tesla V100 with a consumption of 250 to
300W.
Regarding the peak performance, the accelerators
taken into account in this paper get difficult to
compare, mainly due to the use of quantization in
Google TPU leading to the fact that only integer
operations are performed on the chip. It is likely
that Google TPU will outperform NVIDIA’s V100
in most neural network prediction tasks, since in-
creasing the efficiency in this field was the reason it
got designed by Google.
It would be interesting though to compare IBM
TrueNorth to a Tesla V100 GPU using the same
classification tasks as the ones that IBM researchers
previously used for testing TrueNorth.
Overall, the lack of explicit benchmark values for
Google TPU and IBM TrueNorth as well as the

different units of measurement associated with the
accelerators by the manufacturers make them very
hard to compare when it comes to performance.
Taking a look at usability, it is obvious that Google
TPU which is specialized on Google’s needs for neu-
ral network prediction will not come in handy for
many other tasks than that, whereas a GPU archi-
tecture such as Tesla V100 can be more universally
used as seen in their systems for self-driving cars
mentioned above.
With IBM TrueNorth, one big issue is the fact that
is has not actually been released yet, so it is hard
to estimate the degree to which is will be used in a
commercial way.
Overall, it can probably be stated that NVIDIA’s
Tesla V100 is the most universal accelerator out of
the three since it can be applied for both training
and inference tasks in multiple different settings.
Also, there are several different software environ-
ments that can be used on Tesla V100, from CUDA
to open-source OpenCL and frameworks such as
Caffe.
Regarding the corresponding software environ-
ments, it will always be a matter of personal pref-
erence which one will be preferred by the major-
ity of developers when having to implement one’s
own applications and it is quite hard to build an
opinion on their user-friendliness without having a
lot of experience using any of them, since a soft-
ware development kit generally should be tested by
both beginners and advanced developers regarding
intuitiveness and the degree of control over one’s
implementation.

5 Discussion

It is not a big surprise that Google TPU and
IBM TrueNorth are more energy-efficient than
NVIDIA’s Tesla V100 keeping in mind that the first
two accelerators were specifically built with the goal
to reduce energy consumption, as well as both ar-
chitectures being designed for very specific purposes
in contrast to NVIDIA’s Tesla V100 being designed
to be a more general-purpose accelerator, making
Google TPU and IBM TrueNorth less universally

7



usable.
On the flip side, the fact that Tesla V100 will out-
perform the two other accelerators on most tasks
- except the ones those two were designed for - is
equally little surprising.
Overall, it is definitely difficult to draw a com-
parison between those three different architectures.
Generally spoken, which accelerator should be pre-
ferred over the other ones is very much dependent
on the actual task one trying to use them for.
In many cases, a combination of different architec-
tures might also be beneficial as in using a GPU
architecture for training and a specialized ASIC or
a neuromorphic chip for the actual inference tasks.

6 Related Work

In an article from 2015 Rodrigues et al. showed the
capabilites of GPUs in comparison to multicore ar-
chitectures, namely comparing a Gainward GeForce
GTX 580 Phantom GPU by NVIDIA to two Intel
Xeon X5550 cores, running the same recommender
algorithms in already existing versions for CPUs on
the Intel Xeon X5550 cores and a CUDA version of
them on the Gainward GeForce GTX 580 Phantom.
The tested GPU was able to achieve a speedup of
maximum 14.8 compared to the multicore imple-
mentation. [4]
Another topic that is frequently mentioned regard-
ing accelerators for deep learning is FPGA technol-
ogy.
In a 2017 article Nurvitadhi et al. discuss in detail
the performance of FPGAs in comparison to GPUs
in relation to new developments in deep learning.
The author argues that upcoming deep neural net-
works will work with network sparsity at lot more so
then done in the past which leads to more irregular
parallelism and furthermore use more custom, com-
pact data types. Hence he is suggesting to use FP-
GAs as an alternative, which are strongly customiz-
able and in addition also typically more energy-
efficient than GPUs. His test results show a better
performance of current FPGAs on binary, sparse,
compact narrow-bandwidth and ternary deep neu-
ral networks compared to a modern GPU. [1]

