Team Member: Tobias Fuchs

Email fuchst _at_
Phone +49 89 2180-9146
Fax +49 89 2180-999146
Non-active Member Please refer to the personal website.

Profiles: DBLP | GitHub | LinkedIn

What's Happening?


Research interests:


For livestream recordings and more talks:

Student Works

Feel free to contact me if you are interested in working on one of the topics listed above.

I offer topics for

in fields related to my research interests.

Concerning your thesis, my personal advice is to read "The Butterfly's Struggle".

Theses in Progress

Completed Works


My Own Theses


Summer Term 2018

Winter Term 2017/2018

Summer Term 2017

Winter Term 2016

Summer Term 2016

Winter Term 2015/2016

Summer Term 2015


Student Work

Work Completed:
  • Orlowski, J., Hardware Topology Awareness Through a Graph Query API, Bachelorarbeit, Ludwig-Maximilians-Universität München, September, 2021.
  • Herget, M., Index Set Mappings for Multidimensional Views on PGAS Data Domains, Diplomarbeit, Ludwig-Maximilians-Universität München, August, 2020.
  • Visintini, V., Evaluation of Real-Time Music Feature Extraction for Reharmonization, Diplomarbeit, Ludwig-Maximilians-Universität München, August, 2020.
  • Isenko, A., SLAM with Kalman-Filtered Odometry in O(1), Diplomarbeit, Ludwig-Maximilians-Universität München, März, 2019.
  • Mößbauer, F., High Performance Dynamic Threading Analysis for Hybrid Applications, Diplomarbeit, Ludwig-Maximilians-Universität München, Januar, 2019.
  • Effenberger, S., C++ Graph Concepts for Partitioned Global Address Space, Diplomarbeit, Ludwig-Maximilians-Universität München, Mai, 2018.
  • Schäffer, J., Python-Bindings for the DASH C++ Template Library, Bachelorarbeit, Ludwig-Maximilians-Universität München, Juni, 2017.
  • Mößbauer, F., DASH Benchmarking and Performance Assessment, Bachelorarbeit, Ludwig-Maximilians-Universität München, März, 2016.


Last Change: Sat, 24 Aug 2019 02:52:02 +0200 - Viewed on: Sat, 28 Jan 2023 07:12:53 +0100
Copyright © MNM-Team - Impressum / Legal Info  - Datenschutz / Privacy