Wen et al. in 2016 suggested a new learning method
for IBM TrueNorth in order to improve its perfor-
mance on inference tasks since TrueNorth is like
Google TPU working with low-resultion integers.
The authors therefore propose a probability-biased
learning method. [6]
The approach led to small improvements regarding
accuracy, but an increased overall performance with
a speed-up of 6.5 and a reduction of 68.8 percent re-
garding the cores needed to perform computations
[6].
In an article from 2016, Gu et al. also describe
attempts to transform caffe, a CUDA-based frame-
work for deep learning on neural networks into an
OpenCL version to make deep learning more acces-
sible for hardware architectures which are not based
on CUDA [3].
OpenCL is as mentioned before an open source
standard and supported by many different manu-
facturers [3] as well as NVIDIA [8].
The OpenCL version could not compete with the
CUDA version yet regarding performance, however
the authors point out that there is still a lot of
effort needed to deal with the different OpenCL
extensions available in the future development of
OpenCL caffe [3].

7 Conclusion and Future
Work

In summary, this paper gives an overview of three
different trends in accelerators, examining NVIDIA
Tesla V100 representing classic GPU-based acceler-
ators, Google TPU as an ASIC and IBM TrueNorth
as a neuromorphic chip, reviewing their architec-
tures, corresponding software environments and ac-
cessible benchmarks, giving an overview of the dif-
ferent accelerators’ characteristics and capabilities.
It would be difficult to recommend one of the ac-
celerators over the others, since they were all built
with different concepts in mind. It is easy to see
that the NVIDIA Tesla V100 accelerator is the
one achieving overall best performance, whereas
TrueNorth is incredibly energy-efficient. Since

8



Google TPU is an ASIC, it performs very well on
its designated task while at the same time being
very energy-efficient.
It would obviously be interesting to try to compare
all of the three accelerators reviewed in this paper
on a set of actual classification tasks, namely run-
ning for each accelerator one or several tasks that
it is ”specialized” on on itself and the two other
accelerators to point out strengths and weaknesses
regarding tasks that the accelerator wasn’t neces-
sarily optimized for, as well as taking a deeper look
into similarities and differences between the differ-
ent architectures.
Yet another processor that has been a recent topic
of discussion is Intel’s Xeon Phi Knights Mill pro-
cessor, which is presumably going to be specialized
on deep learning as well.
Since Knights Mill was neither yet released nor was
there a lot of information available on it when this
paper was written, it hasn’t been included into my
comparison. With that being said, Knights Mill
would be an interesting subject for future work on
this topic once there is more information on it re-
leased.
On the general topic of trends for accelerators in
deep learning, it will be interesting to see what the
next developments are going to be and how the ap-
proaches on architectures are going to evolve. As
discussed above in this paper, there are different
new models challenging classic GPU accelerators,
from neuromorphic chips to ASICs and FPGAs.
FPGAs and ASICs however are naturally special-
ized constructions for very specific applications
and the energy-efficiency of Google TPU and IBM
TrueNorth for example comes with the cost of lower
precision, which makes them unsuitable for training
artificial neural networks, hence why GPUs are still
needed for the training stage before performing the
actual classification tasks.
Overall, successful architecture will always be tied
to the needs of current deep learning applications,
so one will have to keep an eye on research develop-
ments in deep learning in general to predict future
trends in accelerator types and architectures.

References

[1] Nurvitadhi, E., Venkatesh, G., Sim, J., Marr,
D., Huang, R., Ong Gee Hock, J., ... &
Boudoukh, G. (2017, February). Can FPGAs
beat GPUs in accelerating next-generation
deep neural networks?. In Proceedings of the
2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (pp. 5-
14). ACM.

[2] Amir, A., Datta, P., Risk, W. P., Cassidy, A.
S., Kusnitz, J. A., Esser, S. K., ... & McQuinn,
E. (2013, August). Cognitive computing pro-
gramming paradigm: a corelet language for
composing networks of neurosynaptic cores. In
Neural Networks (IJCNN), The 2013 Interna-
tional Joint Conference on (pp. 1-10). IEEE.

[3] Gu, J., Liu, Y., Gao, Y., & Zhu, M.
(2016, April). OpenCL caffe: Accelerating and
enabling a cross platform machine learning
framework. In Proceedings of the 4th Interna-
tional Workshop on OpenCL (p. 8). ACM.

[4] Rodrigues, A. V., Jorge, A., & Dutra, I. (2015,
April). Accelerating recommender systems us-
ing GPUs. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing (pp.
879-884). ACM.

[5] Abadi, M., Isard, M., & Murray, D. G. (2017,
June). A computational model for Tensor-
Flow: an introduction. In Proceedings of the
1st ACM SIGPLAN International Workshop
on Machine Learning and Programming Lan-
guages (pp. 1-7). ACM.

[6] Wen, W., Wu, C., Wang, Y., Nixon, K., Wu,
Q., Barnell, M., ... & Chen, Y. (2016, June).
A new learning method for inference accu-
racy, core occupation, and performance co-
optimization on TrueNorth chip. In Design
Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE (pp. 1-6). IEEE.

[7] NVIDIA. Nvidia Tesla V100 GPU Ar-
chitecture: The World’s Most Advanced

9



Data Center GPU. Retrieved from
http://www.nvidia.com/object/tesla product
literature.html

[8] NVIDIA. Tesla V100 Perfor-
mance Guide: Deep Learning and
HPC Applications. Retrieved from
http://www.nvidia.com/object/tesla product
literature.html

[9] TensorFlow. (2017). Getting Started
With TensorFlow. Retrieved from
https://www.tensorflow.org/get started/get
started

[10] NVIDIA. (n.d.). Programming Guide ::
CUDA Toolkit Documentation. Retrieved
from http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html

[11] IBM. (n.d.). IBM Research: Brain-
inspired Chip. Retrieved from
http://www.research.ibm.com/articles/brain-
chip.shtml

[12] Google Cloud Platform. (n.d.). An
in-depth look at Googles first Ten-
sor Processing Unit (TPU). Retrieved
from https://cloud.google.com/blog/big-
data/2017/05/an-in-depth-look-at-googles-
first-tensor-processing-unit-tpu

[13] Schmidhuber, J. (2015). Deep learning in neu-
ral networks: An overview. Neural networks,
61, 85-117.

[14] LeCun, Y., Bengio, Y., LeCun, Y., Bengio, Y.,
& Hinton, G. (2015). Deep learning. Nature,
521(7553), 436-444.

[15] Jouppi, N. P., Young, C., Patil, N., Patterson,
D., Agrawal, G., Bajwa, R., ... & Boyle, R.
(2017, June). In-datacenter performance anal-
ysis of a tensor processing unit. In Proceedings
of the 44th Annual International Symposium
on Computer Architecture (pp. 1-12). ACM.

[16] Song, S., Miller, K. D., & Abbott, L. F. (2000).
Competitive Hebbian learning through spike-
timing-dependent synaptic plasticity. Nature
neuroscience, 3(9), 919-926.

[17] Merolla, P. A., Arthur, J. V., Alvarez-Icaza,
R., Cassidy, A. S., Sawada, J., Akopyan, F., ...
& Brezzo, B. (2014). A million spiking-neuron
integrated circuit with a scalable communica-
tion network and interface. Science, 345(6197),
668-673.

[18] Merolla, P., Arthur, J., Akopyan, F., Imam,
N., Manohar, R., & Modha, D. S. (2011,
September). A digital neurosynaptic core us-
ing embedded crossbar memory with 45pJ per
spike in 45nm. In Custom Integrated Cir-
cuits Conference (CICC), 2011 IEEE (pp. 1-4).
IEEE.

[19] Wired. (2016). In Two Moves, AlphaGo and
Lee Sedol Redefined the Future. Retrieved
from https://www.wired.com/2016/03/two-
moves-alphago-lee-sedol-redefined-future/

[20] top500. (2017). Google Latest AlphaGo AI
Program Crushes Its Predecessors. Retrieved
from https://www.top500.org/news/google-
latest-alphago-ai-program-crushes-its-
predecessor/

[21] Human Brain Project. (n.d.). Retrieved from
https://www.humanbrainproject.eu/en/

[22] The BRAIN Initiative. (n.d.). Retrieved from
www.braininitiative.org/

[23] Nvidia. (n.d.). Autonomous Car Develop-
ment Platform from NVIDIA DRIVE PX2.
Retrieved from https://www.nvidia.de/self-
driving-cars/drive-px/

10


